TY - JOUR A1 - Soundararajan, Manonmani A1 - Marincola, Gabriella A1 - Liong, Olivia A1 - Marciniak, Tessa A1 - Wencker, Freya D. R. A1 - Hofmann, Franka A1 - Schollenbruch, Hannah A1 - Kobusch, Iris A1 - Linnemann, Sabrina A1 - Wolf, Silver A. A1 - Helal, Mustafa A1 - Semmler, Torsten A1 - Walther, Birgit A1 - Schoen, Christoph A1 - Nyasinga, Justin A1 - Revathi, Gunturu A1 - Boelhauve, Marc A1 - Ziebuhr, Wilma T1 - Farming practice influences antimicrobial resistance burden of non-aureus staphylococci in pig husbandries JF - Microorganisms N2 - Non-aureus staphylococci (NAS) are ubiquitous bacteria in livestock-associated environments where they may act as reservoirs of antimicrobial resistance (AMR) genes for pathogens such as Staphylococcus aureus. Here, we tested whether housing conditions in pig farms could influence the overall AMR-NAS burden. Two hundred and forty porcine commensal and environmental NAS isolates from three different farm types (conventional, alternative, and organic) were tested for phenotypic antimicrobial susceptibility and subjected to whole genome sequencing. Genomic data were analysed regarding species identity and AMR gene carriage. Seventeen different NAS species were identified across all farm types. In contrast to conventional farms, no AMR genes were detectable towards methicillin, aminoglycosides, and phenicols in organic farms. Additionally, AMR genes to macrolides and tetracycline were rare among NAS in organic farms, while such genes were common in conventional husbandries. No differences in AMR detection existed between farm types regarding fosfomycin, lincosamides, fusidic acid, and heavy metal resistance gene presence. The combined data show that husbandry conditions influence the occurrence of resistant and multidrug-resistant bacteria in livestock, suggesting that changing husbandry practices may be an appropriate means of limiting the spread of AMR bacteria on farms. KW - non-aureus staphylococci KW - NAS KW - alternative pig farming KW - antimicrobial resistance KW - one-health approach KW - intervention strategies KW - livestock-associated staphylococci KW - organic farming KW - pig farming methods Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-312750 SN - 2076-2607 VL - 11 IS - 1 ER - TY - JOUR A1 - Michaux, Charlotte A1 - Gerovac, Milan A1 - Hansen, Elisabeth E. A1 - Barquist, Lars A1 - Vogel, Jörg T1 - Grad-seq analysis of Enterococcus faecalis and Enterococcus faecium provides a global view of RNA and protein complexes in these two opportunistic pathogens JF - microLife N2 - Enterococcus faecalis and Enterococcus faecium are major nosocomial pathogens. Despite their relevance to public health and their role in the development of bacterial antibiotic resistance, relatively little is known about gene regulation in these species. RNA–protein complexes serve crucial functions in all cellular processes associated with gene expression, including post-transcriptional control mediated by small regulatory RNAs (sRNAs). Here, we present a new resource for the study of enterococcal RNA biology, employing the Grad-seq technique to comprehensively predict complexes formed by RNA and proteins in E. faecalis V583 and E. faecium AUS0004. Analysis of the generated global RNA and protein sedimentation profiles led to the identification of RNA–protein complexes and putative novel sRNAs. Validating our data sets, we observe well-established cellular RNA–protein complexes such as the 6S RNA–RNA polymerase complex, suggesting that 6S RNA-mediated global control of transcription is conserved in enterococci. Focusing on the largely uncharacterized RNA-binding protein KhpB, we use the RIP-seq technique to predict that KhpB interacts with sRNAs, tRNAs, and untranslated regions of mRNAs, and might be involved in the processing of specific tRNAs. Collectively, these datasets provide departure points for in-depth studies of the cellular interactome of enterococci that should facilitate functional discovery in these and related Gram-positive species. Our data are available to the community through a user-friendly Grad-seq browser that allows interactive searches of the sedimentation profiles (https://resources.helmholtz-hiri.de/gradseqef/). KW - Enterococcus faecalis KW - Enterococcus faecium KW - Grad-seq KW - KhpB protein Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-313311 VL - 4 ER - TY - JOUR A1 - Raschig, Martina A1 - Ramírez‐Zavala, Bernardo A1 - Wiest, Johannes A1 - Saedtler, Marco A1 - Gutmann, Marcus A1 - Holzgrabe, Ulrike A1 - Morschhäuser, Joachim A1 - Meinel, Lorenz T1 - Azobenzene derivatives with activity against drug‐resistant Candida albicans and Candida auris JF - Archiv der Pharmazie N2 - Increasing resistance against antimycotic drugs challenges anti‐infective therapies today and contributes to the mortality of infections by drug‐resistant Candida species and strains. Therefore, novel antifungal agents are needed. A promising approach in developing new drugs is using naturally occurring molecules as lead structures. In this work, 4,4'‐dihydroxyazobenzene, a compound structurally related to antifungal stilbene derivatives and present in Agaricus xanthodermus (yellow stainer), served as a starting point for the synthesis of five azobenzene derivatives. These compounds prevented the growth of both fluconazole‐susceptible and fluconazole‐resistant Candida albicans and Candida auris strains. Further in vivo studies are required to confirm the potential therapeutic value of these compounds. KW - antifungal drug KW - azobenzenes KW - Candida auris KW - Candida albicans Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-312295 VL - 356 IS - 2 ER - TY - JOUR A1 - Okuda, Takumi A1 - Lenz, Ann-Kathrin A1 - Seitz, Florian A1 - Vogel, Jörg A1 - Höbartner, Claudia T1 - A SAM analogue-utilizing ribozyme for site-specific RNA alkylation in living cells JF - Nature Chemistry N2 - Post-transcriptional RNA modification methods are in high demand for site-specific RNA labelling and analysis of RNA functions. In vitro-selected ribozymes are attractive tools for RNA research and have the potential to overcome some of the limitations of chemoenzymatic approaches with repurposed methyltransferases. Here we report an alkyltransferase ribozyme that uses a synthetic, stabilized S-adenosylmethionine (SAM) analogue and catalyses the transfer of a propargyl group to a specific adenosine in the target RNA. Almost quantitative conversion was achieved within 1 h under a wide range of reaction conditions in vitro, including physiological magnesium ion concentrations. A genetically encoded version of the SAM analogue-utilizing ribozyme (SAMURI) was expressed in HEK293T cells, and intracellular propargylation of the target adenosine was confirmed by specific fluorescent labelling. SAMURI is a general tool for the site-specific installation of the smallest tag for azide-alkyne click chemistry, which can be further functionalized with fluorophores, affinity tags or other functional probes. KW - Alkyltransferase Ribozyme SAMURI KW - Site-specific RNA labelling KW - bioorthogonal SAM analogue ProSeDMA KW - Chemical modification KW - RNA Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-328762 ER - TY - JOUR A1 - McFleder, Rhonda L. A1 - Makhotkina, Anastasiia A1 - Groh, Janos A1 - Keber, Ursula A1 - Imdahl, Fabian A1 - Peña Mosca, Josefina A1 - Peteranderl, Alina A1 - Wu, Jingjing A1 - Tabuchi, Sawako A1 - Hoffmann, Jan A1 - Karl, Ann-Kathrin A1 - Pagenstecher, Axel A1 - Vogel, Jörg A1 - Beilhack, Andreas A1 - Koprich, James B. A1 - Brotchie, Jonathan M. A1 - Saliba, Antoine-Emmanuel A1 - Volkmann, Jens A1 - Ip, Chi Wang T1 - Brain-to-gut trafficking of alpha-synuclein by CD11c\(^+\) cells in a mouse model of Parkinson’s disease JF - Nature Communications N2 - Inflammation in the brain and gut is a critical component of several neurological diseases, such as Parkinson’s disease (PD). One trigger of the immune system in PD is aggregation of the pre-synaptic protein, α-synuclein (αSyn). Understanding the mechanism of propagation of αSyn aggregates is essential to developing disease-modifying therapeutics. Using a brain-first mouse model of PD, we demonstrate αSyn trafficking from the brain to the ileum of male mice. Immunohistochemistry revealed that the ileal αSyn aggregations are contained within CD11c+ cells. Using single-cell RNA sequencing, we demonstrate that ileal CD11c\(^+\) cells are microglia-like and the same subtype of cells is activated in the brain and ileum of PD mice. Moreover, by utilizing mice expressing the photo-convertible protein, Dendra2, we show that CD11c\(^+\) cells traffic from the brain to the ileum. Together these data provide a mechanism of αSyn trafficking between the brain and gut. KW - antigen-presenting cells KW - neuroimmunology KW - Parkinson's disease Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-357696 VL - 14 ER - TY - JOUR A1 - Maichl, Daniela Simone A1 - Kirner, Julius Arthur A1 - Beck, Susanne A1 - Cheng, Wen-Hui A1 - Krug, Melanie A1 - Kuric, Martin A1 - Ade, Carsten Patrick A1 - Bischler, Thorsten A1 - Jakob, Franz A1 - Hose, Dirk A1 - Seckinger, Anja A1 - Ebert, Regina A1 - Jundt, Franziska T1 - Identification of NOTCH-driven matrisome-associated genes as prognostic indicators of multiple myeloma patient survival JF - Blood Cancer Journal N2 - No abstract available. KW - cancer microenvironment KW - myeloma Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-357598 VL - 13 ER - TY - JOUR A1 - Groh, Janos A1 - Abdelwahab, Tassnim A1 - Kattimani, Yogita A1 - Hörner, Michaela A1 - Loserth, Silke A1 - Gudi, Viktoria A1 - Adalbert, Robert A1 - Imdahl, Fabian A1 - Saliba, Antoine-Emmanuel A1 - Coleman, Michael A1 - Stangel, Martin A1 - Simons, Mikael A1 - Martini, Rudolf T1 - Microglia-mediated demyelination protects against CD8\(^+\) T cell-driven axon degeneration in mice carrying PLP defects JF - Nature Communications N2 - Axon degeneration and functional decline in myelin diseases are often attributed to loss of myelin but their relation is not fully understood. Perturbed myelinating glia can instigate chronic neuroinflammation and contribute to demyelination and axonal damage. Here we study mice with distinct defects in the proteolipid protein 1 gene that develop axonal damage which is driven by cytotoxic T cells targeting myelinating oligodendrocytes. We show that persistent ensheathment with perturbed myelin poses a risk for axon degeneration, neuron loss, and behavioral decline. We demonstrate that CD8\(^+\) T cell-driven axonal damage is less likely to progress towards degeneration when axons are efficiently demyelinated by activated microglia. Mechanistically, we show that cytotoxic T cell effector molecules induce cytoskeletal alterations within myelinating glia and aberrant actomyosin constriction of axons at paranodal domains. Our study identifies detrimental axon-glia-immune interactions which promote neurodegeneration and possible therapeutic targets for disorders associated with myelin defects and neuroinflammation. KW - diseases of the nervous system KW - myelin biology and repair KW - neuroimmunology Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-357641 VL - 14 ER - TY - JOUR A1 - Däullary, Thomas A1 - Imdahl, Fabian A1 - Dietrich, Oliver A1 - Hepp, Laura A1 - Krammer, Tobias A1 - Fey, Christina A1 - Neuhaus, Winfried A1 - Metzger, Marco A1 - Vogel, Jörg A1 - Westermann, Alexander J. A1 - Saliba, Antoine-Emmanuel A1 - Zdzieblo, Daniela T1 - A primary cell-based in vitro model of the human small intestine reveals host olfactomedin 4 induction in response to Salmonella Typhimurium infection JF - Gut Microbes N2 - Infection research largely relies on classical cell culture or mouse models. Despite having delivered invaluable insights into host-pathogen interactions, both have limitations in translating mechanistic principles to human pathologies. Alternatives can be derived from modern Tissue Engineering approaches, allowing the reconstruction of functional tissue models in vitro. Here, we combined a biological extracellular matrix with primary tissue-derived enteroids to establish an in vitro model of the human small intestinal epithelium exhibiting in vivo-like characteristics. Using the foodborne pathogen Salmonella enterica serovar Typhimurium, we demonstrated the applicability of our model to enteric infection research in the human context. Infection assays coupled to spatio-temporal readouts recapitulated the established key steps of epithelial infection by this pathogen in our model. Besides, we detected the upregulation of olfactomedin 4 in infected cells, a hitherto unrecognized aspect of the host response to Salmonella infection. Together, this primary human small intestinal tissue model fills the gap between simplistic cell culture and animal models of infection, and shall prove valuable in uncovering human-specific features of host-pathogen interplay. KW - intestinal enteroids KW - biological scaffold KW - Salmonella Typhimurium KW - OLFM4 KW - NOTCH KW - filamentous Salmonella Typhimurium KW - bacterial migration KW - bacterial virulence KW - 3D tissue model KW - olfactomedin 4 KW - infection Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-350451 VL - 15 IS - 1 ER - TY - JOUR A1 - Ramírez-Zavala, Bernardo A1 - Krüger, Ines A1 - Wollner, Andreas A1 - Schwanfelder, Sonja A1 - Morschhäuser, Joachim T1 - The Ypk1 protein kinase signaling pathway is rewired and not essential for viability in \(Candida\) \(albicans\) JF - PLoS Genetics N2 - Abstract Protein kinases are central components of almost all signaling pathways that control cellular activities. In the model organism Saccharomyces cerevisiae, the paralogous protein kinases Ypk1 and Ypk2, which control membrane lipid homeostasis, are essential for viability, and previous studies strongly indicated that this is also the case for their single ortholog Ypk1 in the pathogenic yeast Candida albicans. Here, using FLP-mediated inducible gene deletion, we reveal that C. albicans ypk1Δ mutants are viable but slow-growing, explaining prior failures to obtain null mutants. Phenotypic analyses of the mutants showed that the functions of Ypk1 in regulating sphingolipid biosynthesis and cell membrane lipid asymmetry are conserved, but the consequences of YPK1 deletion are milder than in S. cerevisiae. Mutational studies demonstrated that the highly conserved PDK1 phosphorylation site T548 in its activation loop is essential for Ypk1 function, whereas the TORC2 phosphorylation sites S687 and T705 at the C-terminus are important for Ypk1-dependent resistance to membrane stress. Unexpectedly, Pkh1, the single C. albicans orthologue of Pkh1/Pkh2, which mediate Ypk1 phosphorylation at the PDK1 site in S. cerevisiae, was not required for normal growth of C. albicans under nonstressed conditions, and Ypk1 phosphorylation at T548 was only slightly reduced in pkh1Δ mutants. We found that another protein kinase, Pkh3, whose ortholog in S. cerevisiae cannot substitute Pkh1/2, acts redundantly with Pkh1 to activate Ypk1 in C. albicans. No phenotypic effects were observed in cells lacking Pkh3 alone, but pkh1Δ pkh3Δ double mutants had a severe growth defect and Ypk1 phosphorylation at T548 was completely abolished. These results establish that Ypk1 is not essential for viability in C. albicans and that, despite its generally conserved function, the Ypk1 signaling pathway is rewired in this pathogenic yeast and includes a novel upstream kinase to activate Ypk1 by phosphorylation at the PDK1 site. Author summary Protein kinases are key components of cellular signaling pathways, and elucidating the specific roles of individual kinases is important to understand how organisms adapt to changes in their environment. The protein kinase Ypk1 is highly conserved in eukaryotic organisms and crucial for the maintenance of cell membrane homeostasis. It was previously thought that Ypk1 is essential for viability in the pathogenic yeast Candida albicans, as in the model organism Saccharomyces cerevisiae. Here, by using forced, inducible gene deletion, we reveal that C. albicans mutants lacking Ypk1 are viable but have a strong growth defect. The phenotypes of the mutants indicate that the known functions of Ypk1 are conserved in C. albicans, but loss of this kinase has less severe consequences than in S. cerevisiae. We also unravel the puzzling previous observation that C. albicans mutants lacking the Ypk1-activating kinase Pkh1, which is essential in S. cerevisiae, have no obvious growth defects. We show that the protein kinase Pkh3, which has not previously been implicated in the Ypk1 signaling pathway, can substitute Pkh1 and activate Ypk1 in C. albicans. These findings provide novel insights into this conserved signaling pathway and how it is rewired in a human-pathogenic fungus. KW - Ypk1 KW - protein kinase KW - signaling pathway KW - Candida albicans Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-350076 VL - 19 IS - 8 ER - TY - JOUR A1 - Homberger, Christina A1 - Hayward, Regan J. A1 - Barquist, Lars A1 - Vogel, Jörg T1 - Improved bacterial single-cell RNA-seq through automated MATQ-seq and Cas9-based removal of rRNA reads JF - mBio N2 - Bulk RNA sequencing technologies have provided invaluable insights into host and bacterial gene expression and associated regulatory networks. Nevertheless, the majority of these approaches report average expression across cell populations, hiding the true underlying expression patterns that are often heterogeneous in nature. Due to technical advances, single-cell transcriptomics in bacteria has recently become reality, allowing exploration of these heterogeneous populations, which are often the result of environmental changes and stressors. In this work, we have improved our previously published bacterial single-cell RNA sequencing (scRNA-seq) protocol that is based on multiple annealing and deoxycytidine (dC) tailing-based quantitative scRNA-seq (MATQ-seq), achieving a higher throughput through the integration of automation. We also selected a more efficient reverse transcriptase, which led to reduced cell loss and higher workflow robustness. Moreover, we successfully implemented a Cas9-based rRNA depletion protocol into the MATQ-seq workflow. Applying our improved protocol on a large set of single Salmonella cells sampled over different growth conditions revealed improved gene coverage and a higher gene detection limit compared to our original protocol and allowed us to detect the expression of small regulatory RNAs, such as GcvB or CsrB at a single-cell level. In addition, we confirmed previously described phenotypic heterogeneity in Salmonella in regard to expression of pathogenicity-associated genes. Overall, the low percentage of cell loss and high gene detection limit makes the improved MATQ-seq protocol particularly well suited for studies with limited input material, such as analysis of small bacterial populations in host niches or intracellular bacteria. IMPORTANCE: Gene expression heterogeneity among isogenic bacteria is linked to clinically relevant scenarios, like biofilm formation and antibiotic tolerance. The recent development of bacterial single-cell RNA sequencing (scRNA-seq) enables the study of cell-to-cell variability in bacterial populations and the mechanisms underlying these phenomena. Here, we report a scRNA-seq workflow based on MATQ-seq with increased robustness, reduced cell loss, and improved transcript capture rate and gene coverage. Use of a more efficient reverse transcriptase and the integration of an rRNA depletion step, which can be adapted to other bacterial single-cell workflows, was instrumental for these improvements. Applying the protocol to the foodborne pathogen Salmonella, we confirmed transcriptional heterogeneity across and within different growth phases and demonstrated that our workflow captures small regulatory RNAs at a single-cell level. Due to low cell loss and high transcript capture rates, this protocol is uniquely suited for experimental settings in which the starting material is limited, such as infected tissues. KW - MATQ-seq KW - single-cell RNA-seq KW - Salmonella enterica KW - rRNA depletion KW - gene expression heterogeneity KW - DASH KW - Cas9 Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-350059 VL - 14 IS - 2 ER -