TY - JOUR A1 - Rodrigues, Johannes A1 - Weiß, Martin A1 - Mussel, Patrick A1 - Hewig, Johannes T1 - On second thought … the influence of a second stage in the ultimatum game on decision behavior, electro-cortical correlates and their trait interrelation JF - Psychophysiology N2 - Previous EEG research only investigated one stage ultimatum games (UGs). We investigated the influence of a second bargaining stage in an UG concerning behavioral responses, electro-cortical correlates and their moderations by the traits altruism, anger, anxiety, and greed in 92 participants. We found that an additional stage led to more rejection in the 2-stage UG (2SUG) and that increasing offers in the second stage compared to the first stage led to more acceptance. The FRN during a trial was linked to expectance evaluation concerning the fairness of the offers, while midfrontal theta was a marker for the needed cognitive control to overcome the respective default behavioral pattern. The FRN responses to unfair offers were more negative for either low or high altruism in the UG, while high trait anxiety led to more negative FRN responses in the first stage of 2SUG, indicating higher sensitivity to unfairness. Accordingly, the mean FRN response, representing the trait-like general electrocortical reactivity to unfairness, predicted rejection in the first stage of 2SUG. Additionally, we found that high trait anger led to more rejections for unfair offer in 2SUG in general, while trait altruism led to more rejection of unimproving unfair offers in the second stage of 2SUG. In contrast, trait anxiety led to more acceptance in the second stage of 2SUG, while trait greed even led to more acceptance if the offer was worse than in the stage before. These findings suggest, that 2SUG creates a trait activation situation compared to the UG. KW - bargaining behavior KW - two-stage ultimatum game KW - reward positivity/FRN/MFN/N2 KW - trait activation in two-stage ultimatum game, KW - midfrontal theta KW - fairness evaluation vs. cognitive effort KW - EEG Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-318983 VL - 59 IS - 7 ER - TY - JOUR A1 - Stegmann, Yannik A1 - Andreatta, Marta A1 - Pauli, Paul A1 - Keil, Andreas A1 - Wieser, Matthias J. T1 - Investigating sustained attention in contextual threat using steady‐state VEPs evoked by flickering video stimuli JF - Psychophysiology N2 - Anxiety is characterized by anxious anticipation and heightened vigilance to uncertain threat. However, if threat is not reliably indicated by a specific cue, the context in which threat was previously experienced becomes its best predictor, leading to anxiety. A suitable means to induce anxiety experimentally is context conditioning: In one context (CTX+), an unpredictable aversive stimulus (US) is repeatedly presented, in contrast to a second context (CTX−), in which no US is ever presented. In this EEG study, we investigated attentional mechanisms during acquisition and extinction learning in 38 participants, who underwent a context conditioning protocol. Flickering video stimuli (32 s clips depicting virtual offices representing CTX+/−) were used to evoke steady‐state visual evoked potentials (ssVEPs) as an index of visuocortical engagement with the contexts. Analyses of the electrocortical responses suggest a successful induction of the ssVEP signal by video presentation in flicker mode. Furthermore, we found clear indices of context conditioning and extinction learning on a subjective level, while cortical processing of the CTX+ was unexpectedly reduced during video presentation. The differences between CTX+ and CTX− diminished during extinction learning. Together, these results indicate that the dynamic sensory input of the video presentation leads to disruptions in the ssVEP signal, which is greater for motivationally significant, threatening contexts. KW - anxiety KW - EEG KW - oscillation KW - threat KW - time frequency analyses KW - visual processes Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-312430 VL - 60 IS - 5 ER - TY - JOUR A1 - Stegmann, Yannik A1 - Andreatta, Marta A1 - Wieser, Matthias J. T1 - The effect of inherently threatening contexts on visuocortical engagement to conditioned threat JF - Psychophysiology N2 - Fear and anxiety are crucial for adaptive responding in life‐threatening situations. Whereas fear is a phasic response to an acute threat accompanied by selective attention, anxiety is characterized by a sustained feeling of apprehension and hypervigilance during situations of potential threat. In the current literature, fear and anxiety are usually considered mutually exclusive, with partially separated neural underpinnings. However, there is accumulating evidence that challenges this distinction between fear and anxiety, and simultaneous activation of fear and anxiety networks has been reported. Therefore, the current study experimentally tested potential interactions between fear and anxiety. Fifty‐two healthy participants completed a differential fear conditioning paradigm followed by a test phase in which the conditioned stimuli were presented in front of threatening or neutral contextual images. To capture defense system activation, we recorded subjective (threat, US‐expectancy), physiological (skin conductance, heart rate) and visuocortical (steady‐state visual evoked potentials) responses to the conditioned stimuli as a function of contextual threat. Results demonstrated successful fear conditioning in all measures. In addition, threat and US‐expectancy ratings, cardiac deceleration, and visuocortical activity were enhanced for fear cues presented in threatening compared with neutral contexts. These results are in line with an additive or interactive rather than an exclusive model of fear and anxiety, indicating facilitated defensive behavior to imminent danger in situations of potential threat. KW - anxiety KW - EEG KW - emotion KW - fear KW - heart rate KW - ssVEP Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-312465 VL - 60 IS - 4 ER - TY - JOUR A1 - Thiele, Jonas A. A1 - Richter, Aylin A1 - Hilger, Kirsten T1 - Multimodal brain signal complexity predicts human intelligence JF - eNeuro N2 - Spontaneous brain activity builds the foundation for human cognitive processing during external demands. Neuroimaging studies based on functional magnetic resonance imaging (fMRI) identified specific characteristics of spontaneous (intrinsic) brain dynamics to be associated with individual differences in general cognitive ability, i.e., intelligence. However, fMRI research is inherently limited by low temporal resolution, thus, preventing conclusions about neural fluctuations within the range of milliseconds. Here, we used resting-state electroencephalographical (EEG) recordings from 144 healthy adults to test whether individual differences in intelligence (Raven’s Advanced Progressive Matrices scores) can be predicted from the complexity of temporally highly resolved intrinsic brain signals. We compared different operationalizations of brain signal complexity (multiscale entropy, Shannon entropy, Fuzzy entropy, and specific characteristics of microstates) regarding their relation to intelligence. The results indicate that associations between brain signal complexity measures and intelligence are of small effect sizes (r ∼ 0.20) and vary across different spatial and temporal scales. Specifically, higher intelligence scores were associated with lower complexity in local aspects of neural processing, and less activity in task-negative brain regions belonging to the default-mode network. Finally, we combined multiple measures of brain signal complexity to show that individual intelligence scores can be significantly predicted with a multimodal model within the sample (10-fold cross-validation) as well as in an independent sample (external replication, N = 57). In sum, our results highlight the temporal and spatial dependency of associations between intelligence and intrinsic brain dynamics, proposing multimodal approaches as promising means for future neuroscientific research on complex human traits. KW - brain signal complexity KW - cognitive ability KW - EEG KW - intelligence KW - microstates KW - resting-state Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-312949 VL - 10 IS - 2 ER - TY - JOUR A1 - Rodrigues, Johannes A1 - Marzban, Dorna A1 - Hewig, Johannes T1 - The influence of mental imagery expertise of pen and paper players versus computer gamers upon performance and electrocortical correlates in a difficult mental rotation task JF - Symmetry N2 - We investigated the influence of mental imagery expertise in 15 pen and paper role-players as an expert group compared to the gender-matched control group of computer role-players in the difficult Vandenberg and Kuse mental rotation task. In this task, the participants have to decide which two of four rotated figures match the target figure. The dependent measures were performance speed and accuracy. In our exploratory investigation, we further examined midline frontal theta band activation, parietal alpha band activation, and parietal alpha band asymmetry in EEG as indicator for the chosen rotation strategy. Additionally, we explored the gender influence on performance and EEG activation, although a very small female sample section was given. The expected gender difference concerning performance accuracy was negated by expertise in pen and paper role-playing women, while the gender-specific difference in performance speed was preserved. Moreover, gender differences concerning electro-cortical measures revealed differences in rotation strategy, with women using top-down strategies compared to men, who were using top-down strategies and active inhibition of associative cortical areas. These strategy uses were further moderated by expertise, with higher expertise leading to more pronounced activation patters, especially during successful performance. However, due to the very limited sample size, the findings of this explorative study have to be interpreted cautiously. KW - mental rotation KW - expertise in visual imagery KW - pen and paper vs. computer role-players KW - midline frontal theta band frequency activation KW - parietal alpha band frequency activation KW - gender influence KW - EEG Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-252253 SN - 2073-8994 VL - 13 IS - 12 ER - TY - JOUR A1 - Rodrigues, Johannes A1 - Weiß, Martin A1 - Hewig, Johannes A1 - Allen, John J. B. T1 - EPOS: EEG Processing Open-Source Scripts JF - Frontiers in Neuroscience N2 - Background: Since the replication crisis, standardization has become even more important in psychological science and neuroscience. As a result, many methods are being reconsidered, and researchers’ degrees of freedom in these methods are being discussed as a potential source of inconsistencies across studies. New Method: With the aim of addressing these subjectivity issues, we have been working on a tutorial-like EEG (pre-)processing pipeline to achieve an automated method based on the semi-automated analysis proposed by Delorme and Makeig. Results: Two scripts are presented and explained step-by-step to perform basic, informed ERP and frequency-domain analyses, including data export to statistical programs and visual representations of the data. The open-source software EEGlab in MATLAB is used as the data handling platform, but scripts based on code provided by Mike Cohen (2014) are also included. Comparison with existing methods: This accompanying tutorial-like article explains and shows how the processing of our automated pipeline affects the data and addresses, especially beginners in EEG-analysis, as other (pre)-processing chains are mostly targeting rather informed users in specialized areas or only parts of a complete procedure. In this context, we compared our pipeline with a selection of existing approaches. Conclusion: The need for standardization and replication is evident, yet it is equally important to control the plausibility of the suggested solution by data exploration. Here, we provide the community with a tool to enhance the understanding and capability of EEG-analysis. We aim to contribute to comprehensive and reliable analyses for neuro-scientific research. KW - EEG KW - electroencephalography KW - event-related potentials-ERP KW - EEG processing KW - EEG preprocessing KW - EEG frequency band analysis Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-240221 SN - 1662-453X VL - 15 ER - TY - JOUR A1 - Ventura-Bort, Carlos A1 - Wirkner, Janine A1 - Genheimer, Hannah A1 - Wendt, Julia A1 - Hamm, Alfons O. A1 - Weymar, Mathias T1 - Effects of Transcutaneous Vagus Nerve Stimulation (tVNS) on the P300 and Alpha-Amylase Level: A Pilot Study JF - Frontiers in Human Neuroscience N2 - Recent research suggests that the P3b may be closely related to the activation of the locus coeruleus-norepinephrine (LC-NE) system. To further study the potential association, we applied a novel technique, the non-invasive transcutaneous vagus nerve stimulation (tVNS), which is speculated to increase noradrenaline levels. Using a within-subject cross-over design, 20 healthy participants received continuous tVNS and sham stimulation on two consecutive days (stimulation counterbalanced across participants) while performing a visual oddball task. During stimulation, oval non-targets (standard), normal-head (easy) and rotated-head (difficult) targets, as well as novel stimuli (scenes) were presented. As an indirect marker of noradrenergic activation we also collected salivary alpha-amylase (sAA) before and after stimulation. Results showed larger P3b amplitudes for target, relative to standard stimuli, irrespective of stimulation condition. Exploratory post hoc analyses, however, revealed that, in comparison to standard stimuli, easy (but not difficult) targets produced larger P3b (but not P3a) amplitudes during active tVNS, compared to sham stimulation. For sAA levels, although main analyses did not show differential effects of stimulation, direct testing revealed that tVNS (but not sham stimulation) increased sAA levels after stimulation. Additionally, larger differences between tVNS and sham stimulation in P3b magnitudes for easy targets were associated with larger increase in sAA levels after tVNS, but not after sham stimulation. Despite preliminary evidence for a modulatory influence of tVNS on the P3b, which may be partly mediated by activation of the noradrenergic system, additional research in this field is clearly warranted. Future studies need to clarify whether tVNS also facilitates other processes, such as learning and memory, and whether tVNS can be used as therapeutic tool. KW - EEG KW - P300 KW - tVNS KW - norepinephrine KW - locus coeruleus KW - salivary alpha-amylase Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-196129 SN - 1662-5161 VL - 12 IS - 202 ER - TY - JOUR A1 - Domschke, Katharina A1 - Zwanzger, Peter A1 - Rehbein, Maimu A. A1 - Steinberg, Christian A1 - Knoke, Kathrin A1 - Dobel, Christian A1 - Klinkenberg, Isabelle A1 - Kugel, Harald A1 - Kersting, Anette A1 - Arolt, Volker A1 - Pantev, Christo A1 - Junghofer, Markus T1 - Magnetoencephalographic Correlates of Emotional Processing in Major Depression Before and After Pharmacological Treatment JF - International Journal of Neuropsychopharmacology N2 - Background: In major depressive disorder (MDD), electrophysiological and imaging studies suggest reduced neural activity in the parietal and dorsolateral prefrontal cortex regions. In the present study, neural correlates of emotional processing in MDD were analyzed for the first time in a pre-/post-treatment design by means of magnetoencephalography (MEG), allowing for detecting temporal dynamics of brain activation. Methods: Twenty-five medication-free Caucasian in-patients with MDD and 25 matched controls underwent a baseline MEG session with passive viewing of pleasant, unpleasant, and neutral pictures. Fifteen patients were followed-up with a second MEG session after 4 weeks of antidepressant monopharmacotherapy with mirtazapine. The corresponding controls received no intervention between the measurements. The clinical course of depression was assessed using the Hamilton Depression scale. Results: Prior to treatment, an overall neocortical hypoactivation during emotional processing, particularly at the parietal regions and areas at the right temporoparietal junction, as well as abnormal valence-specific reactions at the right parietal and bilateral dorsolateral prefrontal cortex (dlPFC) regions were observed in patients compared to controls. These effects occurred <150ms, suggesting dysfunctional processing of emotional stimuli at a preconscious level. Successful antidepressant treatment resulted in a normalization of the hypoactivation at the right parietal and right temporoparietal regions. Accordingly, both dlPFC regions revealed an increase of activity after therapy. Conclusions: The present study provides neurophysiological evidence for dysfunctional emotional processing in a fronto-parieto-temporal network, possibly contributing to the pathogenesis of MDD. These activation patterns might have the potential to serve as biomarkers of treatment success. KW - Dorsolateral prefrontal cortex KW - IAPS KW - MDD KW - EEG KW - MEG KW - parietal hypoactivation KW - temporoparietal junction Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-165523 VL - 2016 ER - TY - JOUR A1 - Domschke, Katharina A1 - Zwanzger, Peter A1 - Rehbein, Maimu A A1 - Steinberg, Christian A1 - Knoke, Kathrin A1 - Dobel, Christian A1 - Klinkenberg, Isabelle A1 - Kugel, Harald A1 - Kersting, Anette A1 - Arolt, Volker A1 - Pantev, Christo A1 - Junghofer, Markus T1 - Magnetoencephalographic correlates of emotional processing in major depression before and after pharmacological treatment JF - International Journal of Neuropsychopharmacology N2 - Background: In major depressive disorder (MDD), electrophysiological and imaging studies suggest reduced neural activity in the parietal and dorsolateral prefrontal cortex regions. In the present study, neural correlates of emotional processing in MDD were analyzed for the first time in a pre-/post-treatment design by means of magnetoencephalography (MEG), allowing for detecting temporal dynamics of brain activation. Methods: Twenty-five medication-free Caucasian in-patients with MDD and 25 matched controls underwent a baseline MEG session with passive viewing of pleasant, unpleasant, and neutral pictures. Fifteen patients were followed-up with a second MEG session after 4 weeks of antidepressant monopharmacotherapy with mirtazapine. The corresponding controls received no intervention between the measurements. The clinical course of depression was assessed using the Hamilton Depression scale. Results: Prior to treatment, an overall neocortical hypoactivation during emotional processing, particularly at the parietal regions and areas at the right temporoparietal junction, as well as abnormal valence-specific reactions at the right parietal and bilateral dorsolateral prefrontal cortex (dlPFC) regions were observed in patients compared to controls. These effects occurred <150ms, suggesting dysfunctional processing of emotional stimuli at a preconscious level. Successful antidepressant treatment resulted in a normalization of the hypoactivation at the right parietal and right temporoparietal regions. Accordingly, both dlPFC regions revealed an increase of activity after therapy. Conclusions: The present study provides neurophysiological evidence for dysfunctional emotional processing in a fronto-parieto-temporal network, possibly contributing to the pathogenesis of MDD. These activation patterns might have the potential to serve as biomarkers of treatment success. KW - dorsolateral prefrontal cortex KW - temporoparietal junction KW - parietal hypoactivation KW - IAPS KW - EEG KW - MEG KW - MDD Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-149873 VL - 19 IS - 2 ER - TY - JOUR A1 - Käthner, Ivo A1 - Halder, Sebastian A1 - Hintermüller, Christoph A1 - Espinosa, Arnau A1 - Guger, Christoph A1 - Miralles, Felip A1 - Vargiu, Eloisa A1 - Dauwalder, Stefan A1 - Rafael-Palou, Xavier A1 - Solà, Marc A1 - Daly, Jean M. A1 - Armstrong, Elaine A1 - Martin, Suzanne A1 - Kübler, Andrea T1 - A Multifunctional Brain-Computer Interface Intended for Home Use: An Evaluation with Healthy Participants and Potential End Users with Dry and Gel-Based Electrodes JF - Frontiers in Neuroscience N2 - Current brain-computer interface (BCIs) software is often tailored to the needs of scientists and technicians and therefore complex to allow for versatile use. To facilitate home use of BCIs a multifunctional P300 BCI with a graphical user interface intended for non-expert set-up and control was designed and implemented. The system includes applications for spelling, web access, entertainment, artistic expression and environmental control. In addition to new software, it also includes new hardware for the recording of electroencephalogram (EEG) signals. The EEG system consists of a small and wireless amplifier attached to a cap that can be equipped with gel-based or dry contact electrodes. The system was systematically evaluated with a healthy sample, and targeted end users of BCI technology, i.e., people with a varying degree of motor impairment tested the BCI in a series of individual case studies. Usability was assessed in terms of effectiveness, efficiency and satisfaction. Feedback of users was gathered with structured questionnaires. Two groups of healthy participants completed an experimental protocol with the gel-based and the dry contact electrodes (N = 10 each). The results demonstrated that all healthy participants gained control over the system and achieved satisfactory to high accuracies with both gel-based and dry electrodes (average error rates of 6 and 13%). Average satisfaction ratings were high, but certain aspects of the system such as the wearing comfort of the dry electrodes and design of the cap, and speed (in both groups) were criticized by some participants. Six potential end users tested the system during supervised sessions. The achieved accuracies varied greatly from no control to high control with accuracies comparable to that of healthy volunteers. Satisfaction ratings of the two end-users that gained control of the system were lower as compared to healthy participants. The advantages and disadvantages of the BCI and its applications are discussed and suggestions are presented for improvements to pave the way for user friendly BCIs intended to be used as assistive technology by persons with severe paralysis. KW - end-user evaluation KW - brain-computer interface KW - EEG KW - practical electrodes KW - assistive technology Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-157925 VL - 11 IS - 286 ER -