TY - THES A1 - Nemec, Katarina T1 - Modulation of parathyroid hormone 1 receptor (PTH1R) signaling by receptor activity-modifying proteins (RAMPs) T1 - Regulierung der Signalübertragung des Parathormon 1-Rezeptors (PTH1R) durch Rezeptoraktivitäts-modifizierende Proteine (RAMPs) N2 - The receptor activity-modifying proteins (RAMPs) are ubiquitously expressed membrane proteins that interact with several G protein-coupled receptors (GPCRs), the largest and pharmacologically most important family of cell surface receptors. RAMPs can regulate GPCR function in terms of ligand-binding, G-protein coupling, downstream signaling, trafficking, and recycling. The integrity of their interactions translates to many physiological functions or pathological conditions. Regardless of numerous reports on its essential importance for cell biology and pivotal role in (patho-)physiology, the molecular mechanism of how RAMPs modulate GPCR activation remained largely elusive. This work presents new insights that add to the common understanding of the allosteric regulation of receptor activation and will help interpret how accessory proteins - RAMPs - modulate activation dynamics and how this affects the fundamental aspects of cellular signaling. Using a prototypical class B GPCR, the parathyroid hormone 1 receptor (PTH1R) in the form of advanced genetically encoded optical biosensors, I examined RAMP's impact on the PTH1R activation and signaling in intact cells. A panel of single-cell FRET and confocal microscopy experiments as well canonical and non-canonical functional assays were performed to get a holistic picture of the signaling initiation and transduction of that clinically and therapeutically relevant GPCR. Finally, structural modeling was performed to add molecular mechanistic details to that novel art of modulation. I describe here that RAMP2 acts as a specific allosteric modulator of PTH1R, shifting PTH1R to a unique pre-activated state that permits faster activation in a ligand-specific manner. Moreover, RAMP2 modulates PTH1R downstream signaling in an agonist-dependent manner, most notably increasing the PTH-mediated Gi3 signaling sensitivity and kinetics of cAMP accumulation. Additionally, RAMP2 increases PTH- and PTHrP-triggered β-arrestin2 recruitment to PTH1R and modulates cytosolic ERK1/2 phosphorylation. Structural homology modeling shows that structural motifs governing GPCR-RAMP interaction originate in allosteric hotspots and rationalize functional modulation. Moreover, to interpret the broader role of RAMP's modulation in GPCRs pharmacology, different fluorescent tools to investigate RAMP's spatial organization were developed, and novel conformational biosensors for class B GPCRs were engineered. Lastly, a high throughput assay is proposed and prototyped to expand the repertoire of RAMPs or other membrane protein interactors. These data uncover the critical role of RAMPs in GPCR activation and signaling and set up a novel platform for studying GPCR modulation. Furthermore, these insights may provide a new venue for precise modulation of GPCR function and advanced drug design. N2 - G Protein-gekoppelte Rezeptoren (GPCRs) bilden die größte und pharmakologisch wichtigste Familie von Zelloberflächenrezeptoren, die zahlreiche (patho-)physiologische Prozesse im menschlichen Körper steuern. GPCRs übertragen während des Rezeptoraktivierungsprozesses extrazelluläre Signale in das Zellinnere, wo durch die extrazelluläre Stimulation Konformationsänderungen des Rezeptorkerns auslöst und die Bindung intrazellulärer Bindungspartner – G Proteine, G Protein-gekoppelte Rezeptorkinase und Arrestine - ermöglicht. Es handelt sich also um einen kritischen Prozess in der Signaltransduktion, der durch einige endogene Moleküle wie Ionen, Lipide oder andere Proteine moduliert werden kann und Auswirkungen auf nachgeschaltete Signalkaskaden hat. GPCRs bilden gewebeabhängige Oligomere mit ihren interagierenden Partnern, Rezeptor-Aktivitäts-modifizierende Proteinen (RAMPs), ubiquitär exprimierten Membranproteinen. Bekannt ist, dass sie die Ligandenbindung, die G- Protein-Kopplung, die nachgeschaltete Signalisierung, das Trafficking und das Recycling einiger GPCRs modulieren. Ihre Rolle im kritischsten Prozess der Signaltransduktion - der Rezeptoraktivierung - wurde jedoch nur begrenzt erforscht. Anhand des physiologisch und therapeutisch wichtigen Parathormon-Rezeptors (PTH1R), einem GPCR der Klasse B, wurden die Modulationseffekte von RAMPs auf den Prozess der Rezeptoraktivierung und ihre Folgen für die nachgeschaltete Signalübertragung analysiert. Hierzu wurden verschiedene optische Biosensoren zur Messung der Aktivierung des PTH1R und seiner Signalkaskade entwickelt und in verschiedenen Versuchsanordnungen eingesetzt, mit dem Ziel einen holistischen Blick auf die Interaktion zwischen PTH1R und RAMPs und ihre funktionellen Auswirkungen zu erhalten. Die Interaktion zwischen PTH1R und RAMPs erwies sich als besonders ausgeprägt für RAMP2, und RAMP2 zeigte eine spezifische allosterische Modulation der PTH1R-Konformation, sowohl im basalen als auch im Liganden- aktivierten Zustand. Ein einzigartiger voraktivierter oder (meta-stabiler) Zustand ermöglichte eine schnellere Rezeptoraktivierung auf Liganden-spezifische Weise. Außerdem beeinflusste RAMP2 die G Protein- und Nicht-G Protein-vermittelte Signalübertragung indem es die PTH-vermittelte Gi3-Signalempfindlichkeit und die Kinetik der cAMP-Akkumulation modulierte. Weiterhin erhöhte RAMP2 die Menge der β-Arrestin2-Rekrutierung an PTH1R auf Liganden-spezifische Weise. Dies könnte mit einer erhöhten zytosolischen ERK-Menge zusammenhängen, die hat sich von der nukleären ERK-Phosphorylierung unterscheidet. Um einen molekularen Mechanismus für die vorgestellten Ergebnisse vorzuschlagen, wurden mehrere strukturelle Modelle entwickelt und analysiert. Diese Arbeit liefert den Beweis, dass RAMP die GPCR-Aktivierung mit funktionellen Auswirkungen auf die zelluläre Signalübertragung reguliert. Die Ergebnisse sollten im Zusammenhang mit zellspezifischen Koexpressionsmustern interpretiert werden und können zur Entwicklung von fortschrittlichen Therapeutika positiv beitragen. Da GPCRs praktisch alle Zellfunktionen koordinieren und seit jeher wichtigen Angriffspunkten für Medikamente sind, tragen die vorgestellten Erkenntnisse zum universellen Verständnis der molekularen Mechanismen bei, die den menschlichen Körper orchestrieren. KW - G-Protein gekoppelter Rezeptor KW - GPCR KW - RAMP KW - PTH1R KW - FRET KW - BRET KW - pharmacology KW - Fluoreszenz-Resonanz-Energie-Transfer KW - Förster Resonanz Energie Transfer Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-288588 ER - TY - THES A1 - Hägele, Sandra Elisabeth T1 - QTc-Zeit-Verlängerung in der Therapie schizophrener Psychosen unter Berücksichtigung genetischer Varianz in NOS1AP T1 - QTc time prolongation in the treatment of patients with schizophrenic psychosis considering genetic variation in NOS1AP N2 - QTc-Zeit Verlängerungen sind aufgrund potentieller Übergänge in lebensbedrohliche Tachyarrhythmien Gegenstand vieler Arbeiten. Einer der Häufigsten Risikofaktoren ist die Einnahme von typischen bzw. atypischen Antipsychotika. Mehrere Studien belegen darüber hinaus genetische Einflüsse und zeigen, dass das homozygote Vorhandensein von rs12143842(T) und rs10494366(G) in NOS1AP einen verlängernden Einfluss auf die QTc-Zeit hat. Zudem scheinen oben genannte Polymorphismen von NOS1AP bei der Entwicklung schizophrener Psychosen eine Rolle zu spielen. In bisherigen Studien wurde immer nur getrennte Analysen hinsichtlich der genannten Risikofaktoren vorgenommen. In dieser Arbeit soll erstmals der gemeinsame Einfluss von Psychopharmaka und den zwei beschriebenen Polymorphismen von NOS1AP bei Patienten mit Schizophrenie untersucht werden. N2 - The prolongation of the QTc-Time interval is a well examined phenomenon due to the risk of suffering a life threatening tachyarrhythmia. In patients with schizophrenia, several risk factors have been identified one of which is taking antipsychotic medication. Genetic variation in NOS1AP polymorphisms rs12143845 (T) and rs10494366 (G) are also found to be significant risk factors. Furthermore, NOS1AP is associated with a higher risk of developing schizophrenic psychosis. This study aims to detect the impact on QTc prolongation in an analysis of combined risk factors in patients with schizophrenia. KW - QTc-Zeit Verlängerung KW - Schizophrenie KW - NOS1AP KW - QTc-Zeit KW - Psychopharmaka KW - Polymorphismen KW - QTc prolongation KW - schizophrenia KW - antipsychotics KW - polymorphisms KW - pharmacology Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-206248 ER - TY - THES A1 - Zorn, Bernward Notker T1 - Wirkung und Anwendung von Hyssopus officinalis L. - eine medizinhistorische Studie T1 - Effect and use of Hyssopus officinalis L. - a medical historical study N2 - In dieser Arbeit ist zusammengetragen, was frühere Heilkundige und Pflanzenkenner über Ysop berichtet haben. Welche Eigenschaften schrieb man ihm zu, welche Wirkungen und Anwendungen waren bekannt? Gegen welche Krankheiten verordnete man Ysop-haltige Arzneien und wie sahen diese aus? In welcher Form wurden sie gegeben und welche weiteren Bestandteile enthielten sie? Wo taucht Ysop zum vermutlich ersten Mal auf? N2 - In this study, you can find what persons skilled in the art of healing and experts of botany reported about hyssope. Which properties were attributed to it, wich effects and uses were known? Against which diseases medicaments containing hyssope were prescribed, and what were they like? In which form were they administered and of which components were they made? Where does hyssope presumably appear for the first time? In questa pubblicazione l'autore compila tutto quello che medici e fitologi di altre epoche sapevano dell'issopo e ne hanno tramandato: Che qualità erano attribuite a questa pianta,cosa si sapeva dei suoi effetti, come era usata? Quali erano le malattie che si combattevano con rimedi contenenti dell'issopo? In che forma questi erano somministrati e quali altri componenti c'erano? Dove sembra che si parli di issopo per la prima volta? KW - Würzburg / Institut für Geschichte der Medizin Würzburg / Forschungsgruppe Klostermedizin KW - Würzburg / Institut für Geschichte der Medizin Würzburg KW - Ysop KW - Hyssopus KW - Anwendung KW - Wirkung KW - Labiatae KW - Arzneimittelforschung KW - Pharmakologie KW - Pflanze KW - Heilkraut KW - plant KW - hyssope KW - effect KW - use KW - pharmacology KW - medicinal plant KW - pharmacological research Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-77023 ER - TY - THES A1 - Kalb, Stefanie T1 - Wilhelm Neumann (1898 - 1965) - Leben und Werk unter besonderer Berücksichtigung seiner Rolle in der Kampfstoff-Forschung T1 - Wilhelm Neumann (1898-1965) - His life and his work with special regard to his role in the research of chemical warfare agents N2 - Gegenstand der vorliegenden Untersuchung ist das Leben und Werk des deutschen Pharmakologen und Toxikologen Wilhelm Neumann (11. Februar 1898 - 15. April 1965). Wesentliche Erkenntnisse hierzu konnten aus Aktenbeständen des Bundesarchivs der Bundesrepublik Deutschland in Berlin-Lichterfelde, Freiburg im Breisgau, und Koblenz, des Dekanatsarchiv der Medizinischen Fakultät der Bayerischen Julius-Maximilians-Universität Würzburg, des Archivs der „Deutschen Gesellschaft für experimentelle und klinische Pharmakologie und Toxikologie“ in Mainz, des Scheringianums, dem Archiv der Schering AG in Berlin, des Staatsarchivs Würzburg und des Universitätsarchivs der Bayerischen Julius-Maximilians-Universität Würzburg gewonnen werden. Von 1919 bis 1923 studierte Wilhelm Neumann in Berlin Chemie und promovierte in der chemischen Abteilung des Preußischen Instituts für Infektionskrankheiten „Robert Koch“ zum Dr. phil. Im Jahr 1924 trat er eine Stelle als Privatassistent am Pharmakologischen Institut der Universität Würzburg unter der Leitung Ferdinand Flurys an. Parallel zu seiner Arbeit am Pharmakologischen Institut studierte er von 1929 bis 1934 an der Universität Würzburg Humanmedizin und promovierte zum Dr. med. 1937 folgte seine Habilitation und die Ernennung zum Dozenten. Weitere Stationen seiner wissenschaftlichen Laufbahn am Pharmakologischen Institut waren die Ernennungen zum planmäßigen Assistenten 1939, zum Konservator 1941 und zum außerplanmäßigen Professor 1942. Im Jahr 1937 nahm Wilhelm Neumann als Arzt der Reserve seine militärische Karriere im Sanitätsdienst der Wehrmacht auf. Während des Zweiten Weltkrieges war er als „beratender Arzt“ und als Wissenschaftler für die Wehrmacht tätig. Neumanns politischer Werdegang begann im Juli 1933 mit seinem Beitritt zur Veteranenorganisation Stahlhelm. Im Februar 1934 wurde er Mitglied der SA, und ab dem 1. Mai 1937 gehörte er der NSDAP an. Nach Ende des Zweiten Weltkrieges wurde Neumann im Zuge des Entnazifizierungsprozesses 1946 aus dem Staatsdienst entlassen. Das 1947 ergangene Spruchkammerurteil reihte ihn in die Gruppe der „Mitläufer“ ein. Infolgedessen konnte er 1948 wieder von der Universität Würzburg eingestellt werden. Im Jahr 1949 wurde er dort zum ordentlichen Professor für Pharmakologie und Toxikologie berufen. Von 1954 bis 1955 übte er das Amt des Dekans der Medizinischen Fakultät der Universität Würzburg aus. Am Pharmakologischen Institut der Universität Würzburg untersuchte Neumann zunächst die Chemie und Pharmakologie der herzwirksamen Glykoside. Ihm gelang auf diesem Gebiet die Reindarstellung eines neuen Wirkstoffs, der 1935 von der Firma Schering im Herzinsuffizienztherapeutikum Folinerin auf den Markt gebracht wurde. Auf toxikologischem Gebiet arbeitete er von 1925 bis 1945 mit Ferdinand Flury an gewerbetoxikologischen Projekten und in der chemischen Kampfstoff-Forschung. Als ordentlicher Professor widmete sich Wilhelm Neumann dann neben eigenen toxikologischen Arbeiten der Förderung der Toxikologie als Fachrichtung. Zu Beginn der 1950er Jahre befasste er sich mit tierischen Giften und erforschte die Toxikologie der Reizgase und der Luftverschmutzung. Von 1955 bis 1965 war Wilhelm Neumann Vorsitzender der DFG-Kommission zur Prüfung gesundheitsschädlicher Arbeitsstoffe. N2 - The present investigation deals with the life and work of the German pharmacologist and toxicologist Wilhelm Neumann (11th February 1898 to 15th April 1965). Relevant findings to this subject were gathered from files of the ”Bundesarchiv” of the Federal Republic of Germany in Berlin-Lichterfelde, Freiburg im Breisgau and Koblenz, of the Dean’s Archives of the Faculty of Medicine of the Bavarian Julius-Maximilians-University in Würzburg, of the Archives of the “Deutsche Gesellschaft für experimentelle und klinische Pharmakologie und Toxikologie” in Mainz, of the Scheringianum, the archives of Schering AG in Berlin, of the “Staatsarchiv Würzburg” and of the University Archives of the Julius- Maximilians- University Würzburg. Wilhelm Neumann studied chemistry in Berlin from 1919 to 1923 and did a doctor’s degree in the chemical department of the “Preußisches Institut für Infektionskrankheiten <>”. In 1924 he accepted a post as a private assistant at the Pharmacological Institute of Würzburg University led by Ferdinand Flury. Parallel to his work at the Pharmacological Institute Neumann studied human medicine at Würzburg University from 1929 to 1934, ending with a doctor’s degree. In 1937 he qualified as a university lecturer and then as an assistant professor. Further stages of his scientific career at the Pharmacological Institute were the appointment to regular assistant in 1939, to curator in 1941 and to associate professor in 1942. In 1937 Wilhelm Neumann had started upon his military career as a reserve doctor in the medical corps of the “Wehrmacht”. During World War II he worked as a consultant doctor and as a scientist for the “Wehrmacht”. His political career had started in July 1933 with his joining the veterans’ organization “Stahlhelm”. In February 1934 he became a member of the “SA” and from 1st May 1937 he belonged to the “NSDAP”. After World War II Neumann was dismissed as a civil servant in the course of de-Nazification. In 1947 the court ruled that he was to be ranked with “Mitläufer”. Consequently he could be re-employed by the University of Würzburg. Here he was appointed full professsor for pharmacology and toxicology in 1949. From 1954 to 1955 he held the office of the Dean of the Faculty of Medicine at Würzburg University. At the Institute of Pharmacology of Würzburg University Neumann first investigated into the chemistry and pharmacology of glycosids. In this field he succeeded in the pure preparation of a new active substance, which in 1935 was put on the market by Schering Firm as the cardiac insufficiency therapeutics “Folinerin”. It is in the field of toxicology that he had co-operated with Ferdinand Flury from 1925 to 1945, dealing with projects of occupational toxicology and with chemical research of chemical warfare agents. As a professor Wilhelm Neumann then applied himself to the promotion of toxicology as a subject area, besides his own toxicological works. At the beginning of the 1950es he dealt with animal poisons and researched into the toxicology of irritant gases and of air pollution. From 1955 to 1965 Wilhelm Neumann was the chairman of the “DFG-Kommission zur Prüfung gesundheitsschädlicher Arbeitsstoffe“. KW - Geschichte der Medizin KW - Pharmakologie KW - Toxikologie KW - history of medicine KW - pharmacology KW - toxicology Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-16124 ER - TY - THES A1 - Attia, Mohamad Ibrahim T1 - Design, synthesis and pharmacological evaluation of certain GABAB agonists T1 - Design, Synthese und pharmakologische Untersuchungen der GABAB-Agonisten N2 - Ziel dieser Arbeit war die Synthese von (RS)-5-Amino-3-aryl(methyl)-pentansäure Hydrochloride, 3-Aminomethyl-5-chlor-benzolsäure Hydrochlorid und(RS)-4-Amino-3-(4´-ethynyl(jod)-phenyl)-butansäure Hydrochloride und die Testung der pharmakologischen Aktivität dieser Verbindungen. Die synthetisierten Verbindungen wurden als GABAB-Rezeptor Agonisten, in einem auf Ca2+-Messungen basierenden Funktional-Assay (in vitro tsA Zellen mit GABAB1b/GABAB2/Gαq-z5 transfektiert), getestet und daraus ein Struktur-Aktivitäts Modell abgeleitet. Im allgemein Teil dieser Arbeit wird ein Überblick, über die Neurotransmitter- Rezeptoren (Liganden gesteuerte Ionen-Kanal-Rezeptoren und G Protein-gekoppelte Rezeptoren) des zentralen Nervensystems und deren Agonisten und Antagonisten, gegeben. Eine ausführliche Diskussion zur Synthesestrategie der Verbindungen der Zwischenstufen und der Ausgangsmaterialien wird in den Schemata 2-6 beschrieben. Die synthetisierten Verbindungen wurden als GABAB Agonisten geprüft. Zusätzlich wurden diese im 3D Homologie Modell mit FlexiDock Programm gedockt. Daraus wurde ein Modell zur Voraussage der Aktivität von Analogen und Homologen des Baclofens abgeleitet. Letztendlich wurde ein Pharmakophor-Modell für GABAB Agonisten mit DISCO (DIStance COmparisons) Programm erstellt. N2 - Synthesis of (RS)-5-amino-3-aryl (methyl)-pentanoic acid hydrochlorides, 3 aminomethyl-5-chloro-benzoic acid hydrochloride and (RS)-4-amino-3-(4`-ethynyl(iodo)-phenyl)-butanoic acid hydrochlorides have been accomplished. The aim of their synthesis was to evaluate their GABABR agonist activity and to derive a model which will correlate their structure with the observed pEC50. The GABABR agonist activity of the prepared compounds has been determined in functional assay based on calcium measurement in vitro using tsA cells transfected with GABAB1b/GABAB2/Gαq-z5. Reviews on the neurotransmitter receptors (ligand-gated ion channel receptors and G protein-coupled receptors), their agonists and antagonists have been given in the general part of this work. A detailed discussion on the strategy followed for the synthesis of the designed compounds as well as the starting materials and intermediates has been described and illustrated in Schemes 2-6. The synthesized compounds were evaluated for their GABABR agonist activity. Furthermore, these compounds were docked in the available 3D homology model of GABABR using the program FlexiDock implemented in SYBYL software. Subsequently, we derived a predictive model which correlates the experimentally determined pEC50 with the calculated binding energy of certain baclofen analogues and homologues. In addition, we used the program DISCO (DIStance COmparisons) implemented in SYBYL software to find the pharmacophore features of GABAB agonists. KW - Baclofen KW - Analoga KW - GABA-Rezeptor-Agonist KW - Pharmakologie KW - GABAB KW - Sythese KW - Baclofen KW - Pharmakologie KW - Molekular Modeling KW - GABAB KW - synthesis KW - baclofen KW - pharmacology KW - molecular modeling Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-7551 ER -