TY - JOUR A1 - Barak, Arvind A1 - Dhiman, Nishant A1 - Sturm, Floriane A1 - Rauch, Florian A1 - Lakshmanna, Yapamanu Adithya A1 - Findlay, Karen S. A1 - Beeby, Andrew A1 - Marder, Todd B. A1 - Umapathy, Siva T1 - Excited‐State Intramolecular Charge‐Transfer Dynamics in 4‐Dimethylamino‐4′‐cyanodiphenylacetylene: An Ultrafast Raman Loss Spectroscopic Perspective JF - ChemPhotoChem N2 - Photo‐initiated intramolecular charge transfer (ICT) processes play a pivotal role in the excited state reaction dynamics in donor‐bridge‐acceptor systems. The efficacy of such a process can be improved by modifying the extent of π‐conjugation, relative orientation/twists of the donor/acceptor entities and polarity of the environment. Herein, 4‐dimethylamino‐4′‐cyanodiphenylacetylene (DACN‐DPA), a typical donor‐π‐bridge‐acceptor system, was chosen to unravel the role of various internal coordinates that govern the extent of photo‐initiated ICT dynamics. Transient absorption (TA) spectra of DACN‐DPA in n‐hexane exhibit a lifetime of >2 ns indicating the formation of a triplet state while, in acetonitrile, a short time‐constant of ∼2 ps indicates the formation of charge transferred species. Ultrafast Raman loss spectroscopy (URLS) measurements show distinct temporal and spectral dynamics of Raman bands associated with C≡C and C=C stretching vibrations. The appearance of a new band at ∼1492 cm\(^{−1}\) in acetonitrile clearly indicates structural modification during the ultrafast ICT process. Furthermore, these observations are supported by TD‐DFT computations. KW - charge transfer KW - ultrafast Raman loss spectroscopy KW - 4-dimethylamino-4′-cyanodiphenylacetylene KW - transient absorption KW - TD-DFT Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-312280 VL - 6 IS - 12 ER - TY - JOUR A1 - Malý, Pavel A1 - Brixner, Tobias T1 - Fluorescence‐Detected Pump–Probe Spectroscopy JF - Angewandte Chemie International Edition N2 - We introduce a new approach to transient spectroscopy, fluorescence‐detected pump–probe (F‐PP) spectroscopy, that overcomes several limitations of traditional PP. F‐PP suppresses excited‐state absorption, provides background‐free detection, removes artifacts resulting from pump–pulse scattering, from non‐resonant solvent response, or from coherent pulse overlap, and allows unique extraction of excited‐state dynamics under certain conditions. Despite incoherent detection, time resolution of F‐PP is given by the duration of the laser pulses, independent of the fluorescence lifetime. We describe the working principle of F‐PP and provide its theoretical description. Then we illustrate specific features of F‐PP by direct comparison with PP, theoretically and experimentally. For this purpose, we investigate, with both techniques, a molecular squaraine heterodimer, core–shell CdSe/ZnS quantum dots, and fluorescent protein mCherry. F‐PP is broadly applicable to chemical systems in various environments and in different spectral regimes. KW - femtochemistry KW - FL spectroscopy KW - time-resolved spectroscopy KW - transient absorption Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-244811 VL - 60 IS - 34 SP - 18867 EP - 18875 ER - TY - JOUR A1 - Kar, Haridas A1 - Gehrig, Dominik W. A1 - Allampally, Naveen Kumar A1 - Fernández, Gustavo A1 - Laquai, Frédéric A1 - Ghosh, Suhrit T1 - Cooperative supramolecular polymerization of an amine-substituted naphthalene-diimide and its impact on excited state photophysical properties JF - Chemical Science N2 - A donor-acceptor-donor (D-A-D) type naphthalene-diimide (NDI-H) chromophore exhibits highly cooperative J-aggregation leading to nanotubular self-assembly and gelation in n-decane, as demonstrated by UV/Vis, FT-IR, photoluminescence and microscopy studies. Analysis of temperature-dependent UV/Vis spectra using the nucleation-elongation model and FT-IR data reveals the molecular origin of the cooperative nature of the self-assembly. The supramolecular polymerization is initiated by H-bonding up to a degree of polymerization similar to 20-25, which in a subsequent elongation step promotes J-aggregation in orthogonal direction leading to possibly a sheet-like structure that eventually produces nanotubes. Time-resolved fluorescence and absorption measurements demonstrate that such a tubular assembly enables very effective delocalization of excited states resulting in a remarkably prolonged excited state lifetime. KW - nanotube KW - supramolecular polymerization KW - NDI-H KW - UV/Vis spectroscopy KW - FT-IR spectroscopy KW - transient absorption KW - nucleation-elongation model Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-191459 VL - 7 IS - 2 ER -