TY - JOUR A1 - Janz, Anna A1 - Walz, Katharina A1 - Cirnu, Alexandra A1 - Surjanto, Jessica A1 - Urlaub, Daniela A1 - Leskien, Miriam A1 - Kohlhaas, Michael A1 - Nickel, Alexander A1 - Brand, Theresa A1 - Nose, Naoko A1 - Wörsdörfer, Philipp A1 - Wagner, Nicole A1 - Higuchi, Takahiro A1 - Maack, Christoph A1 - Dudek, Jan A1 - Lorenz, Kristina A1 - Klopocki, Eva A1 - Ergün, Süleyman A1 - Duff, Henry J. A1 - Gerull, Brenda T1 - Mutations in DNAJC19 cause altered mitochondrial structure and increased mitochondrial respiration in human iPSC-derived cardiomyocytes JF - Molecular Metabolism N2 - Highlights • Loss of DNAJC19's DnaJ domain disrupts cardiac mitochondrial structure, leading to abnormal cristae formation in iPSC-CMs. • Impaired mitochondrial structures lead to an increased mitochondrial respiration, ROS and an elevated membrane potential. • Mutant iPSC-CMs show sarcomere dysfunction and a trend to more arrhythmias, resembling DCMA-associated cardiomyopathy. Background Dilated cardiomyopathy with ataxia (DCMA) is an autosomal recessive disorder arising from truncating mutations in DNAJC19, which encodes an inner mitochondrial membrane protein. Clinical features include an early onset, often life-threatening, cardiomyopathy associated with other metabolic features. Here, we aim to understand the metabolic and pathophysiological mechanisms of mutant DNAJC19 for the development of cardiomyopathy. Methods We generated induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) of two affected siblings with DCMA and a gene-edited truncation variant (tv) of DNAJC19 which all lack the conserved DnaJ interaction domain. The mutant iPSC-CMs and their respective control cells were subjected to various analyses, including assessments of morphology, metabolic function, and physiological consequences such as Ca\(^{2+}\) kinetics, contractility, and arrhythmic potential. Validation of respiration analysis was done in a gene-edited HeLa cell line (DNAJC19tv\(_{HeLa}\)). Results Structural analyses revealed mitochondrial fragmentation and abnormal cristae formation associated with an overall reduced mitochondrial protein expression in mutant iPSC-CMs. Morphological alterations were associated with higher oxygen consumption rates (OCRs) in all three mutant iPSC-CMs, indicating higher electron transport chain activity to meet cellular ATP demands. Additionally, increased extracellular acidification rates suggested an increase in overall metabolic flux, while radioactive tracer uptake studies revealed decreased fatty acid uptake and utilization of glucose. Mutant iPSC-CMs also showed increased reactive oxygen species (ROS) and an elevated mitochondrial membrane potential. Increased mitochondrial respiration with pyruvate and malate as substrates was observed in mutant DNAJC19tv HeLa cells in addition to an upregulation of respiratory chain complexes, while cellular ATP-levels remain the same. Moreover, mitochondrial alterations were associated with increased beating frequencies, elevated diastolic Ca\(^{2+}\) concentrations, reduced sarcomere shortening and an increased beat-to-beat rate variability in mutant cell lines in response to β-adrenergic stimulation. Conclusions Loss of the DnaJ domain disturbs cardiac mitochondrial structure with abnormal cristae formation and leads to mitochondrial dysfunction, suggesting that DNAJC19 plays an essential role in mitochondrial morphogenesis and biogenesis. Moreover, increased mitochondrial respiration, altered substrate utilization, increased ROS production and abnormal Ca\(^{2+}\) kinetics provide insights into the pathogenesis of DCMA-related cardiomyopathy. KW - cell biology KW - molecular biology KW - dilated cardiomyopathy with ataxia KW - genetics KW - metabolism KW - mitochondria KW - OXPHOS KW - ROS KW - contractility Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-350393 SN - 2212-8778 VL - 79 ER - TY - JOUR A1 - Schwemmlein, Julia A1 - Maack, Christoph A1 - Bertero, Edoardo T1 - Mitochondria as therapeutic targets in heart failure JF - Current Heart Failure Reports N2 - Purpose of Review We review therapeutic approaches aimed at restoring function of the failing heart by targeting mitochondrial reactive oxygen species (ROS), ion handling, and substrate utilization for adenosine triphosphate (ATP) production. Recent Findings Mitochondria-targeted therapies have been tested in animal models of and humans with heart failure (HF). Cardiac benefits of sodium/glucose cotransporter 2 inhibitors might be partly explained by their effects on ion handling and metabolism of cardiac myocytes. Summary The large energy requirements of the heart are met by oxidative phosphorylation in mitochondria, which is tightly regulated by the turnover of ATP that fuels cardiac contraction and relaxation. In heart failure (HF), this mechano-energetic coupling is disrupted, leading to bioenergetic mismatch and production of ROS that drive the progression of cardiac dysfunction. Furthermore, HF is accompanied by changes in substrate uptake and oxidation that are considered detrimental for mitochondrial oxidative metabolism and negatively affect cardiac efficiency. Mitochondria lie at the crossroads of metabolic and energetic dysfunction in HF and represent ideal therapeutic targets. KW - mitochondria KW - heart failure KW - reactive oxygen species KW - MitoQ KW - elamipretide KW - SGLT2 inhibitors KW - cardiac metabolism Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-324015 VL - 19 IS - 2 ER - TY - JOUR A1 - Bartel, Karin A1 - Pein, Helmut A1 - Popper, Bastian A1 - Schmitt, Sabine A1 - Janaki-Raman, Sudha A1 - Schulze, Almut A1 - Lengauer, Florian A1 - Koeberle, Andreas A1 - Werz, Oliver A1 - Zischka, Hans A1 - Müller, Rolf A1 - Vollmar, Angelika M. A1 - Schwarzenberg, Karin von T1 - Connecting lysosomes and mitochondria – a novel role for lipid metabolism in cancer cell death JF - Cell Communication and Signaling N2 - Background The understanding of lysosomes has been expanded in recent research way beyond their view as cellular trash can. Lysosomes are pivotal in regulating metabolism, endocytosis and autophagy and are implicated in cancer. Recently it was discovered that the lysosomal V-ATPase, which is known to induce apoptosis, interferes with lipid metabolism in cancer, yet the interplay between these organelles is poorly understood. Methods LC-MS/MS analysis was performed to investigate lipid distribution in cells. Cell survival and signaling pathways were analyzed by means of cell biological methods (qPCR, Western Blot, flow cytometry, CellTiter-Blue). Mitochondrial structure was analyzed by confocal imaging and electron microscopy, their function was determined by flow cytometry and seahorse measurements. Results Our data reveal that interfering with lysosomal function changes composition and subcellular localization of triacylglycerids accompanied by an upregulation of PGC1α and PPARα expression, master regulators of energy and lipid metabolism. Furthermore, cardiolipin content is reduced driving mitochondria into fission, accompanied by a loss of membrane potential and reduction in oxidative capacity, which leads to a deregulation in cellular ROS and induction of mitochondria-driven apoptosis. Additionally, cells undergo a metabolic shift to glutamine dependency, correlated with the fission phenotype and sensitivity to lysosomal inhibition, most prominent in Ras mutated cells. Conclusion This study sheds mechanistic light on a largely uninvestigated triangle between lysosomes, lipid metabolism and mitochondrial function. Insight into this organelle crosstalk increases our understanding of mitochondria-driven cell death. Our findings furthermore provide a first hint on a connection of Ras pathway mutations and sensitivity towards lysosomal inhibitors. KW - lysosome KW - V-ATPase KW - mitochondria KW - fission KW - apoptosis KW - lipid metabolism KW - cardiolipin Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-221524 VL - 17 ER - TY - JOUR A1 - Ruf, Dominik A1 - Brantl, Victor A1 - Wagener, Johannes T1 - Mitochondrial Fragmentation in \(Aspergillus\) \(fumigatus\) as Early Marker of Granulocyte Killing Activity JF - Frontiers in Cellular and Infection Microbiology N2 - The host's defense against invasive mold infections relies on diverse antimicrobial activities of innate immune cells. However, studying these mechanisms in vitro is complicated by the filamentous nature of such pathogens that typically form long, branched, multinucleated and compartmentalized hyphae. Here we describe a novel method that allows for the visualization and quantification of the antifungal killing activity exerted by human granulocytes against hyphae of the opportunistic pathogen Aspergillus fumigatus. The approach relies on the distinct impact of fungal cell death on the morphology of mitochondria that were visualized with green fluorescent protein (GFP). We show that oxidative stress induces complete fragmentation of the tubular mitochondrial network which correlates with cell death of affected hyphae. Live cell microscopy revealed a similar and non-reversible disruption of the mitochondrial morphology followed by fading of fluorescence in Aspergillus hyphae that were killed by human granulocytes. Quantitative microscopic analysis of fixed samples was subsequently used to estimate the antifungal activity. By utilizing this assay, we demonstrate that lipopolysaccharides as well as human serum significantly increase the killing efficacy of the granulocytes. Our results demonstrate that evaluation of the mitochondrial morphology can be utilized to assess the fungicidal activity of granulocytes against A. fumigatus hyphae. KW - Aspergillus fumigatus KW - killing KW - assay KW - PMNs KW - granulocytes KW - mitochondria KW - mitochondrial morphology KW - fungicidal activity Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-227133 VL - 8 IS - 128 ER - TY - JOUR A1 - Palladino, Viola Stella A1 - Chiocchetti, Andreas G. A1 - Frank, Lukas A1 - Haslinger, Denise A1 - McNeill, Rhiannon A1 - Radtke, Franziska A1 - Till, Andreas A1 - Haupt, Simone A1 - Brüstle, Oliver A1 - Günther, Katharina A1 - Edenhofer, Frank A1 - Hoffmann, Per A1 - Reif, Andreas A1 - Kittel-Schneider, Sarah T1 - Energy metabolism disturbances in cell models of PARK2 CNV carriers with ADHD JF - Journal of Clinical Medicine N2 - The main goal of the present study was the identification of cellular phenotypes in attention-deficit-/hyperactivity disorder (ADHD) patient-derived cellular models from carriers of rare copy number variants (CNVs) in the PARK2 locus that have been previously associated with ADHD. Human-derived fibroblasts (HDF) were cultured and human-induced pluripotent stem cells (hiPSC) were reprogrammed and differentiated into dopaminergic neuronal cells (mDANs). A series of assays in baseline condition and in different stress paradigms (nutrient deprivation, carbonyl cyanide m-chlorophenyl hydrazine (CCCP)) focusing on mitochondrial function and energy metabolism (ATP production, basal oxygen consumption rates, reactive oxygen species (ROS) abundance) were performed and changes in mitochondrial network morphology evaluated. We found changes in PARK2 CNV deletion and duplication carriers with ADHD in PARK2 gene and protein expression, ATP production and basal oxygen consumption rates compared to healthy and ADHD wildtype control cell lines, partly differing between HDF and mDANs and to some extent enhanced in stress paradigms. The generation of ROS was not influenced by the genotype. Our preliminary work suggests an energy impairment in HDF and mDAN cells of PARK2 CNV deletion and duplication carriers with ADHD. The energy impairment could be associated with the role of PARK2 dysregulation in mitochondrial dynamics. KW - ADHD KW - hiPSC KW - PARK2 KW - mitochondria KW - disease modelling Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-220074 SN - 2077-0383 VL - 9 IS - 12 ER - TY - JOUR A1 - Dudek, Jan A1 - Maack, Christoph T1 - Mechano-energetic aspects of Barth syndrome JF - Journal of Inherited Metabolic Disease N2 - Energy-demanding organs like the heart are strongly dependent on oxidative phosphorylation in mitochondria. Oxidative phosphorylation is governed by the respiratory chain located in the inner mitochondrial membrane. The inner mitochondrial membrane is the only cellular membrane with significant amounts of the phospholipid cardiolipin, and cardiolipin was found to directly interact with a number of essential protein complexes, including respiratory chain complexes I to V. An inherited defect in the biogenesis of cardiolipin causes Barth syndrome, which is associated with cardiomyopathy, skeletal myopathy, neutropenia and growth retardation. Energy conversion is dependent on reducing equivalents, which are replenished by oxidative metabolism in the Krebs cycle. Cardiolipin deficiency in Barth syndrome also affects Krebs cycle activity, metabolite transport and mitochondrial morphology. During excitation-contraction coupling, calcium (Ca\(^{2+}\)) released from the sarcoplasmic reticulum drives sarcomeric contraction. At the same time, Ca\(^{2+}\) influx into mitochondria drives the activation of Krebs cycle dehydrogenases and the regeneration of reducing equivalents. Reducing equivalents are essential not only for energy conversion, but also for maintaining a redox buffer, which is required to detoxify reactive oxygen species (ROS). Defects in CL may also affect Ca\(^{2+}\) uptake into mitochondria and thereby hamper energy supply and demand matching, but also detoxification of ROS. Here, we review the impact of cardiolipin deficiency on mitochondrial function in Barth syndrome and discuss potential therapeutic strategies. KW - Barth syndrome KW - respiratory chain KW - reactive oxygen species KW - cardiolipin KW - mitochondria Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-257512 VL - 45 IS - 1 ER - TY - JOUR A1 - Wagner, Michael A1 - Bertero, Edoardo A1 - Nickel, Alexander A1 - Kohlhaas, Michael A1 - Gibson, Gary E. A1 - Heggermont, Ward A1 - Heymans, Stephane A1 - Maack, Christoph T1 - Selective NADH communication from α-ketoglutarate dehydrogenase to mitochondrial transhydrogenase prevents reactive oxygen species formation under reducing conditions in the heart JF - Basic Research in Cardiology N2 - In heart failure, a functional block of complex I of the respiratory chain provokes superoxide generation, which is transformed to H\(_2\)O\(_2\) by dismutation. The Krebs cycle produces NADH, which delivers electrons to complex I, and NADPH for H\(_2\)O\(_2\) elimination via isocitrate dehydrogenase and nicotinamide nucleotide transhydrogenase (NNT). At high NADH levels, α-ketoglutarate dehydrogenase (α-KGDH) is a major source of superoxide in skeletal muscle mitochondria with low NNT activity. Here, we analyzed how α-KGDH and NNT control H\(_2\)O\(_2\) emission in cardiac mitochondria. In cardiac mitochondria from NNT-competent BL/6N mice, H\(_2\)O\(_2\) emission is equally low with pyruvate/malate (P/M) or α-ketoglutarate (α-KG) as substrates. Complex I inhibition with rotenone increases H2O2 emission from P/M, but not α-KG respiring mitochondria, which is potentiated by depleting H\(_2\)O\(_2\)-eliminating capacity. Conversely, in NNT-deficient BL/6J mitochondria, H2O2 emission is higher with α-KG than with P/M as substrate, and further potentiated by complex I blockade. Prior depletion of H\(_2\)O\(_2\)-eliminating capacity increases H\(_2\)O\(_2\) emission from P/M, but not α-KG respiring mitochondria. In cardiac myocytes, downregulation of α-KGDH activity impaired dynamic mitochondrial redox adaptation during workload transitions, without increasing H\(_2\)O\(_2\) emission. In conclusion, NADH from α-KGDH selectively shuttles to NNT for NADPH formation rather than to complex I of the respiratory chain for ATP production. Therefore, α-KGDH plays a key role for H\(_2\)O\(_2\) elimination, but is not a relevant source of superoxide in heart. In heart failure, α-KGDH/NNT-dependent NADPH formation ameliorates oxidative stress imposed by complex I blockade. Downregulation of α-KGDH may, therefore, predispose to oxidative stress in heart failure. KW - mitochondria KW - α-Ketoglutarate dehydrogenase KW - reactive oxygen species KW - nicotinamide nucleotide transhydrogenase Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-234907 SN - 0300-8428 VL - 115 ER - TY - JOUR A1 - Kunz, Tobias C. A1 - Götz, Ralph A1 - Gao, Shiqiang A1 - Sauer, Markus A1 - Kozjak-Pavlovic, Vera T1 - Using Expansion Microscopy to Visualize and Characterize the Morphology of Mitochondrial Cristae JF - Frontiers in Cell and Developmental Biology N2 - Mitochondria are double membrane bound organelles indispensable for biological processes such as apoptosis, cell signaling, and the production of many important metabolites, which includes ATP that is generated during the process known as oxidative phosphorylation (OXPHOS). The inner membrane contains folds called cristae, which increase the membrane surface and thus the amount of membrane-bound proteins necessary for the OXPHOS. These folds have been of great interest not only because of their importance for energy conversion, but also because changes in morphology have been linked to a broad range of diseases from cancer, diabetes, neurodegenerative diseases, to aging and infection. With a distance between opposing cristae membranes often below 100 nm, conventional fluorescence imaging cannot provide a resolution sufficient for resolving these structures. For this reason, various highly specialized super-resolution methods including dSTORM, PALM, STED, and SIM have been applied for cristae visualization. Expansion Microscopy (ExM) offers the possibility to perform super-resolution microscopy on conventional confocal microscopes by embedding the sample into a swellable hydrogel that is isotropically expanded by a factor of 4–4.5, improving the resolution to 60–70 nm on conventional confocal microscopes, which can be further increased to ∼ 30 nm laterally using SIM. Here, we demonstrate that the expression of the mitochondrial creatine kinase MtCK linked to marker protein GFP (MtCK-GFP), which localizes to the space between the outer and the inner mitochondrial membrane, can be used as a cristae marker. Applying ExM on mitochondria labeled with this construct enables visualization of morphological changes of cristae and localization studies of mitochondrial proteins relative to cristae without the need for specialized setups. For the first time we present the combination of specific mitochondrial intermembrane space labeling and ExM as a tool for studying internal structure of mitochondria. KW - Expansion microscopy KW - mitochondria KW - cristae KW - structured illumination microscope KW - ultrastructure Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-208296 SN - 2296-634X VL - 8 ER - TY - JOUR A1 - Wasmus, Christina A1 - Dudek, Jan T1 - Metabolic Alterations Caused by Defective Cardiolipin Remodeling in Inherited Cardiomyopathies JF - Life N2 - The heart is the most energy-consuming organ in the human body. In heart failure, the homeostasis of energy supply and demand is endangered by an increase in cardiomyocyte workload, or by an insufficiency in energy-providing processes. Energy metabolism is directly associated with mitochondrial redox homeostasis. The production of toxic reactive oxygen species (ROS) may overwhelm mitochondrial and cellular ROS defense mechanisms in case of heart failure. Mitochondria are essential cell organelles and provide 95% of the required energy in the heart. Metabolic remodeling, changes in mitochondrial structure or function, and alterations in mitochondrial calcium signaling diminish mitochondrial energy provision in many forms of cardiomyopathy. The mitochondrial respiratory chain creates a proton gradient across the inner mitochondrial membrane, which couples respiration with oxidative phosphorylation and the preservation of energy in the chemical bonds of ATP. Akin to other mitochondrial enzymes, the respiratory chain is integrated into the inner mitochondrial membrane. The tight association with the mitochondrial phospholipid cardiolipin (CL) ensures its structural integrity and coordinates enzymatic activity. This review focuses on how changes in mitochondrial CL may be associated with heart failure. Dysfunctional CL has been found in diabetic cardiomyopathy, ischemia reperfusion injury and the aging heart. Barth syndrome (BTHS) is caused by an inherited defect in the biosynthesis of cardiolipin. Moreover, a dysfunctional CL pool causes other types of rare inherited cardiomyopathies, such as Sengers syndrome and Dilated Cardiomyopathy with Ataxia (DCMA). Here we review the impact of cardiolipin deficiency on mitochondrial functions in cellular and animal models. We describe the molecular mechanisms concerning mitochondrial dysfunction as an incitement of cardiomyopathy and discuss potential therapeutic strategies. KW - cardiolipin KW - mitochondria KW - Barth syndrome KW - Sengers syndrome KW - respiratory chain KW - Dilated Cardiomyopathy with Ataxia KW - cardiomyopathy Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-219286 SN - 2075-1729 VL - 10 IS - 11 ER - TY - JOUR A1 - Sacchetto, Claudia A1 - Sequeira, Vasco A1 - Bertero, Edoardo A1 - Dudek, Jan A1 - Maack, Christoph A1 - Calore, Martina T1 - Metabolic Alterations in Inherited Cardiomyopathies JF - Journal of Clinical Medicine N2 - The normal function of the heart relies on a series of complex metabolic processes orchestrating the proper generation and use of energy. In this context, mitochondria serve a crucial role as a platform for energy transduction by supplying ATP to the varying demand of cardiomyocytes, involving an intricate network of pathways regulating the metabolic flux of substrates. The failure of these processes results in structural and functional deficiencies of the cardiac muscle, including inherited cardiomyopathies. These genetic diseases are characterized by cardiac structural and functional anomalies in the absence of abnormal conditions that can explain the observed myocardial abnormality, and are frequently associated with heart failure. Since their original description, major advances have been achieved in the genetic and phenotype knowledge, highlighting the involvement of metabolic abnormalities in their pathogenesis. This review provides a brief overview of the role of mitochondria in the energy metabolism in the heart and focuses on metabolic abnormalities, mitochondrial dysfunction, and storage diseases associated with inherited cardiomyopathies. KW - inherited cardiomyopathies KW - mitochondria KW - cardiac metabolism Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-193806 SN - 2077-0383 VL - 8 IS - 12 ER -