TY - JOUR A1 - Oberländer, Uwe A1 - Pletinckx, Katrien A1 - Dähler, Anja A1 - Müller, Nora A1 - Lutz, Manfred A1 - Arzberger, Thomas A1 - Riederer, Peter A1 - Gerlach, Manfred A1 - Koutsilieri, Eleni A1 - Scheller, Carsten T1 - Neuromelanin is an Immune Stimulator for Dendritic Cells in vitro N2 - Background: Parkinson’s disease (PD) is characterized at the cellular level by a destruction of neuromelanin (NM)-containing dopaminergic cells and a profound reduction in striatal dopamine. It has been shown recently that antimelanin antibodies are increased in sera of Parkinson patients, suggesting that NM may act as an autoantigen. In this study we tested whether NM is being recognized by dendritic cells (DCs), the major cell type for inducing Tand B-cell responses in vivo. This recognition of NM by DCs is a prerequisite to trigger an adaptive autoimmune response directed against NM-associated structures. Results: Murine DCs were treated with NM of substantia nigra (SN) from human subjects or with synthetic dopamine melanin (DAM). DCs effectively phagocytized NM and subsequently developed a mature phenotype (CD86high/MHCIIhigh). NM-activated DCs secreted the proinflammatory cytokines IL-6 and TNF-a. In addition, they potently triggered T cell proliferation in a mixed lymphocyte reaction, showing that DC activation was functional to induce a primary T cell response. In contrast, DAM, which lacks the protein and lipid components of NM but mimics the dopamine-melanin backbone of NM, had only very little effect on DC phenotype and function. Conclusions: NM is recognized by DCs in vitro and triggers their maturation. If operative in vivo, this would allow the DC-mediated transport and presentation of SN antigens to the adaptive immune system, leading to autoimmmunity in susceptible individuals. Our data provide a rationale for an autoimmune-based pathomechanism of PD with NM as the initial trigger. KW - Immunstimulation KW - Dendritische Zelle Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-69210 ER - TY - JOUR A1 - Avota, Elita A1 - Gulbins, Erich A1 - Schneider-Schaulies, Sibylle T1 - DC-SIGN Mediated Sphingomyelinase-Activation and Ceramide Generation Is Essential for Enhancement of Viral Uptake in Dendritic Cells N2 - As pattern recognition receptor on dendritic cells (DCs), DC-SIGN binds carbohydrate structures on its pathogen ligands and essentially determines host pathogen interactions because it both skews T cell responses and enhances pathogen uptake for cis infection and/or T cell trans-infection. How these processes are initiated at the plasma membrane level is poorly understood. We now show that DC-SIGN ligation on DCs by antibodies, mannan or measles virus (MV) causes rapid activation of neutral and acid sphingomyelinases followed by accumulation of ceramides in the outer membrane leaflet. SMase activation is important in promoting DC-SIGN signaling, but also for enhancement of MV uptake into DCs. DCSIGN-dependent SMase activation induces efficient, transient recruitment of CD150, which functions both as MV uptake receptor and microbial sensor, from an intracellular Lamp-1+ storage compartment shared with acid sphingomyelinase (ASM) within a few minutes. Subsequently, CD150 is displayed at the cell surface and co-clusters with DC-SIGN. Thus, DCSIGN ligation initiates SMase-dependent formation of ceramide-enriched membrane microdomains which promote vertical segregation of CD150 from intracellular storage compartments along with ASM. Given the ability to promote receptor and signalosome co-segration into (or exclusion from) ceramide enriched microdomains which provide a favorable environment for membrane fusion, DC-SIGN-dependent SMase activation may be of general importance for modes and efficiency of pathogen uptake into DCs, and their routing to specific compartments, but also for modulating T cell responses. KW - Dendritische Zelle Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-69056 ER - TY - JOUR A1 - Morton, Charles O. A1 - Varga, John J. A1 - Hornbach, Anke A1 - Mezger, Markus A1 - Sennefelder, Helga A1 - Kneitz, Susanne A1 - Kurzai, Oliver A1 - Krappmann, Sven A1 - Einsele, Hermann A1 - Nierman, William C. A1 - Rogers, Thomas R. A1 - Loeffler, Juergen T1 - The Temporal Dynamics of Differential Gene Expression in Aspergillus fumigatus Interacting with Human Immature Dendritic Cells In Vitro N2 - No abstract avDendritic cells (DC) are the most important antigen presenting cells and play a pivotal role in host immunity to infectious agents by acting as a bridge between the innate and adaptive immune systems. Monocyte-derived immature DCs (iDC) were infected with viable resting conidia of Aspergillus fumigatus (Af293) for 12 hours at an MOI of 5; cells were sampled every three hours. RNA was extracted from both organisms at each time point and hybridised to microarrays. iDC cell death increased at 6 h in the presence of A. fumigatus which coincided with fungal germ tube emergence; .80% of conidia were associated with iDC. Over the time course A. fumigatus differentially regulated 210 genes, FunCat analysis indicated significant up-regulation of genes involved in fermentation, drug transport, pathogenesis and response to oxidative stress. Genes related to cytotoxicity were differentially regulated but the gliotoxin biosynthesis genes were down regulated over the time course, while Aspf1 was up-regulated at 9 h and 12 h. There was an up-regulation of genes in the subtelomeric regions of the genome as the interaction progressed. The genes up-regulated by iDC in the presence of A. fumigatus indicated that they were producing a pro-inflammatory response which was consistent with previous transcriptome studies of iDC interacting with A. fumigatus germ tubes. This study shows that A. fumigatus adapts to phagocytosis by iDCs by utilising genes that allow it to survive the interaction rather than just up-regulation of specific virulence genes. KW - Dendritische Zelle Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-68958 ER - TY - JOUR A1 - Brandl, Carolin A1 - Ortler, Sonja A1 - Herrmann, Thomas A1 - Cardell, Susanna A1 - Lutz, Manfred B. A1 - Wiendl, Heinz T1 - B7-H1-Deficiency Enhances the Potential of Tolerogenic Dendritic Cells by Activating CD1d-Restricted Type II NKT Cells N2 - Background: Dendritic cells (DC) can act tolerogenic at a semi-mature stage by induction of protective CD4+ T cell and NKT cell responses. Methodology/Principal Findings: Here we studied the role of the co-inhibitory molecule B7-H1 (PD-L1, CD274) on semimature DC that were generated from bone marrow (BM) cells of B7-H12/2 mice and applied to the model of Experimental Autoimmune Encephalomyelitis (EAE). Injections of B7-H1-deficient DC showed increased EAE protection as compared to wild type (WT)-DC. Injections of B7-H12/2 TNF-DC induced higher release of peptide-specific IL-10 and IL-13 after restimulation in vitro together with elevated serum cytokines IL-4 and IL-13 produced by NKT cells, and reduced IL-17 and IFN-c production in the CNS. Experiments in CD1d2/2 and Ja2812/2 mice as well as with type I and II NKT cell lines indicated that only type II NKT cells but not type I NKT cells (invariant NKT cells) could be stimulated by an endogenous CD1d-ligand on DC and were responsible for the increased serum cytokine production in the absence of B7-H1. Conclusions/Significance: Together, our data indicate that BM-DC express an endogenous CD1d ligand and B7-H1 to ihibit type II but not type I NKT cells. In the absence of B7-H1 on these DC their tolerogenic potential to stimulate tolerogenic CD4+ and NKT cell responses is enhanced. KW - Dendritische Zelle Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-68457 ER -