TY - JOUR A1 - Chithelen, Janice A1 - Franke, Hannah A1 - Länder, Nora A1 - Grafen, Anika A1 - Schneider-Schaulies, Jürgen T1 - The sphingolipid inhibitors ceranib-2 and SKI-II reduce measles virus replication in primary human lymphocytes: effects on mTORC1 downstream signaling JF - Frontiers in Physiology N2 - The bioactive sphingolipids ceramide and sphingosine-1-phosphate (S1P) are involved in the regulation of cell homeostasis and activity ranging from apoptosis to proliferation. We recently described that the two compounds ceranib-2 (inhibiting acid ceramidase) and SKI-II [inhibiting the sphingosine kinases 1 and − 2 (SphK1/2)] reduce mTORC1 activity and measles virus (MV) replication in human primary peripheral blood lymphocytes (PBL) by about one log step. We now further investigated whether mTORC1 downstream signaling and viral protein expression may be affected by ceranib-2 and/or SKI-II. Western blot analyses showed that in uninfected cells the phosphorylation of the eukaryotic initiation factor 4E (eIF4E) was reduced by both inhibitors. Interestingly, MV infection led to an increase of rpS6 protein levels and phosphorylation of eIF4E. Treatment with both inhibitors reduced the rpS6 protein expression, and in addition, SKI-II reduced rpS6 phosphorylation. The phosphorylation of eIF4E was slightly reduced by both inhibitors. In addition, SKI-II led to reduced levels of IKK in MV-infected cells. Both inhibitors reduced the expression of viral proteins and the titers of newly synthesized MV by approximately one log step. As expected, SKI-II and rapamycin reduced also the virally encoded GFP expression; however, ceranib-2 astonishingly led to increased levels of GFP fluorescence. Our findings suggest that the inhibitors ceranib-2 and SKI-II act via differential mechanisms on MV replication. The observed effects on mTORC1 downstream signaling, predominantly the reduction of rpS6 levels by both inhibitors, may affect the translational capacity of the cells and contribute to the antiviral effect in human primary PBL. KW - acid ceramidase inhibitor ceranib-2 KW - sphingosine kinase inhibitor SKI-II KW - mTORC1 KW - translation KW - measles virus Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-265988 SN - 1664-042X VL - 13 ER - TY - JOUR A1 - Eder, Sascha A1 - Hollmann, Claudia A1 - Mandasari, Putri A1 - Wittmann, Pia A1 - Schumacher, Fabian A1 - Kleuser, Burkhard A1 - Fink, Julian A1 - Seibel, Jürgen A1 - Schneider-Schaulies, Jürgen A1 - Stigloher, Christian A1 - Beyersdorf, Niklas A1 - Dembski, Sofia T1 - Synthesis and characterization of ceramide-containing liposomes as membrane models for different T cell subpopulations JF - Journal of Functional Biomaterials N2 - A fine balance of regulatory (T\(_{reg}\)) and conventional CD4\(^+\) T cells (T\(_{conv}\)) is required to prevent harmful immune responses, while at the same time ensuring the development of protective immunity against pathogens. As for many cellular processes, sphingolipid metabolism also crucially modulates the T\(_{reg}\)/T\(_{conv}\) balance. However, our understanding of how sphingolipid metabolism is involved in T cell biology is still evolving and a better characterization of the tools at hand is required to advance the field. Therefore, we established a reductionist liposomal membrane model system to imitate the plasma membrane of mouse T\(_{reg}\) and T\(_{conv}\) with regards to their ceramide content. We found that the capacity of membranes to incorporate externally added azide-functionalized ceramide positively correlated with the ceramide content of the liposomes. Moreover, we studied the impact of the different liposomal preparations on primary mouse splenocytes in vitro. The addition of liposomes to resting, but not activated, splenocytes maintained viability with liposomes containing high amounts of C\(_{16}\)-ceramide being most efficient. Our data thus suggest that differences in ceramide post-incorporation into T\(_{reg}\) and T\(_{conv}\) reflect differences in the ceramide content of cellular membranes. KW - liposome KW - ceramide KW - cell membrane model Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-286130 SN - 2079-4983 VL - 13 IS - 3 ER - TY - JOUR A1 - Wiese, Teresa A1 - Dennstädt, Fabio A1 - Hollmann, Claudia A1 - Stonawski, Saskia A1 - Wurst, Catherina A1 - Fink, Julian A1 - Gorte, Erika A1 - Mandasari, Putri A1 - Domschke, Katharina A1 - Hommers, Leif A1 - Vanhove, Bernard A1 - Schumacher, Fabian A1 - Kleuser, Burkard A1 - Seibel, Jürgen A1 - Rohr, Jan A1 - Buttmann, Mathias A1 - Menke, Andreas A1 - Schneider-Schaulies, Jürgen A1 - Beyersdorf, Niklas T1 - Inhibition of acid sphingomyelinase increases regulatory T cells in humans JF - Brain Communications N2 - Genetic deficiency for acid sphingomyelinase or its pharmacological inhibition has been shown to increase Foxp3\(^+\) regulatory T-cell frequencies among CD4\(^+\) T cells in mice. We now investigated whether pharmacological targeting of the acid sphingomyelinase, which catalyzes the cleavage of sphingomyelin to ceramide and phosphorylcholine, also allows to manipulate relative CD4\(^+\) Foxp3\(^+\) regulatory T-cell frequencies in humans. Pharmacological acid sphingomyelinase inhibition with antidepressants like sertraline, but not those without an inhibitory effect on acid sphingomyelinase activity like citalopram, increased the frequency of Foxp3\(^+\) regulatory T cell among human CD4\(^+\) T cells in vitro. In an observational prospective clinical study with patients suffering from major depression, we observed that acid sphingomyelinase-inhibiting antidepressants induced a stronger relative increase in the frequency of CD4\(^+\) Foxp3\(^+\) regulatory T cells in peripheral blood than acid sphingomyelinase-non- or weakly inhibiting antidepressants. This was particularly true for CD45RA\(^-\) CD25\(^{high}\) effector CD4\(^+\) Foxp3\(^+\) regulatory T cells. Mechanistically, our data indicate that the positive effect of acid sphingomyelinase inhibition on CD4\(^+\) Foxp3\(^+\) regulatory T cells required CD28 co-stimulation, suggesting that enhanced CD28 co-stimulation was the driver of the observed increase in the frequency of Foxp3+ regulatory T cells among human CD4\(^+\) T cells. In summary, the widely induced pharmacological inhibition of acid sphingomyelinase activity in patients leads to an increase in Foxp3+ regulatory T-cell frequencies among CD4\(^+\) T cells in humans both in vivo and in vitro. KW - acid sphingomyelinase KW - antidepressants KW - major depression KW - regulatory T cells KW - sphingolipids Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-259868 VL - 3 IS - 2 ER - TY - JOUR A1 - Avota, Elita A1 - Bodem, Jochen A1 - Chithelen, Janice A1 - Mandasari, Putri A1 - Beyersdorf, Niklas A1 - Schneider-Schaulies, Jürgen T1 - The Manifold Roles of Sphingolipids in Viral Infections JF - Frontiers in Physiology N2 - Sphingolipids are essential components of eukaryotic cells. In this review, we want to exemplarily illustrate what is known about the interactions of sphingolipids with various viruses at different steps of their replication cycles. This includes structural interactions during entry at the plasma membrane or endosomal membranes, early interactions leading to sphingolipid-mediated signal transduction, interactions with internal membranes and lipids during replication, and interactions during virus assembly and budding. Targeted interventions in sphingolipid metabolism – as far as they can be tolerated by cells and organisms – may open novel possibilities to support antiviral therapies. Human immunodeficiency virus type 1 (HIV-1) infections have intensively been studied, but for other viral infections, such as influenza A virus (IAV), measles virus (MV), hepatitis C virus (HCV), dengue virus, Ebola virus, and severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), investigations are still in their beginnings. As many inhibitors of sphingolipid metabolism are already in clinical use against other diseases, repurposing studies for applications in some viral infections appear to be a promising approach. KW - sphingolipid KW - ceramide KW - sphingosine-1-phosphate KW - plasma membrane KW - virus entry KW - virus replication KW - virus budding Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-246975 SN - 1664-042X VL - 12 ER - TY - JOUR A1 - Grafen, Anika A1 - Schumacher, Fabian A1 - Chithelen, Janice A1 - Kleuser, Burkhard A1 - Beyersdorf, Niklas A1 - Schneider-Schaulies, Jürgen T1 - Use of acid ceramidase and sphingosine kinase inhibitors as antiviral compounds against measles virus infection of lymphocytes in vitro JF - Frontiers in Cell and Developmental Biology N2 - As structural membrane components and signaling effector molecules sphingolipids influence a plethora of host cell functions, and by doing so also the replication of viruses. Investigating the effects of various inhibitors of sphingolipid metabolism in primary human peripheral blood lymphocytes (PBL) and the human B cell line BJAB we found that not only the sphingosine kinase (SphK) inhibitor SKI-II, but also the acid ceramidase inhibitor ceranib-2 efficiently inhibited measles virus (MV) replication. Virus uptake into the target cells was not grossly altered by the two inhibitors, while titers of newly synthesized MV were reduced by approximately 1 log (90%) in PBL and 70–80% in BJAB cells. Lipidomic analyses revealed that in PBL SKI-II led to increased ceramide levels, whereas in BJAB cells ceranib-2 increased ceramides. SKI-II treatment decreased sphingosine-1-phosphate (S1P) levels in PBL and BJAB cells. Furthermore, we found that MV infection of lymphocytes induced a transient (0.5–6 h) increase in S1P, which was prevented by SKI-II. Investigating the effect of the inhibitors on the metabolic (mTORC1) activity we found that ceranib-2 reduced the phosphorylation of p70 S6K in PBL, and that both inhibitors, ceranib-2 and SKI-II, reduced the phosphorylation of p70 S6K in BJAB cells. As mTORC1 activity is required for efficient MV replication, this effect of the inhibitors is one possible antiviral mechanism. In addition, reduced intracellular S1P levels affect a number of signaling pathways and functions including Hsp90 activity, which was reported to be required for MV replication. Accordingly, we found that pharmacological inhibition of Hsp90 with the inhibitor 17-AAG strongly impaired MV replication in primary PBL. Thus, our data suggest that treatment of lymphocytes with both, acid ceramidase and SphK inhibitors, impair MV replication by affecting a number of cellular activities including mTORC1 and Hsp90, which alter the metabolic state of the cells causing a hostile environment for the virus. KW - measles virus KW - sphingolipids KW - acid ceramidase KW - acid ceramidase inhibitor ceranib-2 KW - sphingosine kinase KW - sphingosine kinase inhibitor SKI-II Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-196099 SN - 2296-634X VL - 7 IS - 218 ER - TY - JOUR A1 - Tiwarekar, Vishakha A1 - Fehrholz, Markus A1 - Schneider-Schaulies, Jürgen T1 - KDELR2 competes with measles virus envelope proteins for cellular chaperones reducing their chaperone-mediated cell surface transport JF - Viruses N2 - Recently, we found that the cytidine deaminase APOBEC3G (A3G) inhibits measles (MV) replication. Using a microarray, we identified differential regulation of several host genes upon ectopic expression of A3G. One of the up-regulated genes, the endoplasmic reticulum (ER) protein retention receptor KDELR2, reduced MV replication ~5 fold when it was over-expressed individually in Vero and CEM-SS T cells. Silencing of KDELR2 in A3G-expressing Vero cells abrogated the antiviral activity induced by A3G, confirming its role as an A3G-regulated antiviral host factor. Recognition of the KDEL (Lys-Asp-Glu-Leu) motif by KDEL receptors initiates the retrograde transport of soluble proteins that have escaped the ER and play an important role in ER quality control. Although KDELR2 over-expression reduced MV titers in cell cultures, we observed no interaction between KDELR2 and the MV hemagglutinin (H) protein. Instead, KDELR2 retained chaperones in the ER, which are required for the correct folding and transport of the MV envelope glycoproteins H and fusion protein (F) to the cell surface. Our data indicate that KDELR2 competes with MV envelope proteins for binding to calnexin and GRP78/Bip, and that this interaction limits the availability of the chaperones for MV proteins, causing the reduction of virus spread and titers. KW - measles virus KW - KDELR2 KW - calnexin KW - GRP78 KW - surface transport Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-197468 SN - 1999-4915 VL - 11 IS - 1 ER - TY - JOUR A1 - Hollmann, Claudia A1 - Wiese, Teresa A1 - Dennstädt, Fabio A1 - Fink, Julian A1 - Schneider-Schaulies, Jürgen A1 - Beyersdorf, Niklas T1 - Translational approaches targeting ceramide generation from sphingomyelin in T cells to modulate immunity in humans JF - Frontiers in Immunology N2 - In T cells, as in all other cells of the body, sphingolipids form important structural components of membranes. Due to metabolic modifications, sphingolipids additionally play an active part in the signaling of cell surface receptors of T cells like the T cell receptor or the co-stimulatory molecule CD28. Moreover, the sphingolipid composition of their membranes crucially affects the integrity and function of subcellular compartments such as the lysosome. Previously, studying sphingolipid metabolism has been severely hampered by the limited number of analytical methods/model systems available. Besides well-established high resolution mass spectrometry new tools are now available like novel minimally modified sphingolipid subspecies for click chemistry as well as recently generated mouse mutants with deficiencies/overexpression of sphingolipid-modifying enzymes. Making use of these tools we and others discovered that the sphingolipid sphingomyelin is metabolized to ceramide to different degrees in distinct T cell subpopulations of mice and humans. This knowledge has already been translated into novel immunomodulatory approaches in mice and will in the future hopefully also be applicable to humans. In this paper we are, thus, summarizing the most recent findings on the impact of sphingolipid metabolism on T cell activation, differentiation, and effector functions. Moreover, we are discussing the therapeutic concepts arising from these insights and drugs or drug candidates which are already in clinical use or could be developed for clinical use in patients with diseases as distant as major depression and chronic viral infection. KW - sphingolipids KW - CD4+ T cells KW - regulatory T cells (Treg) KW - CD8+ T cells KW - anti-depressant drug Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-198806 SN - 1664-3224 VL - 10 IS - 2363 ER - TY - JOUR A1 - Carsillo, Thomas A1 - Huey, Devra A1 - Levinsky, Amy A1 - Obojes, Karola A1 - Schneider-Schaulies, Jürgen A1 - Niewiesk, Stefan T1 - Cotton Rat (Sigmodon hispidus) Signaling Lymphocyte Activation Molecule (CD150) Is an Entry Receptor for Measles Virus JF - PLOS ONE N2 - Cotton rats (Sigmodon hispidus) replicate measles virus (MV) after intranasal infection in the respiratory tract and lymphoid tissue. We have cloned the cotton rat signaling lymphocytic activation molecule (CD150, SLAM) in order to investigate its role as a potential receptor for MV. Cotton rat CD150 displays 58% and 78% amino acid homology with human and mouse CD150, respectively. By staining with a newly generated cotton rat CD150 specific monoclonal antibody expression of CD150 was confirmed in cotton rat lymphoid cells and in tissues with a pattern of expression similar to mouse and humans. Previously, binding of MV hemagglutinin has been shown to be dependent on amino acids 60, 61 and 63 in the V region of CD150. The human molecule contains isoleucine, histidine and valine at these positions and binds to MV-H whereas the mouse molecule contains valine, arginine and leucine and does not function as a receptor for MV. In the cotton rat molecule, amino acids 61 and 63 are identical with the mouse molecule and amino acid 60 with the human molecule. After transfection with cotton rat CD150 HEK 293 T cells became susceptible to infection with single cycle VSV pseudotype virus expressing wild type MV glycoproteins and with a MV wildtype virus. After infection, cells expressing cotton rat CD150 replicated virus to lower levels than cells expressing the human molecule and formed smaller plaques. These data might explain why the cotton rat is a semipermissive model for measles virus infection. KW - immune suppression KW - SLAM CDW150 KW - cellular receptor KW - wild-type KW - glycoproteins KW - replication KW - morbilliviruses KW - CD46 KW - strains KW - spread Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-115178 SN - 1932-6203 VL - 9 IS - 10 ER - TY - JOUR A1 - Schneider-Schaulies, Jürgen A1 - Bieringer, Maria A1 - Han, Jung Woo A1 - Kendl, Sabine A1 - Khosravi, Mojtaba A1 - Plattet, Philippe T1 - Experimental Adaptation of Wild-Type Canine Distemper Virus (CDV) to the Human Entry Receptor CD150 JF - PLoS ONE N2 - Canine distemper virus (CDV), a close relative of measles virus (MV), is widespread and well known for its broad host range. When the goal of measles eradication may be achieved, and when measles vaccination will be stopped, CDV might eventually cross the species barrier to humans and emerge as a new human pathogen. In order to get an impression how fast such alterations may occur, we characterized required adaptive mutations to the human entry receptors CD150 (SLAM) and nectin-4 as first step to infect human target cells. Recombinant wild-type CDV-A75/17red adapted quickly to growth in human H358 epithelial cells expressing human nectin-4. Sequencing of the viral attachment proteins (hemagglutinin, H, and fusion protein, F) genes revealed that no adaptive alteration was required to utilize human nectin-4. In contrast, the virus replicated only to low titres (102 pfu/ml) in Vero cells expressing human CD150 (Vero-hSLAM). After three passages using these cells virus was adapted to human CD150 and replicated to high titres (105 pfu/ml). Sequence analyses revealed that only one amino acid exchange in the H-protein at position 540 Asp→Gly (D540G) was required for functional adaptation to human CD150. Structural modelling suggests that the adaptive mutation D540G in H reflects the sequence alteration from canine to human CD150 at position 70 and 71 from Pro to Leu (P70L) and Gly to Glu (G71E), and compensates for the gain of a negative charge in the human CD150 molecule. Using this model system our data indicate that only a minimal alteration, in this case one adaptive mutation, is required for adaptation of CDV to the human entry receptors, and help to understand the molecular basis why this adaptive mutation occurs. KW - antibodies KW - canine distemper virus KW - measles virus KW - microbial mutation KW - protein sequencing KW - recombinant proteins KW - ultraviolet radiation KW - vero cells Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-96537 ER - TY - JOUR A1 - Reuter, Dajana A1 - Sparwasser, Tim A1 - Hünig, Thomas A1 - Schneider-Schaulies, Jürgen T1 - Foxp3\(^+\) Regulatory T Cells Control Persistence of Viral CNS Infection JF - PLoS One N2 - We earlier established a model of a persistent viral CNS infection using two week old immunologically normal (genetically unmodified) mice and recombinant measles virus (MV). Using this model infection we investigated the role of regulatory T cells (Tregs) as regulators of the immune response in the brain, and assessed whether the persistent CNS infection can be modulated by manipulation of Tregs in the periphery. CD4\(^+\) CD25\(^+\) Foxp3\(^+\) Tregs were expanded or depleted during the persistent phase of the CNS infection, and the consequences for the virus-specific immune response and the extent of persistent infection were analyzed. Virus-specific CD8\(^+\) T cells predominantly recognising the H-2D(b)-presented viral hemagglutinin epitope MV-H22-30 (RIVINREHL) were quantified in the brain by pentamer staining. Expansion of Tregs after intraperitoneal (i.p.) application of the superagonistic anti-CD28 antibody D665 inducing transient immunosuppression caused increased virus replication and spread in the CNS. In contrast, depletion of Tregs using diphtheria toxin (DT) in DEREG (depletion of regulatory T cells)-mice induced an increase of virus-specific CD8\(^+\) effector T cells in the brain and caused a reduction of the persistent infection. These data indicate that manipulation of Tregs in the periphery can be utilized to regulate virus persistence in the CNS. KW - antigen presentation KW - brain KW - central-nervous-system KW - virus-induced encephalitis KW - retroviral infection KW - gamma-interferon KW - measles virus KW - subacute sclerosing-panencephalitis KW - mice KW - CD4(+) Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-134248 VL - 7 IS - 3 ER -