TY - JOUR A1 - Shephard, S. E. A1 - Lutz, Werner K. A1 - Schlatter, C. T1 - The lacI transgenic mouse mutagenicity assay: quantitative evaluation in comparison to tests for carcinogenicity and cytogenetic damage in vivo N2 - The detection Iimit of the lacl transgenic mouse mutagenicity assay lies, in practice, at approximately a 50-100% increase in mutant frequency in treated animals over controls. The sensitivity of this assay in detecting genotoxins can be markedly improved by subchronic rather than acute application of the test compound. The lac/ transgenic mouse mutagenicity assay was compared quantitatively to rodent carcinogenicity tests and to presently used in vivo mutagenicity assays. With the genotoxic carcinogens tested thus far, a rough correlation between mutagenic potency and carcinogenic potency was observed: on average, to obtain a doubling in lacl mutant frequency the mice bad to be treated with a total dose equal to 50 times the TD50 daily dose Ievel. This total dose could be administered eilher at a high dose rate within a few days or, preferably, at a low dose rate over several weeks. This analysis also indicated that a lacl experiment using a 250-day exposure period would give a detection Iimit approximately equal to that of a long-term carcinogenicity study. In comparison to the micronucleus test or the chromosome aberration assay, acute sturlies with the presently available lacl system offered no increase in sensitivity. However, subchronic lacl sturlies (3-4-month exposure) resulted in an increase in sensitivity over the established tests by 1-2 orders of magnitude (shown with 2-acetylaminofluorene, N-nitrosomethylamine, N-nitrosomethylurea and urethane). 1t is concluded that a positive result in the lacl test can be highly predictive of carcinogenicity butthat a negative result does not provide a large margin of safety. KW - Toxikologie KW - Transgenie mice KW - Mutagenicity assay KW - Sensitivity KW - Chromosome aberration KW - Micronucleus test KW - Carcinogenic potency Y1 - 1994 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-60638 ER - TY - JOUR A1 - Shephard, S. E. A1 - Sengstag, C. A1 - Lutz, Werner K. A1 - Schlatter, C. T1 - Mutations in liver DNA of lacI transgenic mice (Big Blue) following subchronic exposure to 2-acetylaminofluorene N2 - 2-Acetylaminofluorene (2-AAF) was administered at Ievels of 0, 300 and 600 ppm in the diet for 28 days to female transgenic micc bearing the lacl genein a Iambda vector (Big Blue® mice). The Iambda vector was excised from liver DNA and packaged in vitro into bacteriophage particles which were allowed to infect E. coli bacteria, forming plaques on agar plates. Approximately 10\(^5\) plaques wcre screened per animal for the appearance of a bluc colour, indicative of mutations in the lac/ gcnc which had resulted in an inactive gene product. Background mutation rate was 2.7 x 10\(^{-5}\) (pooled results of two animals, 8 mutant plaques/289 530 plaques). At 300 ppm in the diet, the rate of 3.5 X 10\(^{-5}\)(8/236 300) was not significantly increased over background. At 600 ppm in the dict, the rate increased approximately 3 fold to 7.7 x 10\(^{-5}\) (17 /221240). In comparison to the usual single or 5-day carcinogen exposure regimes, the 4-week exposure protocol allowed the use of much lower dose Ievels 00-1000 fold lower). Overt toxicity could thus be avoided. The daily doses used were somewhat higher than those required in 2-year carcinogenicity studies with 2·AAF. KW - Toxikologie KW - 2-Acetylaminofluorene KW - Transgenic mouse KW - Mutation assay KW - in vivo KW - Dose response Y1 - 1993 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-60683 ER - TY - JOUR A1 - Lutz, Werner K. A1 - Poetzsch, J. A1 - Schlatter, J. A1 - Schlatter, C. T1 - The real role of risk assessment in cancer risk management N2 - Rtgulatory aclio11s Iaken to reduu tht risk of harmfultffects of exposure to chemieals ofltn arenot commensurDtt with the toxicologicDf risk SJsstS&ment. A numbtr of factors relating to psychology, sociology, economics Dntl politics rather than science and medicine afftct tht final decision. Wemer Lutz and colleagues illustratt the situation using tht feuktmia-indudng chtmiCJJI benzene as an examplt. KW - Toxikologie Y1 - 1991 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-60730 ER - TY - JOUR A1 - Baertsch, A. A1 - Lutz, Werner K. A1 - Schlatter, C. T1 - Effect of inhalation exposure regimen on DNA binding potency of 1,2-dichloroethane in the rat N2 - 1 ,2-Dichloroethane (DCE) was reported to be carcinogenic in rats in a long-tenn bioassay using gavage in com oil (24 and 48 mg/kg/day), but not by inhalation (up to 150-250 ppm, 7 h/day, 5 days/week). The daily dose metabolized was similar in the two experiments. In order to address this discrepancy, the genotoxicity of DCE was investigated in vivo under different exposure conditions. Fernale F-344 rats (183-188 g) were exposed to [1,2-14C]DCE in a closed inhalation chamber to either a low, constant concentration (0.3 mg/l = 80 ppm for 4 h) or to a peak concentration (up to 18 mg/1 = 4400 ppm) for a few minutes. After 12 h in the chamber, the dose metabolized under the two conditions was 34 mg/kg and 140 mg/k:g. DNA was isolated from liver and lung and was purified to constant specific radioactivity. DNA was enzymaticaBy hydrolyzed to the 3' -nucleotides which were separated by reverse phase HPLC. Most radioactivity eluted without detectable or with little optical density' indicating that the major part of the DNA radioactivity was due to covalent binding of the test compound. The Ievel of DNA adducts was expressed in the dose-nonnalized units ofthe Covalent Binding Index, CBI = f.Lmol adduct per mol DNA nucleotide/ mmol DCE per kg body wt. In liver DNA, the different exposure regimens resulted in markedly different CBI values of 1.8 and 69, for "constant-low" and ''peak" DCE exposure Ievels. In the Jung, the respective values were 0.9 and 31. It is concluded that the DNA darnage by DCE depends upon the concentration-time profile and that the carcinogenic potency determined in the gavage study should not be used for low-Ievel inhalation exposure. KW - Toxikologie KW - 1 KW - 2-Dichloroethane KW - Carcinogens KW - DNA KW - binding KW - Rat KW - Inhalation KW - Dose response Y1 - 1991 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-60743 ER - TY - JOUR A1 - Ohgaki, H. A1 - Ludeke, B. I. A1 - Meier, I. A1 - Kleihues, P. A1 - Lutz, Werner K. A1 - Schlatter, C. T1 - DNA methylation in the digestive tract of F344 rats during chronic exposure to N-methyl-N-nitrosourea N2 - The formation of \(O^6\)-methyldeoxyguanosine (\(O^6\)-MedGuo) was determined by an immuno-slot-blot assay in DNA of various tissues of F344 rats exposed to N-methyl-N-nitrosourea (MNU) in the drinking waterat 400 ppm for 2 weeks. Although the pyloric region of the glandular stomach is a target organ under these experimental conditions, the extent of DNA methylation was highest in the forestomach (185 \(\mu\)mol \(O^6\)-MedGuojmol guanine). Fundus (91 J.!moljmol guanine) and pylorus (105 J.!moljmol guanine) of the glandular stomach, oesophagus (124 \(\mu\)mol/mol guanine) and duodenum (109 )lmoljmol guanine) showed lower Ievels of \(O^6\) - MedGuo but differed little between each other. Thus, no correlation was observed between target organ specificity and the extent of DNA methylation. This is in contrast to the gastric carcinogen, N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), which preferentially alkylates DNA of the pylorus, the main site of induction of gastric carcinomas by this chemical. In contrast to MNU, the nonenzymic decomposition of MNNG is accelerated by thiol compounds (reduced glutathione, L-cysteine), which are present at much higher concentrations in the glandular stomach than in the forestomach and oesophagus. During chronic exposure to MNNG (80 ppm), mucosal cells immunoreactive to 0 6-MedGuo are limited to the luminal surface [Kobori et al. (1988) Carcinogenesis 9:2271-2274]. Although MNU (400 ppm) produced similar Ievels of \(O^6\)-MedGuo in the pylorus, no cells containing methylpurines were detectable by immunohistochemistry, suggesting a more uniform methylation of mucosal cells by MNU than by MNNG. After a single oral dose of MNU (90 mg/kg) cells containing methylpurines were unequivocally identified using antibodies to \(O^6\)-MedGuo and the imidazole-ring-opened product of 7-methyldeoxyguanosine. In the gastric fundus, their distribution was similar to those methylated by exposure to MNNG, whereas the pyloric region contained immunoreactive cells also in the deeper mucosallayers. After a 2-week MNU treatment, the rate of cell proliferation, as determined by bromodeoxyuridine immunoreactivity, was only slightly enhanced in the oesophagus andin the fundus, but markedly in the forestomach and the pyloric region of the glandular stomach. lt is concluded that the overall extent of DNA methylation, the distribution of alkylated cells within the mucosa and the proliferative response all contribute to the organ-specific carcinogenicity of MNU. KW - Toxikologie KW - Gastric carcinogenesis KW - N-methyl-N-nitrosourea KW - DNA methylation Y1 - 1991 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-60759 ER - TY - JOUR A1 - Kugler-Steigmeier, M. E. A1 - Friederich, U. A1 - Graf, U. A1 - Lutz, Werner K. A1 - Maier, P. A1 - Schlatter, C. T1 - Genotoxicity of aniline derivatives in various short-term tests N2 - Various substituted aniline derivatives were tested for genotoxicity in several short-term tests in order to examine the hypothesis that a Substitution at both ortho positions (2,6-disubstitution) could prevent genotoxicity due to steric hindrance of an enzymatic activation to electrophilic intermediates. In the Salmonellajmicrosome assay, 2,6-dialkylsubstituted anilines and 2,4,6-trimethylaniline (2,4,6-TMA) were weakly mutagenic in strain TA100 when 20% S9 mixwas used, although effects were small compared to those of 2,4-dimethylaniline and 2,4,5-trimethylaniline (2,4,5-TMA). In Drosophila me/anogaster, however, 2,4,6-TMA and 2,4,6-trichloroaniline (TCA) were mutagenic in the wing spottestat 2-3 times lower doses than 2,4,5-TMA. In the 6-thioguanine resistance test in cultured fibroblasts, 2,4,6-TMA was again mutagenic at lower doses than 2,4,5-TMA. Two methylene-bis-aniline derivatives were also tested with the above methods: 4,4'-methylene-bis-(2-chloroaniline) (MOCA) was moderately genotoxic in al1 3 test systems whereas 4,4'-methylene-bis-(2-ethyl-6-methylaniline) (MMEA) showed no genotoxicity at all. DNA binding sturlies in rats, however, revealed that both MOCA and MMEA produced DNA adducts in the liver at Ievels typically found for moderately strong genotoxic carcinogens. These results indicate that the predictive value of the in vitro test systems and particularly the Salmonellajmicrosome assay is inadequate to detect genotoxicity in aromatic amines. Genotoxicity seems to be a general property of aniline derivatives and does not seem to be greatly influenced by substitution at both ortho positions. KW - Toxikologie KW - Aniline derivatives KW - Genotoxicity KW - Short-term tests KW - Covalent DNA binding Y1 - 1989 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-60857 ER - TY - JOUR A1 - Sagelsdorff, P. A1 - Lutz, Werner K. A1 - Schlatter, C. T1 - DNA methylation in rat liver by daminozide, 1,1-dimethylhydrazine, and dimethylnitrosamine N2 - DNA Methylation in Rat Li ver by Daminozide, 1, 1-Dimethylhydrazine, and Dimethylnitrosamine. SAGELSDORFF, P., LUTZ, W. K., AND ScHLAITER C. (1988). Fundam. Appl. Toxico/. 11, 723-730. [methyP4C]Daminozide (succinic acid 2',2'-dimethylhydrazide; 37 mgjkg), l,l( 14C]dimethylhydrazine (UDMH; 19 mgtkg), and (14C]dimethylnitrosamine (DMNA; 0.1 mg/ kg) were administered by oral gavage to male Sprague-Dawley rats. After 24 hr, the animals were killed and DNA was purified from the livers to constant specific radioactivity. After enzymatic degradation of the DNA to the 3'-deoxynucleotides the Ievel of DNA methylation was determined by HPLC analysis. Radiolabeled 7-methylguanine (7mG) was identified by cochromatography with unlabeled 7mG added as standard after acidic depurination of DNA and HPLC analysis ofpurines and apurinic acid. All three compounds were found to methylate DNA. The relative potencies were 1:47:4900 for daminozide:UDMH:DMNA. With [methyPH]UDMH, the formation of7mG was investigated as a function of dose administered, at 20, 2, and 0.2 mgj kg. The methylation ofDNA was strictly proportional to the dose. The data were used to compare the Ievel of DNA alkylation derived from residues of daminozide and UDMH in treated apple with the genotoxicity of the intake of N-nitroso compounds in Germany and Japan. It is estimated that these residues could Iead to a DNA methylation in the Ii ver of about 6% of an average exposure to DMNA KW - Toxikologie Y1 - 1988 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-60875 ER - TY - JOUR A1 - Lutz, Werner K. A1 - Deuber, R. A1 - Caviezel, M. A1 - Sagelsdorff, P. A1 - Friederich, U. A1 - Schlatter, C. T1 - Trenbolone growth promotant: covalent DNA binding in rat liver and in Salmonella typhimurium, and mutagenicity in the Ames test N2 - DNA binding in vivo: (6,7-\(^3\)H]ß-trenbolone (ß-TBOH) was administered p.o. and i.p. to rats. After 8 or 16 h, DNA was isolated from the livers and purified to constant specific radioactivity. Enzymatic digestion to deoxyribonucleotides and separation by HPLC revealed about 90% ofthe DNA radioactivity eluting in the form of possible TBOH-nucleotide adducts. The extent of this genotoxicity, expressed in units of the Covalent Binding Index, CBI = (~mol TBOH bound per mol nucleotide)/(mmol TBOH administered per kg body weight) spanned from 8 t~ 17, i. e. was in the range found with weak genotoxic carcmogens. Ames test: low doses of ß-TBOH increased the number of revertants in Salmonella strain TAl 00 reproducibly and m a dose-dependent manner. The mutagenic potency was 0.2 revertants per nmol after preincubation of the bacteria (20 min at 37° C) with doses between 30 and 60 \(\mu\)g per plate (47 and 94 \(\mu\)g/ml preincubation mixture). Above this dose, the number of revertants decreased to control values, accompanied by a reduction in survival. The addition of rat liver S9 inhibited the mutagenicity. DNA binding in vitro: calf thymus DNA was incubated with tritiated ß-TBOH with and without rat liver S9 Highest DNA radioactivities were determined in the absence of the "activation" system. Addition of inactive S9 (without cofactors) reduced the DNA binding by a factor of up to 20. Intermediate results were found with active S9. DNA binding in Salmonella: ß-TBOH was irreversibly bound to DNA isolated from S. typhimurium TA100 after incubation of bacteria with [\(^3\)H]ß-TBOH. Conclusions: Covalent DNA binding appears to be the mechanism of an activation-independent ("direct") mutagenicity of TBOH which is not easily detected because of the bactericidal activity. The genotoxicity risk arising from exposure of humans to trenbolone residues in meat was estimated using the in vivo data and compared to that from the exposure to unavoidable genotoxins aflatoxin B1 and dimethylnitrosamine. It ts concluded that trenbolone residues represent only a low genotoxic risk. KW - Toxikologie KW - Trenbolone KW - Anabolieagent KW - DNA binding KW - Genotoxicity KW - Ames test KW - Salmonella typhimurium Y1 - 1988 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-60897 ER - TY - JOUR A1 - Bösch, R. A1 - Friederich, U. A1 - Lutz, Werner K. A1 - Brocker, E. A1 - Bachmann, M. A1 - Schlatter, C. T1 - Investigations on DNA binding in rat liver and in Salmonella and on mutagenicity in the Ames test by emodin, a natural anthraquinone N2 - Emodin (1,6,8-trihydroxy-3-methylanthraquinone), an important aglycone found in natural anthraquinone glycosides frequently used in Iaxative drugs, was mutagenic in the Salmonellajmammalian microsome assay (Ames test) with a specificity for strain TA1537. The mutagenic activity was activationdependent with an optimal amount of S9 from Aroclor 1254-treated male Sprague-Dawley rats of 20% in the S9 mix (v jv) for 10 p.g emodin per plate. Heat inactivation of the S9 for 30 min at 60 ° C prevented mutagenicity. The addition of the cytochrome P-448 inhibitor 7,8-benzoflavone (18.5 nmoles per plate) reduced the mutagenic activity of 5.0 p.g emodin per plate to about one third, whereas the P-450 inhibitor metyrapone (up to 1850 nmoles per plate) was without effect. To test whether a metabolite" binds covalently to Salmonella DNA, [10-\(^{14}\)C]emodin was radiosynthesized, large batches of bacteria were incubated with [10-\(^{14}\)C]emodin and DNA was isolated. [G- \(^{3}\)H]Aflatoxin B1 (AFB1) was used as a positive control mutagen known to act via DNA binding. DNA obtained after aflatoxin treatment could be purified to constant specific activity. With emodin, the specific activity of DNA did not remain constant after repeated precipitations so that it is unlikely that the mutagenicity of emodin is due to covalent interaction of a metabolite with DNA. The antioxidants vitamin C and E or glutathione did not reduce the mutagenicity. Emodin was also negative with strain TA102. Thus, oxygen radicals are probably not involved. When emodin was incubated with S9 alone for up to 50 h before heat-inactivation of the enzymes and addition of bacteria, the mutagenic activity did not decrease. It is concluded that the mutagenicity of emodin is due to a chemically stable, oxidized metabolite forming physico-chemical associations with DNA, possibly of the intercalative type. In order to check whether an intact mammalian organism might be able to activate emodin to a DNA-binding metabolite, radiolabelled emodin was administered by oral gavage to male SD rats and liver DNA was isolated after 72 h. Very little radioactivity was associated with the DNA. Considering that DNA radioactivity could also be due to sources other than covalent interactions, an upper limit for the · covalent binding index, CBI = (p.moles chemical bound per moles DNA nucleotides)/(mmoles chemical administered per kg body weight) of 0.5 is deduced. This is 104 times below the CBI of AFB1. The demonstration of a lack of covalent interaction with DNA bothin Salmonellaandin rat liver is discussed in terms of a reduced hazard posed by emodin as a mutagenic drug in use in humans. KW - Toxikologie KW - DNA binding KW - (Rat liver) KW - (Salmonella) KW - Ames test KW - Emodin KW - Anthraquinone glycosides KW - natural Y1 - 1987 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-60913 ER - TY - JOUR A1 - Shephard, S. E. A1 - Schlatter, C. A1 - Lutz, Werner K. T1 - Assessment of the risk of formation of carcinogenic N-nitroso compounds from dietary precursors in the stomach N2 - A literature review has shown that the daily intakes of various N -nitroso-precursor classes in a typical European diet span five orders of magnitude. Amides in the form of protein, and guanidines in the form of creatine and creatinine, are the nitrosatable groups found most abundantly in the diet, approaching Ievels of 100 g/day and 1 gjday, respectively. Approximately 100 mg of primary amines and amino acids are consumed daily, whereas aryl amines, secondary amines and ureas appear to lie in the 1-10 mg range. The ease of nitrosation of each precursor was estimated, the reactivities being found to span seven orders of magnitude, with ureas at the top and amines at the bottom of the scale. From this infonnation and an assessment of the carcinogenicity of the resulting N-nitroso derivatives, the potential health risk due to gastric in vivo nitrosation was calculated. The combined effects of these risk variables were analysed using a simple mathematical model: Risk = [daily intake of precursor] x [gastric concentration of nitrite]\(^n\) x [nitrosatability rate constant} x [carcinogenicity of derivative]. The risk estimates for the various dietary components spanned nine orders of magnitude. Dietary ureas and aromatic amines combined with a high nitrite burden could pose as great a risk as the intake of preformed dimethylnitrosamine in the diet. In contrast, the risk posed by the in vivo nitrosation of primary and secondary amines is probably negligib1y small. The risk contribution by amides (including protein), guanidines and primary amino acids is intermediate between these two extremes. Thus three priorities for future work are a comprehensive study of the sources and Ievels of arylamines and ureas in the diet, determination of the carcinogenic potencies of key nitrosated products to replace the necessarily vague categories used so far, and the development of short-term in situ tests for studying the alkylating power or genotoxicity of N-nitroso compounds too unstable for inclusion in long-term studies. KW - Toxikologie Y1 - 1987 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-60925 ER -