TY - JOUR A1 - Awad, Eman A1 - Othman, Eman M. A1 - Stopper, Helga T1 - Effects of resveratrol, lovastatin and the mTOR-inhibitor RAD-001 on insulin-induced genomic damage in vitro JF - Molecules N2 - Diabetes mellitus (DM) is one of the major current health problems due to lifestyle changes. Before diagnosis and in the early years of disease, insulin blood levels are elevated. However, insulin generates low levels of reactive oxygen species (ROS) which are integral to the regulation of a variety of intracellular signaling pathways, but excess levels of insulin may also lead to DNA oxidation and DNA damage. Three pharmaceutical compounds, resveratrol, lovastatin and the mTOR-inhibitor RAD-001, were investigated due to their known beneficial effects. They showed protective properties against genotoxic damage and significantly reduced ROS after in vitro treatment of cultured cells with insulin. Therefore, the selected pharmaceuticals may be attractive candidates to be considered for support of DM therapy. KW - genomic damage KW - insulin KW - resveratrol KW - lovastatin KW - mTOR-inhibitor RAD-001 Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-159260 VL - 22 IS - 12 ER - TY - JOUR A1 - Baertsch, A. A1 - Lutz, Werner K. A1 - Schlatter, C. T1 - Effect of inhalation exposure regimen on DNA binding potency of 1,2-dichloroethane in the rat N2 - 1 ,2-Dichloroethane (DCE) was reported to be carcinogenic in rats in a long-tenn bioassay using gavage in com oil (24 and 48 mg/kg/day), but not by inhalation (up to 150-250 ppm, 7 h/day, 5 days/week). The daily dose metabolized was similar in the two experiments. In order to address this discrepancy, the genotoxicity of DCE was investigated in vivo under different exposure conditions. Fernale F-344 rats (183-188 g) were exposed to [1,2-14C]DCE in a closed inhalation chamber to either a low, constant concentration (0.3 mg/l = 80 ppm for 4 h) or to a peak concentration (up to 18 mg/1 = 4400 ppm) for a few minutes. After 12 h in the chamber, the dose metabolized under the two conditions was 34 mg/kg and 140 mg/k:g. DNA was isolated from liver and lung and was purified to constant specific radioactivity. DNA was enzymaticaBy hydrolyzed to the 3' -nucleotides which were separated by reverse phase HPLC. Most radioactivity eluted without detectable or with little optical density' indicating that the major part of the DNA radioactivity was due to covalent binding of the test compound. The Ievel of DNA adducts was expressed in the dose-nonnalized units ofthe Covalent Binding Index, CBI = f.Lmol adduct per mol DNA nucleotide/ mmol DCE per kg body wt. In liver DNA, the different exposure regimens resulted in markedly different CBI values of 1.8 and 69, for "constant-low" and ''peak" DCE exposure Ievels. In the Jung, the respective values were 0.9 and 31. It is concluded that the DNA darnage by DCE depends upon the concentration-time profile and that the carcinogenic potency determined in the gavage study should not be used for low-Ievel inhalation exposure. KW - Toxikologie KW - 1 KW - 2-Dichloroethane KW - Carcinogens KW - DNA KW - binding KW - Rat KW - Inhalation KW - Dose response Y1 - 1991 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-60743 ER - TY - JOUR A1 - Balasubramanian, Srikkanth A1 - Othman, Eman M. A1 - Kampik, Daniel A1 - Stopper, Helga A1 - Hentschel, Ute A1 - Ziebuhr, Wilma A1 - Oelschlaeger, Tobias A. A1 - Abdelmohsen, Usama R. T1 - Marine sponge-derived Streptomyces sp SBT343 extract inhibits staphylococcal biofilm formation JF - Frontiers in Microbiology N2 - Staphylococcus epidermidis and Staphylococcus aureus are opportunistic pathogens that cause nosocomial and chronic biofilm-associated infections. Indwelling medical devices and contact lenses are ideal ecological niches for formation of staphylococcal biofilms. Bacteria within biofilms are known to display reduced susceptibilities to antimicrobials and are protected from the host immune system. High rates of acquired antibiotic resistances in staphylococci and other biofilm-forming bacteria further hamper treatment options and highlight the need for new anti-biofilm strategies. Here, we aimed to evaluate the potential of marine sponge-derived actinomycetes in inhibiting biofilm formation of several strains of S. epidermidis, S. aureus, and Pseudomonas aeruginosa. Results from in vitro biofilm-formation assays, as well as scanning electron and confocal microscopy, revealed that an organic extract derived from the marine sponge-associated bacterium Streptomyces sp. SBT343 significantly inhibited staphylococcal biofilm formation on polystyrene, glass and contact lens surfaces, without affecting bacterial growth. The extract also displayed similar antagonistic effects towards the biofilm formation of other S. epidermidis and S. aureus strains tested but had no inhibitory effects towards Pseudomonas biofilms. Interestingly the extract, at lower effective concentrations, did not exhibit cytotoxic effects on mouse fibroblast, macrophage and human corneal epithelial cell lines. Chemical analysis by High Resolution Fourier Transform Mass Spectrometry (HRMS) of the Streptomyces sp. SBT343 extract proportion revealed its chemical richness and complexity. Preliminary physico-chemical characterization of the extract highlighted the heat-stable and non-proteinaceous nature of the active component(s). The combined data suggest that the Streptomyces sp. SBT343 extract selectively inhibits staphylococcal biofilm formation without interfering with bacterial cell viability. Due to absence of cell toxicity, the extract might represent a good starting material to develop a future remedy to block staphylococcal biofilm formation on contact lenses and thereby to prevent intractable contact lens-mediated ocular infections. KW - medicine KW - marine sponges KW - actinomycetes KW - Streptomyces KW - staphilococci KW - biofilms KW - contact lens Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-171844 VL - 8 ER - TY - JOUR A1 - Banach, Katrin A1 - Bünemann, Moritz A1 - Hüser, Jörg A1 - Pott, Lutz T1 - Serum contains a potent factor that decreases \(\beta\)-adrenergic receptor-stimulated L-type Ca\(^{2+}\) current in cardiac myocytes N2 - No abstract available KW - Cardiac myocyte ; Beta-Receptor ; Muscarinic receptor ; cAMP ; G-protein ; Serum Y1 - 1993 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-32027 ER - TY - JOUR A1 - Bankoglu, Ezgi Eyluel A1 - Arnold, Charlotte A1 - Hering, Ilona A1 - Hankir, Mohammed A1 - Seyfried, Florian A1 - Stopper, Helga T1 - Decreased chromosomal damage in lymphocytes of obese patients after bariatric surgery JF - Scientific Reports N2 - The number of bariatric surgeries being performed worldwide has markedly risen. While the improvement in obesity-associated comorbidities after bariatric surgery is well-established, very little is known about its impact on cancer risk. The peripheral lymphocyte micronucleus test is a widely used method for the monitoring of chromosomal damage levels in vivo, and micronucleus frequency positively correlates with cancer risk. Therefore, the aim of this study was to compare the micronucleus frequency before and after bariatric surgery in obese subjects. Peripheral blood mononuclear cells were collected from 45 obese subjects before and at two time-points after bariatric surgery (6 and 12 months) to assess spontaneous micronucleus frequency. Consistent with the increased cancer risk previously shown, bariatric surgery-induced weight loss led to a significant reduction in lymphocyte micronucleus frequency after 12 months. Interestingly, comorbidities such as type 2 diabetes mellitus and metabolic syndrome further seemed to have an impact on the lymphocyte micronucleus frequency. Our findings may indicate a successful reduction of cancer risk in patients following weight loss caused by bariatric surgery. KW - obesity KW - bariatric surgery KW - cancer risk Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-177090 VL - 8 IS - 11195 ER - TY - JOUR A1 - Bankoglu, Ezgi Eyluel A1 - Schuele, Carolin A1 - Stopper, Helga T1 - Cell survival after DNA damage in the comet assay JF - Archives of Toxicology N2 - The comet assay is widely used in basic research, genotoxicity testing, and human biomonitoring. However, interpretation of the comet assay data might benefit from a better understanding of the future fate of a cell with DNA damage. DNA damage is in principle repairable, or if extensive, can lead to cell death. Here, we have correlated the maximally induced DNA damage with three test substances in TK6 cells with the survival of the cells. For this, we selected hydrogen peroxide (H\(_{2}\)O\(_{2}\)) as an oxidizing agent, methyl methanesulfonate (MMS) as an alkylating agent and etoposide as a topoisomerase II inhibitor. We measured cell viability, cell proliferation, apoptosis, and micronucleus frequency on the following day, in the same cell culture, which had been analyzed in the comet assay. After treatment, a concentration dependent increase in DNA damage and in the percentage of non-vital and apoptotic cells was found for each substance. Values greater than 20-30% DNA in tail caused the death of more than 50% of the cells, with etoposide causing slightly more cell death than H\(_{2}\)O\(_{2}\) or MMS. Despite that, cells seemed to repair of at least some DNA damage within few hours after substance removal. Overall, the reduction of DNA damage over time is due to both DNA repair and death of heavily damaged cells. We recommend that in experiments with induction of DNA damage of more than 20% DNA in tail, survival data for the cells are provided. KW - Cell death and comet assay KW - DNA damage KW - DNA repair Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-265339 VL - 95 IS - 12 ER - TY - JOUR A1 - Bankoglu, Ezgi Eyluel A1 - Stipp, Franzisca A1 - Gerber, Johanna A1 - Seyfried, Florian A1 - Heidland, August A1 - Bahner, Udo A1 - Stopper, Helga T1 - Effect of cryopreservation on DNA damage and DNA repair activity in human blood samples in the comet assay JF - Archives of Toxicology N2 - The comet assay is a commonly used method to determine DNA damage and repair activity in many types of samples. In recent years, the use of the comet assay in human biomonitoring became highly attractive due to its various modified versions, which may be useful to determine individual susceptibility in blood samples. However, in human biomonitoring studies, working with large sample numbers that are acquired over an extended time period requires some additional considerations. One of the most important issues is the storage of samples and its effect on the outcome of the comet assay. Another important question is the suitability of different blood preparations. In this study, we analysed the effect of cryopreservation on DNA damage and repair activity in human blood samples. In addition, we investigated the suitability of different blood preparations. The alkaline and FPG as well as two different types of repair comet assay and an in vitro hydrogen peroxide challenge were applied. Our results confirmed that cryopreserved blood preparations are suitable for investigating DNA damage in the alkaline and FPG comet assay in whole blood, buffy coat and PBMCs. Ex vivo hydrogen peroxide challenge yielded its optimal effect in isolated PBMCs. The utilised repair comet assay with either UVC or hydrogen peroxide-induced lesions and an aphidicolin block worked well in fresh PBMCs. Cryopreserved PBMCs could not be used immediately after thawing. However, a 16-h recovery with or without mitotic stimulation enabled the application of the repair comet assay, albeit only in a surviving cell fraction. KW - human biomonitoring KW - DNA damage KW - DNA repair KW - comet assay KW - blood samples Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-265326 VL - 95 IS - 5 ER - TY - JOUR A1 - Bankoglu, Ezgi Eyluel A1 - Tschopp, Oliver A1 - Schmitt, Johannes A1 - Burkard, Philipp A1 - Jahn, Daniel A1 - Geier, Andreas A1 - Stopper, Helga T1 - Role of PTEN in Oxidative Stress and DNA Damage in the Liver of Whole-Body Pten Haplodeficient Mice JF - PLoS One N2 - Type 2 diabetes (T2DM) and obesity are frequently associated with non-alcoholic fatty liver disease (NAFLD) and with an elevated cancer incidence. The molecular mechanisms of carcinogenesis in this context are only partially understood. High blood insulin levels are typical in early T2DM and excessive insulin can cause elevated reactive oxygen species (ROS) production and genomic instability. ROS are important for various cellular functions in signaling and host defense. However, elevated ROS formation is thought to be involved in cancer induction. In the molecular events from insulin receptor binding to genomic damage, some signaling steps have been identified, pointing at the PI3K/AKT pathway. For further elucidation Phosphatase and Tensin homolog (Pten), a tumour suppressor phosphatase that plays a role in insulin signaling by negative regulation of PI3K/AKT and its downstream targets, was investigated here. Dihydroethidium (DHE) staining was used to detect ROS formation in immortalized human hepatocytes. Comet assay and micronucleus test were performed to investigate genomic damage in vitro. In liver samples, DHE staining and western blot detection of HSP70 and HO-1 were performed to evaluate oxidative stress response. DNA double strand breaks (DSBs) were detected by immunohistostaining. Inhibition of PTEN with the pharmacologic inhibitor VO-OHpic resulted in increased ROS production and genomic damage in a liver cell line. Knockdown of Pten in a mouse model yielded increased oxidative stress levels, detected by ROS levels and expression of the two stress-proteins HSP70 and HO-1 and elevated genomic damage in the liver, which was significant in mice fed with a high fat diet. We conclude that PTEN is involved in oxidative stress and genomic damage induction in vitro and that this may also explain the in vivo observations. This further supports the hypothesis that the PI3K/AKT pathway is responsible for damaging effects of high levels of insulin. KW - insulin KW - mouse models DNA damage KW - oxidative stress KW - mammalian genomics KW - fatty liver KW - micronuclei KW - insulin signaling Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-146970 VL - 11 IS - 11 ER - TY - JOUR A1 - Barile, Frank A. A1 - Berry, Colin A1 - Blaauboer, Bas A1 - Boobis, Alan A1 - Bolt, Herrmann M. A1 - Borgert, Christopher A1 - Dekant, Wolfgang A1 - Dietrich, Daniel A1 - Domingo, Jose L. A1 - Galli, Corrado L. A1 - Gori, Gio Batta A1 - Greim, Helmut A1 - Hengstler, Jan G. A1 - Heslop-Harrison, Pat A1 - Kacew, Sam A1 - Marquardt, Hans A1 - Mally, Angela A1 - Pelkonen, Olavi A1 - Savolainen, Kai A1 - Testai, Emanuela A1 - Tsatsakis, Aristides A1 - Vermeulen, Nico P. T1 - The EU chemicals strategy for sustainability: in support of the BfR position JF - Archives of Toxicology N2 - The EU chemicals strategy for sustainability (CSS) asserts that both human health and the environment are presently threatened and that further regulation is necessary. In a recent Guest Editorial, members of the German competent authority for risk assessment, the BfR, raised concerns about the scientific justification for this strategy. The complexity and interdependence of the networks of regulation of chemical substances have ensured that public health and wellbeing in the EU have continuously improved. A continuous process of improvement in consumer protection is clearly desirable but any initiative directed towards this objective must be based on scientific knowledge. It must not confound risk with other factors in determining policy. This conclusion is fully supported in the present Commentary including the request to improve both, data collection and the time-consuming and bureaucratic procedures that delay the publication of regulations. KW - pharmacology/toxicology KW - occupational medicine/industrial medicine KW - environmental health KW - biomedicine, general Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-307154 SN - 0340-5761 SN - 1432-0738 VL - 95 IS - 9 ER - TY - THES A1 - Basali, Timo T1 - Untersuchung der Nierenschädigung durch Aldosteron am Rattenmodell über die Quantifizierung von Schädigungsmarkern mittels Real-Time PCR-Technik T1 - Exploring renal damage caused by aldosterone by quantifying damage markers in rats via real time PCR technique N2 - Die Breite der Wirkungen von Aldosteron auf Nierenzellen wurde lange Zeit unterschätzt. Inzwischen zeigte sich ein nicht unerheblicher Anteil des Hyperaldosteronismus an arterieller Hypertonie und ebenso mehren sich die Hinweise auf damit assoziierter erhöhter Inzidenz für maligne Entartung von Nierengewebe. In dieser Arbeit wurde der Effekt von Hyperaldosteronismus auf Nierenzellen von Ratten in vivo untersucht. Mittels real time quantitative PCR wurden die relative Expressionsveränderungen der mRNA von validierten Nierenschädigungsmarkern im Hyperaldosteronismusmodell kontrolliert beobachtet und statistisch ausgewertet. Anders als im analog durchgeführten Vorversuch mit DOCA an der Stelle von Aldosteron, ließ sich größtenteils kein über der natürlichen Streuung der Daten liegender, signifikanter Effekt der Nierenschädigung durch überhöhte Aldosteronspiegel nachweisen. Hierfür kommen vielfältige Gründe in Frage. Neben der technischen Variabilität, der Beschaffenheit der internen Kontrolle, potentiell vorhandenen Inhibitoren und der Qualität der mRNA, konnten eine Reihe von weiteren Gründen als Ursache für die Diskrepanz zu den Ergebnissen der mit DOCA behandelten Tiere ausgeschlossen werden. Neben der theoretischen Möglichkeit inter-methodischer Differenzen und sich daraus ergebender Variationen, sowie der noch weiter zu untersuchenden Rolle des Glukokortikoidrezeptors durch dessen variable gleichzeitige Aktivierung, ist die Interpretation im Sinne eines zu gering ausgeprägten Schädigungseffektes durch den Hyperaldosteronismus für den gewählten Stichprobenumfang naheliegend. Hiermit stimmt auch die Tatsache überein, dass der Effekt der Behandlung mit Aldosteron im Vergleich zur Behandlung mit DOCA von vorne herein deutlich geringer ausfallend erwartet wurde. N2 - The broad spectrum of effects of aldosterone on renal cells has been underestimated for a long time. Meanwhile it has been shown that hyperaldosteronism has a considerable share of all cases of arterial hypertension, and the indications for an associated higher incidence of malignant transforming of kidney tissue are also increasing. The subject of this study was to investigate the effect of Hyperaldosteronism on kidney cells in rats. By means of real-time quantitative PCR, the change in the relative expression of mRNA of validated kidney cell damage markers in the hyperaldosteronism model were monitored and statistically evaluated under controlled conditions. In contrast to the previous pre-test with DOCA instead of aldosterone, a significant effect of renal impairment due to excessive aldosterone levels could not be detected. Numerous reasons are conceivable for that. In addition to the technical variability, the nature of the internal control, potentially present inhibitors and the quality of the mRNA, a number of further reasons could be excluded as a cause of the discrepancy with the results of the animals treated with DOCA. Besides the theoretical possibility of inter-methodical differences and resulting variations, as well as the role of the glucocorticoid receptor, which is still to be investigated, the closest interpretation is a damage effect too small to be detected by the given sample size. This is also in agreement with the fact that the effect of the treatment with aldosterone compared with the treatment with DOCA was expected to be significantly lower from the outset. KW - Aldosteron KW - Nierenzellkarzinom KW - Real-Time quantitative PCR KW - Nierenschädigung KW - Aldosteron KW - Nierenschädigung KW - Real-Time quantitative PCR KW - Nierenschädigungsmarker Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-151311 ER -