TY - JOUR A1 - Albers, Gregory W. A1 - Bernstein, Richard A. A1 - Brachmann, Johannes A1 - Camm, John A1 - Easton, J. Donald A1 - Fromm, Peter A1 - Goto, Shinya A1 - Granger, Christopher B. A1 - Hohnloser, Stefan H. A1 - Hylek, Elaine A1 - Jaffer, Amir K. A1 - Krieger, Derk W. A1 - Passman, Rod A1 - Pines, Jesse M. A1 - Reed, Shelby D. A1 - Rothwell, Peter M. A1 - Kowey, Peter R. T1 - Heart Rhythm Monitoring Strategies for Cryptogenic Stroke: 2015 Diagnostics and Monitoring Stroke Focus Group Report JF - Journal of the American Heart Association N2 - No abstract available. KW - anticoagulants KW - atrial fibrillation KW - diagnosis KW - electrocardiography KW - insertable cardiac monitor KW - stroke prevention Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-165709 VL - 5 IS - e00294 ER - TY - JOUR A1 - Van Haute, Lindsey A1 - Dietmann, Sabine A1 - Kremer, Laura A1 - Hussain, Shobbir A1 - Pearce, Sarah F. A1 - Powell, Christopher A. A1 - Rorbach, Joanna A1 - Lantaff, Rebecca A1 - Blanco, Sandra A1 - Sauer, Sascha A1 - Kotzaeridou, Urania A1 - Hoffmann, Georg F. A1 - Memari, Yasin A1 - Kolb-Kokocinski, Anja A1 - Durbin, Richard A1 - Mayr, Johannes A. A1 - Frye, Michaela A1 - Prokisch, Holger A1 - Minczuk, Michal T1 - Deficient methylation and formylation of mt-tRNA(Met) wobble cytosine in a patient carrying mutations in NSUN3 JF - Nature Communications N2 - Epitranscriptome modifications are required for structure and function of RNA and defects in these pathways have been associated with human disease. Here we identify the RNA target for the previously uncharacterized 5-methylcytosine (m5C) methyltransferase NSun3 and link m5C RNA modifications with energy metabolism. Using whole-exome sequencing, we identified loss-of-function mutations in NSUN3 in a patient presenting with combined mitochondrial respiratory chain complex deficiency. Patient-derived fibroblasts exhibit severe defects in mitochondrial translation that can be rescued by exogenous expression of NSun3. We show that NSun3 is required for deposition of m5C at the anticodon loop in the mitochondrially encoded transfer RNA methionine (mt-tRNAMet). Further, we demonstrate that m5C deficiency in mt-tRNAMet results in the lack of 5-formylcytosine (f5C) at the same tRNA position. Our findings demonstrate that NSUN3 is necessary for efficient mitochondrial translation and reveal that f5C in human mitochondrial RNA is generated by oxidative processing of m5C. KW - Methylation KW - RNA KW - Transferases Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-165998 VL - 7 ER - TY - JOUR A1 - Vučićević, Dubravka A1 - Gehre, Maja A1 - Dhamija, Sonam A1 - Friis-Hansen, Lennart A1 - Meierhofer, David A1 - Sauer, Sascha A1 - Ørom, Ulf Andersson T1 - The long non-coding RNA PARROT is an upstream regulator of c-Myc and affects proliferation and translation JF - Oncotarget N2 - Long non-coding RNAs are important regulators of gene expression and signaling pathways. The expression of long ncRNAs is dysregulated in cancer and other diseases. The identification and characterization of long ncRNAs is often challenging due to their low expression level and localization to chromatin. Here, we identify a functional long ncRNA, PARROT (Proliferation Associated RNA and Regulator Of Translation) transcribed by RNA polymerase II and expressed at a relatively high level in a number of cell lines. The PARROT long ncRNA is associated with proliferation in both transformed and normal cell lines. We characterize the long ncRNA PARROT as an upstream regulator of c-Myc affecting cellular proliferation and translation using RNA sequencing and mass spectrometry following depletion of the long ncRNA. PARROT is repressed during senescence of human mammary epithelial cells and overexpressed in some cancers, suggesting an important association with proliferation through regulation of c-Myc. With this study, we add to the knowledge of cytoplasmic functional long ncRNAs and extent the long ncRNA-Myc regulatory network in transformed and normal cells. KW - PARROT KW - c-Myc KW - long ncRNA KW - upstream regulator Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-166519 VL - 7 IS - 23 ER - TY - JOUR A1 - Grote, Jessica A1 - Krysciak, Dagmar A1 - Petersen, Katrin A1 - Güllert, Simon A1 - Schmeisser, Christel A1 - Förstner, Konrad U. A1 - Krishnan, Hari B. A1 - Schwalbe, Harald A1 - Kubatova, Nina A1 - Streit, Wolfgang R. T1 - The Absence of the N-acyl-homoserine-lactone Autoinducer Synthase Genes tral and ngrl Increases the Copy Number of the Symbiotic Plasmid in Sinorhizobium fredii NGR234 JF - Frontiers in Microbiology N2 - Plant-released flavonoids induce the transcription of symbiotic genes in rhizobia and one of the first bacterial responses is the synthesis of so called Nod factors. They are responsible for the initial root hair curling during onset of root nodule development. This signal exchange is believed to be essential for initiating the plant symbiosis with rhizobia affiliated with the Alphaproteobacteria. Here, we provide evidence that in the broad host range strain Sinorhizobium fredii NGR234 the complete lack of quorum sensing molecules results in an elevated copy number of its symbiotic plasmid (pNGR234a). This in turn triggers the expression of symbiotic genes and the production of Nod factors in the absence of plant signals. Therefore, increasing the copy number of specific plasmids could be a widespread mechanism of specialized bacterial populations to bridge gaps in signaling cascades. KW - Sinorhizobium fredii KW - plasmid copy number KW - plant symbioses KW - quorum sensing (QS) KW - RNA sequencing (RNA-Seq) Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-165185 VL - 7 IS - 1858 ER - TY - THES A1 - Karl, Stefan T1 - Control Centrality in Non-Linear Biological Networks T1 - Kontrollzentralität in nichtlinearen biologischen Netzwerken N2 - Biological systems such as cells or whole organisms are governed by complex regulatory networks of transcription factors, hormones and other regulators which determine the behavior of the system depending on internal and external stimuli. In mathematical models of these networks, genes are represented by interacting “nodes” whose “value” represents the activity of the gene. Control processes in these regulatory networks are challenging to elucidate and quantify. Previous control centrality metrics, which aim to mathematically capture the ability of individual nodes to control biological systems, have been found to suffer from problems regarding biological plausibility. This thesis presents a new approach to control centrality in biological networks. Three types of network control are distinguished: Total control centrality quantifies the impact of gene mutations and identifies potential pharmacological targets such as genes involved in oncogenesis (e.g. zinc finger protein GLI2 or bone morphogenetic proteins in chondrocytes). Dynamic control centrality describes relaying functions as observed in signaling cascades (e.g control in mouse colon stem cells). Value control centrality measures the direct influence of the value of the node on the network (e.g. Indian hedgehog as an essential regulator of proliferation in chondrocytes). Well-defined network manipulations define all three centralities not only for nodes, but also for the interactions between them, enabling detailed insights into network pathways. The calculation of the new metrics is made possible by substantial computational improvements in the simulation algorithms for several widely used mathematical modeling paradigms for genetic regulatory networks, which are implemented in the regulatory network simulation framework Jimena created for this thesis. Applying the new metrics to biological networks and artificial random networks shows how these mathematical concepts correspond to experimentally verified gene functions and signaling pathways in immunity and cell differentiation. In contrast to controversial previous results even from the Barabási group, all results indicate that the ability to control biological networks resides in only few driver nodes characterized by a high number of connections to the rest of the network. Autoregulatory loops strongly increase the controllability of the network, i.e. its ability to control itself, and biological networks are characterized by high controllability in conjunction with high robustness against mutations, a combination that can be achieved best in sparsely connected networks with densities (i.e. connections to nodes ratios) around 2.0 - 3.0. The new concepts are thus considerably narrowing the gap between network science and biology and can be used in various areas such as system modeling, plausibility trials and system analyses. Medical applications discussed in this thesis include the search for oncogenes and pharmacological targets, as well their functional characterization. N2 - Biologische Systeme wie Zellen aber auch ganze Organismen werden durch ein komplexes Netzwerk von Transkriptionsfaktoren, Hormonen und anderen Regulatoren kontrolliert, welche das Verhalten des Systems in Abhängigkeit von internen und externen Einflüssen steuern. In mathematischen Modellen dieser Netzwerke werden Gene durch „Knoten“ repräsentiert, deren „Wert“ die Aktivität des Gens wiederspiegelt. Kontrollvorgänge in diesen Regulationsnetzwerken sind schwierig zu quantifizieren. Existierende Maße für die Kontrollzentralität, d.h. die Fähigkeit einzelner Knoten biologische Systeme zu kontrollieren, zeigen vor allem Probleme mit der biologischen Plausibilität der Ergebnisse. Diese Dissertation stellt eine neue Definition der Kontrollzentralität vor. Dabei werden drei Typen der Kontrollzentralität unterschieden: Totale Kontrollzentralität quantifiziert den Einfluss von Mutationen eines Gens und hilft mögliche pharmakologische Ziele wie etwa Onkogene (z. B. das Zinkfingerprotein GLI2 oder Bone Morphogenetic Proteins in Chondrozyten) zu identifizieren. Dynamische Kontrollzentralität beschreibt signalweiterleitende Funktionen in Signalkaskaden (z. B. in Kontrollprozessen in Stammzellen des Mauskolons). Wert-Kontrollzentralität misst den Einfluss des Werts des Knotens (zum Beispiel die Rolle von Indian hedgehog als essentieller Regulator der Chondrozytenproliferation). Durch gezielte Manipulation von Netzwerken können die Zentralitäten nicht nur für Knoten, sondern auch für die Interaktionen zwischen ihnen bestimmt werden, was detaillierte Einblicke in Netzwerkpfade erlaubt. Möglich wird die Berechnung der neuen Maße durch substantielle Verbesserungen der Simulationsalgorithmen mehrerer häufig verwendeter mathematischer Muster für Genregulationsnetzwerke, welche in der für diese Dissertation entwickelten Software Jimena implementiert wurden. Durch die Anwendung der neuen Metriken auf biologische Netzwerke und künstliche Zufallsnetzwerke kann gezeigt werden, dass die mathematischen Konzepte experimentell bestätigte Funktionen von Genen und Signalpfaden im Immunsystem und der Zelldifferenzierung korrekt wiedergeben. Im Gegensatz zu umstrittenen Ergebnissen der Forschungsgruppe Barabási zeigt sich hier, dass die Fähigkeit, biologische Netzwerke zu kontrollieren, in nur wenigen Knoten konzentriert ist, welche sich vor allem durch viele Verbindungen zum Rest des Netzwerks auszeichnen. Knoten, welche ihre eigene Expression beeinflussen, steigern die Fähigkeit eines Netzwerkes sich selbst zu kontrollieren (Kontrollierbarkeit), und biologische Netzwerke zeichnen sich durch hohe Kontrollierbarkeit bei gleichzeitig hoher Resistenz gegenüber Mutationen aus. Diese Kombination kann am besten durch eher schwach verbundene Netzwerke erreicht werden, bei denen auf einen Knoten nur etwa 2 bis 3 Verbindungen kommen. Die neuen Konzepte schlagen so eine Brücke zwischen Netzwerkwissenschaften und Biologie, und sind in einer Vielzahl von Gebieten wie der Modellierung von Systemen sowie der Überprüfung ihrer Plausibilität und ihrer Analyse anwendbar. Medizinische Anwendungen, auf welche in dieser Dissertation eingegangen wird, sind zum Beispiel die Suche nach Onkogenen und pharmakologischen Zielen, aber auch deren funktionelle Analyse. KW - Bioinformatik KW - Genregulation KW - Nichtlineare Differentialgleichung KW - Genetic regulatory networks KW - Control centrality Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-150838 ER - TY - JOUR A1 - Plauth, Annabell A1 - Geikowski, Anne A1 - Cichon, Susanne A1 - Wowro, Sylvia J. A1 - Liedgens, Linda A1 - Rousseau, Morten A1 - Weidner, Christopher A1 - Fuhr, Luise A1 - Kliem, Magdalena A1 - Jenkins, Gail A1 - Lotito, Silvina A1 - Wainwright, Linda J. A1 - Sauer, Sascha T1 - Hormetic shifting of redox environment by pro-oxidative resveratrol protects cells against stress JF - Free Radical Biology and Medicine N2 - Resveratrol has gained tremendous interest owing to multiple reported health-beneficial effects. However, the underlying key mechanism of action of this natural product remained largely controversial. Here, we demonstrate that under physiologically relevant conditions major biological effects of resveratrol can be attributed to its generation of oxidation products such as reactive oxygen species (ROS). At low nontoxic concentrations (in general < 50 mu M), treatment with resveratrol increased viability in a set of representative cell models, whereas application of quenchers of ROS completely truncated these beneficial effects. Notably, resveratrol treatment led to mild, Nrf2-specific gene expression reprogramming. For example, in primary epidermal keratinocytes derived from human skin this coordinated process resulted in a 1.3-fold increase of endogenously generated glutathione (GSH) and subsequently in a quantitative reduction of the cellular redox environment by 2.61 mV mmol GSH per g protein. After induction of oxidative stress by using 0.78% (v/v) ethanol, endogenous generation of ROS was consequently reduced by 24% in resveratrol pre-treated cells. In contrast to the common perception that resveratrol acts mainly as a chemical antioxidant or as a target protein-specific ligand, we propose that the cellular response to resveratrol treatment is essentially based on oxidative triggering. In physiological microenvironments this molecular training can lead to hormetic shifting of cellular defense towards a more reductive state to improve physiological resilience to oxidative stress. KW - Trans-reservatrol KW - Hydrogen-peroxide KW - In-vitro KW - Hormesis KW - Ethanol KW - Oxygen KW - Nrf2 KW - Glutathione KW - Metabolism KW - Polyphenols KW - ROS KW - Oxidative stress KW - Redox environment KW - Skin KW - Epidermis Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-187186 VL - 99 ER - TY - JOUR A1 - Appel, Mirjam A1 - Scholz, Claus-Jürgen A1 - Kocabey, Samet A1 - Savage, Sinead A1 - König, Christian A1 - Yarali, Ayse T1 - Independent natural genetic variation of punishment- versus relief-memory JF - Biology Letters N2 - A painful event establishes two opponent memories: cues that are associated with pain onset are remembered negatively, whereas cues that coincide with the relief at pain offset acquire positive valence. Such punishment-versus relief-memories are conserved across species, including humans, and the balance between them is critical for adaptive behaviour with respect to pain and trauma. In the fruit fly, Drosophila melanogaster as a study case, we found that both punishment-and relief-memories display natural variation across wild-derived inbred strains, but they do not covary, suggesting a considerable level of dissociation in their genetic effectors. This provokes the question whether there may be heritable inter-individual differences in the balance between these opponent memories in man, with potential psycho-clinical implications. KW - associative memory KW - Drosophila melanogaster KW - natural genetic variation KW - opponent processes KW - punishment KW - fruit-flies KW - relief KW - reward KW - rats Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-186554 VL - 12 IS - 12 ER - TY - JOUR A1 - Roesch, J. A1 - Panje, C. A1 - Sterzing, F. A1 - Mantel, F. A1 - Nestle, U. A1 - Andratschke, N. A1 - Guckenberger, M. T1 - SBRT for centrally localized NSCLC - What is too central? JF - Radiation Oncology N2 - Purpose Current guidelines recommend stereotactic body radiotherapy (SBRT) for stage I non-small-cell lung cancer (NSCLC) in medically inoperable patients. There are excellent outcome and toxicity data for SBRT of peripheral lung tumors. However, the discussion on SBRT for centrally located tumors is controversial. This study evaluated current clinical practice regarding SBRT of centrally located lung tumors, to identify common fractionation schedules and commonly accepted contraindications for SBRT. Methods A questionnaire consisting of two parts was introduced at the annual meeting of the DEGRO working group on stereotactic radiotherapy, representing centers in Germany and Switzerland. The first part of the questionnaire covered general information about the centers, whereas the second part specifically addressed SBRT of centrally located lung tumors, using case examples of nine primary NSCLC patients. Reconstructions of a contrast enhanced CT, as well as PET-Imaging for each case were demonstrated to the participants. Results Twenty-six centers participated in the meeting. The majority was academic (73%), participated in interdisciplinary thoracic oncology tumorboards (88%) and offered SBRT for lung tumors (96%). Two centers questioned the indication of SBRT for central lung tumors because of lack of evidence. The majority of centers had experience in SBRT for central lung tumors (88%) and half of the centers reported more than ten cases treated during a median period of five years. Most fractionation schedules used PTV encompassing doses of 48–60 Gy in eight fractions with maximum doses of 125–150%. A clear indication for SBRT treatment was seen by more than 85% of centers in three of the nine patients in whom tumors were small and not closer than 2 cm to the main bronchus. Prior pneumonectomy or immediate adjacency to hilar/mediastinal structures were not considered as contraindications for SBRT. In cases where the tumor exceeded 4 cm in diameter or was located closer than 4 cm to the carina 50–80% of centers saw an indication for SBRT. One case, with a 7 cm tumor reaching to the carina would have been treated with SBRT only by one center. Conclusion Within DEGRO working group on stereotactic radiotherapy, SBRT for small (<4 cm) early stage NSCLC is a common indication, if the minimal distance to the main bronchi is at least 2 cm. The controversy on the treatment of larger and more central tumors will hopefully be solved by ongoing prospective clinical trials. KW - SBRT KW - SABR KW - NSCLC KW - central lung KW - pulmonary toxicity Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-167459 VL - 11 IS - 157 ER - TY - JOUR A1 - Volckmar, Anna-Lena A1 - Han, Chung Ting A1 - Pütter, Carolin A1 - Haas, Stefan A1 - Vogel, Carla I. G. A1 - Knoll, Nadja A1 - Struve, Christoph A1 - Göbel, Maria A1 - Haas, Katharina A1 - Herrfurth, Nikolas A1 - Jarick, Ivonne A1 - Grallert, Harald A1 - Schürmann, Annette A1 - Al-Hasani, Hadi A1 - Hebebrand, Johannes A1 - Sauer, Sascha A1 - Hinney, Anke T1 - Analysis of Genes Involved in Body Weight Regulation by Targeted Re-Sequencing JF - PLoS ONE N2 - Introduction Genes involved in body weight regulation that were previously investigated in genome-wide association studies (GWAS) and in animal models were target-enriched followed by massive parallel next generation sequencing. Methods We enriched and re-sequenced continuous genomic regions comprising FTO, MC4R, TMEM18, SDCCAG8, TKNS, MSRA and TBC1D1 in a screening sample of 196 extremely obese children and adolescents with age and sex specific body mass index (BMI) ≥ 99th percentile and 176 lean adults (BMI ≤ 15th percentile). 22 variants were confirmed by Sanger sequencing. Genotyping was performed in up to 705 independent obesity trios (extremely obese child and both parents), 243 extremely obese cases and 261 lean adults. Results and Conclusion We detected 20 different non-synonymous variants, one frame shift and one nonsense mutation in the 7 continuous genomic regions in study groups of different weight extremes. For SNP Arg695Cys (rs58983546) in TBC1D1 we detected nominal association with obesity (pTDT = 0.03 in 705 trios). Eleven of the variants were rare, thus were only detected heterozygously in up to ten individual(s) of the complete screening sample of 372 individuals. Two of them (in FTO and MSRA) were found in lean individuals, nine in extremely obese. In silico analyses of the 11 variants did not reveal functional implications for the mutations. Concordant with our hypothesis we detected a rare variant that potentially leads to loss of FTO function in a lean individual. For TBC1D1, in contrary to our hypothesis, the loss of function variant (Arg443Stop) was found in an obese individual. Functional in vitro studies are warranted. KW - body weight regulation KW - genes KW - targeted re-sequencing Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-167274 VL - 11 IS - 2 ER - TY - JOUR A1 - Conrad, Thomas A1 - Albrecht, Anne-Susann A1 - Rodrigues de Melo Costa, Veronica A1 - Sauer, Sascha A1 - Meierhofer, David A1 - Andersson Ørom, Ulf T1 - Serial interactome capture of the human cell nucleus JF - Nature Communications N2 - Novel RNA-guided cellular functions are paralleled by an increasing number of RNA-binding proteins (RBPs). Here we present ‘serial RNA interactome capture’ (serIC), a multiple purification procedure of ultraviolet-crosslinked poly(A)–RNA–protein complexes that enables global RBP detection with high specificity. We apply serIC to the nuclei of proliferating K562 cells to obtain the first human nuclear RNA interactome. The domain composition of the 382 identified nuclear RBPs markedly differs from previous IC experiments, including few factors without known RNA-binding domains that are in good agreement with computationally predicted RNA binding. serIC extends the number of DNA–RNA-binding proteins (DRBPs), and reveals a network of RBPs involved in p53 signalling and double-strand break repair. serIC is an effective tool to couple global RBP capture with additional selection or labelling steps for specific detection of highly purified RBPs. KW - human cell nucleus KW - serial RNA interactome capture KW - RNA-binding proteins Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-166172 VL - 7 IS - 11212 ER -