TY - JOUR A1 - Seufert, Anika A1 - Schröder, Svenja A1 - Seufert, Michael T1 - Delivering User Experience over Networks: Towards a Quality of Experience Centered Design Cycle for Improved Design of Networked Applications JF - SN Computer Science N2 - To deliver the best user experience (UX), the human-centered design cycle (HCDC) serves as a well-established guideline to application developers. However, it does not yet cover network-specific requirements, which become increasingly crucial, as most applications deliver experience over the Internet. The missing network-centric view is provided by Quality of Experience (QoE), which could team up with UX towards an improved overall experience. By considering QoE aspects during the development process, it can be achieved that applications become network-aware by design. In this paper, the Quality of Experience Centered Design Cycle (QoE-CDC) is proposed, which provides guidelines on how to design applications with respect to network-specific requirements and QoE. Its practical value is showcased for popular application types and validated by outlining the design of a new smartphone application. We show that combining HCDC and QoE-CDC will result in an application design, which reaches a high UX and avoids QoE degradation. KW - user experience KW - human-centered design KW - design cycle KW - application design KW - quality of experience Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-271762 SN - 2661-8907 VL - 2 IS - 6 ER - TY - JOUR A1 - Seufert, Michael T1 - Statistical methods and models based on quality of experience distributions JF - Quality and User Experience N2 - Due to biased assumptions on the underlying ordinal rating scale in subjective Quality of Experience (QoE) studies, Mean Opinion Score (MOS)-based evaluations provide results, which are hard to interpret and can be misleading. This paper proposes to consider the full QoE distribution for evaluating, reporting, and modeling QoE results instead of relying on MOS-based metrics derived from results based on ordinal rating scales. The QoE distribution can be represented in a concise way by using the parameters of a multinomial distribution without losing any information about the underlying QoE ratings, and even keeps backward compatibility with previous, biased MOS-based results. Considering QoE results as a realization of a multinomial distribution allows to rely on a well-established theoretical background, which enables meaningful evaluations also for ordinal rating scales. Moreover, QoE models based on QoE distributions keep detailed information from the results of a QoE study of a technical system, and thus, give an unprecedented richness of insights into the end users’ experience with the technical system. In this work, existing and novel statistical methods for QoE distributions are summarized and exemplary evaluations are outlined. Furthermore, using the novel concept of quality steps, simulative and analytical QoE models based on QoE distributions are presented and showcased. The goal is to demonstrate the fundamental advantages of considering QoE distributions over MOS-based evaluations if the underlying rating data is ordinal in nature. KW - statistical methods KW - quality of experience Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-235733 SN - 2366-0139 VL - 6 ER -