TY - THES A1 - Schäfer [geb. Stichler], Simone T1 - Thiol-ene Cross-linked Poly(glycidol) / Hyaluronic Acid Based Hydrogels for 3D Bioprinting T1 - Thilo-En vernetzte Hydrogele basierend auf Poly(glyzidolen) und Hyaluronsäure für das 3D-Biodrucken N2 - The aim of the work was the development of thiol-ene cross-linked hydrogels based on functionalized poly(glycidol)s (PG) and hyaluronic acid (HA) for extrusion based 3D bioprinting. Additionally, the functionalization of the synthesized PG with peptides and the suitability of these polymers for physically cross-linked gels were investigated, in a proof of principle study in order to demonstrate the versatile use of PG polymers in hydrogel development. First, the precursor polymers of the different hydrogel systems were synthesized. For thiol-ene cross-linked hydogels, linear allyl-functionalized PG (P(AGE-co-G)) and three different thiol-(SH-)functionalized polymers, ester-containing PG-SH (PG SHec), ester-free PG-SH (PG-SHef) and HA-SH were synthesized and analysed, The degree of functionalization of these polymers was adjustable. For physically cross-linked hydrogels, peptide-functionalized PG (P(peptide-co-G)), was synthesized through polymer analogue thiol-ene modification of P(AGE-co-G). Subsequently, thiol-ene cross-linked hydrogels were prepared with the synthesized thiol- and allyl-functionalized polymers. Depending on the origin of the used polymers, two different systems were obtained: on the one hand synthetic hydrogels consisting of PG-SHec/ef and P(AGE-co-G) and on the other hand hybrid gels, consisting of HA-SH and P(AGE-co-G). In synthetic gels, the degradability of the gels was determined by the applied PG-SH. The use of PG-SHec resulted in hydrolytically degradable hydrogels, whereas the cross-linking with PG-SHef resulted in non-degradable gels. The physical properties of these different hydrogel systems were determined by swelling, mechanical and diffusion studies and subsequently compared among each other. In swelling studies the differences of degradable and non-degradable synthetic hydrogels as well as the differences of synthetic compared to hybrid hydrogels were demonstrated. Next, the stiffness and the swelling ratios (SR) of the established hydrogel systems were examined in dependency of different parameters, such as incubation time, polymer concentration and UV irradiation. In general, these measurements revealed the same trends for synthetic and hybrid hydrogels: an increased polymer concentration as well as prolonged UV irradiation led to an increased network density. Moreover, it was demonstrated that the incorporation of additional non-bound HMW HA hampered the hydrogel cross-linking resulting in gels with decreased stiffness and increased SR. This effect was strongly dependent on the amount of additional HMW HA. The diffusion of different molecular weight fluorescein isothiocyanate-dextran (FITC-dextran) through hybrid hydrogels (with/without HMW HA) gave information about the mesh size of these gels. The smallest FITC-dextran (4 kDa) completely diffused through both hydrogel systems within the first week, whereas only 55 % of 40 kDa and 5-10 % HMW FITC-dextrans (500 kDa and 2 MDa) could diffuse through the networks. The applicability of synthetic and hybrid hydrogels for cartilage regeneration purpose was investigated through by biological examinations. It was proven that both gels support the survival of embedded human mesenchymal stromal cells (hMSCs) (21/28 d in vitro culture), however, the chondrogenic differentiation was significantly improved in hybrid hydrogels compared to synthetic gels. The addition of non-bound HMW HA resulted in a slightly less distinct chondrogenesis. Lastly the printability of the established hydrogel systems was examined. Therefore, the viscoelastic properties of the hydrogel solutions were adjusted by incorporation of non-bound HMW HA. Both systems could be successfully printed with high resolution and high shape fidelity. The introduction of the double printing approach with reinforcing PCL allowed printing of hydrogel solutions with lower viscosities. As a consequence, the amount of additional HMW HA necessary for printing could be reduced allowing successful printing of hybrid hydrogel solutions with embedded cells. It was demonstrated that the integrated cells survived the printing process with high viability measured after 21 d. Moreover, by this reinforcing technique, robust hydrogel-containing constructs were fabricated. In addition to thiol-ene cross-linked hydrogels, hydrogel cross-linking via ionic interactions was investigated with a hybrid hydrogel based on HMW HA and peptide-functionalized PG. Rheological measurements revealed an increase in the viscosity of a 2 wt.% HMW HA solution by the addition of peptide-functionalized PG. The increase in viscosity could be attributed to the ionic interactions between the positively charge PG and the negatively charge HMW HA. In conclusion, throughout this thesis thiol-ene chemistry and PG were introduced as promising cross-linking reaction and polymer precursor for the field of biofabrication. Furthermore, the differences of hybrid and synthetic hydrogels as well as chemically and physically cross-linked hydrogels were demonstrated. Moreover, the double printing approach was demonstrated to be a promising tool for the fabrication of robust hydrogel-containing constructs. It opens the possibility of printing hydrogels that were not printable yet, due to too low viscosities. N2 - Ziel der Arbeit war die Entwicklung von Thiol-En-vernetzten Hydrogelen basierend auf funktionalisierten Poly(glyzidolen) (PG) und Hyaluronsäure (HA) für das extrusionsbasierte 3D-Biodrucken. Um die vielseitigen Anwendungsmöglichkeiten von PG-Polymeren für die Hydrogelentwicklung zu zeigen, wurde darüber hinaus, in einer Proof-of-Principle-Studie, PG mit Peptiden funktionalisiert und die Eignung dieser Polymere für die Herstellung von physikalisch vernetzten Gelen untersucht. Zunächst wurden die Vorläuferpolymere für die verschiedenen Hydrogelsysteme synthetisiert. Für die Thiol-En-vernetzten Hydrogele wurde lineares Allyl-funktionalisiertes PG (P(AGE-co-G)) und drei verschiedene Thiol-(SH )funktionalisierte Polymere, Ester haltiges PG-SH (PG-SHec), Ester freies PG SH (PG-SHef) und HA-SH synthetisiert und analysiert. Dabei war der Funktionalisierungsgrad dieser Polymere einstellbar. Für physikalisch vernetzte Hydrogele wurde Peptid-funktionalisierte PGs (P(Peptid co-G)) mittels polymeranaloger Thiol-En-Modifikation von P(AGE-co-G) synthetisiert. Anschließend wurden Thiol-En-vernetzte Hydrogele auf Basis der synthetisierten Thiol- und Allyl-funktionalisierten Polymeren hergestellt. Je nach Ursprung der verwendeten Polymere wurden zwei verschiedene Systeme erhalten: einerseits synthetische Hydrogele bestehend aus PG-SHec/ef und P(AGE-co-G) und andererseits hybride Gele, bestehend aus HA-SH und P(AGE-co-G). Bei den synthetischen Gelen wurde die Abbaubarkeit der Gele durch das verwendete PG-SH bestimmt. Die Verwendung von PG-SHec resultierte in hydrolytisch abbaubaren Hydrogelen, während die Vernetzung mit PG-SHef zu nicht abbaubaren Gelen führte. Die physikalischen Eigenschaften der verschiedenen Hydrogelsysteme wurden mittels Quell-, mechanischen und Diffusionsexperimenten bestimmt und anschließend miteinander verglichen. Die Quellungsstudien zeigten die Unterschiede von abbaubaren und nicht abbaubaren synthetischen Hydrogelen, sowie die Unterschiede von synthetischen gegenüber hybriden Hydrogelen. Als nächstes wurden die Steifigkeit und das Quellverhältnis (SR) der etablierten Hydrogelsysteme in Abhängigkeit von verschiedenen Parametern wie Inkubationszeit, Polymerkonzentration und UV-Bestrahlung untersucht. Im Allgemeinen zeigten diese Messungen für synthetische und hybride Hydrogele die gleichen Trends: eine erhöhte Polymerkonzentration sowie eine verlängerte UV-Bestrahlung führten zu einer erhöhten Netzwerkdichte. Darüber hinaus wurde gezeigt, dass das Einbringen zusätzlicher, nicht gebundener HMW HA die Hydrogelvernetzung behinderte, was zu Gelen mit verringerter Steifigkeit und erhöhtem SR führte. Dieser Effekt war stark abhängig von der Menge an zusätzlich eingebrachter HMW HA. Die Diffusion von Fluorescein-Isothiocyanat-Dextran (FITC-Dextran) mit unterschiedlichem Molekulargewichten durch hybride Hydrogele (mit/ohne HMW HA) lieferte Informationen über die Maschengröße dieser Gele. Das kleinste FITC-Dextran (4 kDa) diffundierte innerhalb der ersten Woche vollständig durch beide Hydrogelsysteme, während nur 55 % der 40 kDa und 5-10 % HMW FITC-Dextrane (500 kDa und 2 MDa) durch die Netzwerke diffundieren konnten. Die Anwendbarkeit von synthetischen und hybriden Hydrogelen für Knorpelregenerationszwecke wurde durch biologische Experimente untersucht. Es wurde bewiesen, dass beide Gele das Überleben von eingebetteten humanen mesenchymalen Stromazellen (hMSCs) unterstützen (21/28 d in vitro Kultur), jedoch war die chondrogene Differenzierung in hybriden Hydrogelen im Vergleich zu synthetischen Gelen signifikant verbessert. Die Zugabe von nicht gebundenem HMW HA führte zu einer etwas weniger ausgeprägten Chondrogenese. Zuletzt wurde die Druckbarkeit der etablierten Hydrogelsysteme untersucht. Dafür wurden die viskoelastischen Eigenschaften der Hydrogellösungen durch das Einbringen von nicht gebundener HMW HA eingestellt. Beide Systeme konnten erfolgreich mit hoher Auflösung und hoher Formgenauigkeit gedruckt werden. Die Einführung des Doppeldruck-Konzeptes mit verstärkendem PCL ermöglichte das Drucken von Hydrogellösungen mit niedrigeren Viskositäten. Infolgedessen konnte die für den Druck notwendige Menge an HMW HA reduziert und hybride Hydrogellösungen mit eingebetteten Zellen erfolgreich gedruckt werden. Es wurde gezeigt, dass die integrierten Zellen den Druckprozess mit hoher Vitalität überlebten (gemessen nach 21 d). Darüber hinaus wurden mit dieser Verstärkungstechnik robuste Hydrogel-enthaltende Konstrukte hergestellt. Zusätzlich zu den Thiol-En-vernetzten Hydrogelen wurde die Hydrogelvernetzung mittels elektrostatischen Wechselwirkungen mit einem hybriden Gel auf der Basis von HMW HA und Peptid-funktionalisiertem PG untersucht. Rheologische Messungen ergaben eine Erhöhung der Viskosität einer 2 wt.% HMW HA Lösungen durch die Zugabe von Peptid-funktionalisiertem PG. Der Viskositätsanstieg konnte auf die elektrostatischen Wechselwirkungen zwischen dem positiv geladenen PG und der negativ geladenen HMW HA zurückgeführt werden. Zusammenfassend wurde in dieser Arbeit die Thiol-En-Chemie und PG als vielversprechende Vernetzungsreaktion bzw. Polymervorstufe für die Biofabrikation eingeführt. Des Weiteren wurden die Unterschiede von hybriden und synthetischen Hydrogelen sowie von chemisch und physikalisch vernetzten Hydrogelen aufgezeigt. Darüber hinaus wurde gezeigt, dass das Doppeldruck-Konzept eine vielversprechende Methode für die Herstellung von robusten Hydrogel-enthaltenden Konstrukten ist. Es eröffnet die Möglichkeit, Hydrogele zu drucken, die aufgrund zu geringer Viskositäten bis jetzt nicht druckbar waren. KW - Hyaluronsäure KW - thiol-ene KW - Hyaluronic Acid KW - poly(glycidol) KW - hydrogels KW - Hydrogel KW - Glycidol KW - 3D-Druck KW - 3D printing Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-174713 ER - TY - THES A1 - Ryma, Matthias T1 - Exploiting the Thermoresponsive Properties of Poly(2-oxazoline)s for Biofabrication T1 - Anwendung der Thermoresponsivität von Poly(2-oxazolin) für die Biofabrikation N2 - In this thesis, non-modified POx, namely PnPrOx and PcycloPrOx, with an LCST in the physiological range between 20 and 37°C have been utilized as materials for three different biofabrication approaches. Their thermoresponsive behavior and processability were exploited to establish an easy-to-apply coating for cell sheet engineering, a novel method to create biomimetic scaffolds based on aligned fibrils via Melt Electrowriting (MEW) and the application of melt electrowritten sacrificial scaffolds for microchannel creation for hydrogels. Chapter 3 describes the establishment of a thermoresponsive coating for tissue culture plates. Here, PnPrOx was simply dissolved in water and dried in well plates and petri dishes in an oven. PnPrOx adsorbed to the surface, and the addition of warm media generated a cell culture compatible coating. It was shown that different cell types were able to attach and proliferate. After confluency, temperature reduction led to the detachment of cell sheets. Compared to standard procedures for surface coating, the thermoresponsive polymer is not bound covalently to the surface and therefore does not require specialized equipment and chemical knowledge. However, it should be noted that the detachment of the cell layer requires the dissolution of the PnPrOx-coating, leading to possible polymer contamination. Although it is only a small amount of polymer dissolved in the media, the detached cell sheets need to be washed by media exchange for further processing if required. ... N2 - In dieser Dissertation wurden die unmodifizierten Poly(2-oxazoline) PnPrOx und PcycloProx, welche eine LCST im physiologischen Bereich zwischen 20 und 37°C aufweisen, für drei verschiedene Biofabrikationsansätze verwendet. Deren Thermoresponsivität und Prozessierbarkeit wurde genutzt, um ein simples Beschichten von Oberflächen für Cell Sheet Engineering, eine neue Methode zur Herstellung biomimetischer Gerüststrukturen basierend auf der Generierung von Fibrillenbündeln via Melt Electrowriting und die Anwendung als Opferstrukturen zur Generierung von Mikrokanälen in Hydrogelen zu etablieren. KW - Thermoresponsive Polymere KW - Dihydrooxazole KW - 3D-Druck KW - Melt Electrowriting KW - Biofabrikation KW - Poly(2-oxazoline) KW - Cell Sheet Engineering KW - Vaskularisation Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-247462 ER - TY - THES A1 - Nahm, Daniel T1 - Poly(2-oxazine) Based Biomaterial Inks for the Additive Manufacturing of Microperiodic Hydrogel Scaffolds T1 - Poly(2-oxazine) Basierte Biomaterialtinten für die Additive Fertigung von Mikroperiodischen Hydrogelstrukturen N2 - The aim of this thesis was the preparation of a biomaterial ink for the fabrication of chemically crosslinked hydrogel scaffolds with low micron sized features using melt electrowriting (MEW). By developing a functional polymeric material based on 2-alkyl-2-oxazine (Ozi) and 2-alkyl-2-oxazoline (Ox) homo- and copolymers in combination with Diels-Alder (DA)-based dynamic covalent chemistry, it was possible to achieve this goal. This marks an important step for the additive manufacturing technique melt electrowriting (MEW), as soft and hydrophilic structures become available for the first time. The use of dynamic covalent chemistry is a very elegant and efficient method for consolidating covalent crosslinking with melt processing. It was shown that the high chemical versatility of the Ox and Ozi chemistry offers great potential to control the processing parameters. The established platform offers straight forward potential for modification with biological cues and fluorescent markers. This is essential for advanced biological applications. The physical properties of the material are readily controlled and the potential for 4D-printing was highlighted as well. The developed hydrogel architectures are excellent candidates for 3D cell culture applications. In particular, the low internal strength of some of the scaffolds in combination with the tendency of such constructs to collapse into thin strings could be interesting for the cultivation of muscle or nerve cells. In this context it was also possible to show that MEW printed hydrogel scaffolds can withstand the aspiration and ejection through a cannula. This allows the application as scaffolds for the minimally invasive delivery of implants or functional tissue equivalent structures to various locations in the human body. N2 - Das Ziel dieses Projekts war die Herstellung einer Biomaterialtinte, welche die Herstellung chemisch vernetzter, mikrostrukturierter Hydrogelgerüste mittels Melt Electrowriting (MEW) ermöglicht. Die Verwendung von speziell auf den schmelzbasierten 3D Druck angepassten polyoxazinbasierten Polymeren und die Anwendung von dynamisch kovalenter Chemie ermöglichte es, dieses Ziel zu erreichen. Dies ist ein wichtiger Schritt für die aufstrebende, additive Fertigungstechnologie MEW, da nun erstmals weiche und hydrophile Strukturen erzeugt werden können. Speziell die Verwendung der dynamischen Diels-Alder (DA) Chemie ist ein effizienter Weg, die Fertigung von kovalent vernetzten Strukturen mit der Schmelzprozessierung zu vereinen. Es wurde weiterhin gezeigt, dass die hier etablierte Materialplattform die Möglichkeit zur Modifikation mit biologischen und chemischen Signalen bietet. Dies ist besonders für biologische Anwendungen unerlässlich. Die physikalisch-chemischen Eigenschaften des Materials lassen sich leicht auf potentielle Anwendungen anpassen und das Potential für den 4D Druck wurde ebenfalls hervorgehoben. Alles in Allem legt diese Arbeit den Grundstein für eine Vielzahl von verschiedenen Anwendungen sowohl in der Biomedizin als auch in anderen Bereichen. KW - Polymere KW - Ringöffnungspolymerisation KW - Biomaterial KW - 3D-Druck KW - biofabrication KW - poly(2-oxazoline)s KW - poly(2-oxazine)s KW - ring-opening polymerization Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-245987 ER - TY - THES A1 - Nadernezhad, Ali T1 - Engineering approaches in biofabrication of vascularized structures T1 - Ingenieurtechnische Ansätze in der Biofabrikation vaskularisierter Strukturen N2 - Biofabrication technologies must address numerous parameters and conditions to reconstruct tissue complexity in vitro. A critical challenge is vascularization, especially for large constructs exceeding diffusion limits. This requires the creation of artificial vascular structures, a task demanding the convergence and integration of multiple engineering approaches. This doctoral dissertation aims to achieve two primary objectives: firstly, to implement and refine engineering methods for creating artificial microvascular structures using Melt Electrowriting (MEW)-assisted sacrificial templating, and secondly, to deepen the understanding of the critical factors influencing the printability of bioink formulations in 3D extrusion bioprinting. In the first part of this dissertation, two innovative sacrificial templating techniques using MEW are explored. Utilizing a carbohydrate glass as a fugitive material, a pioneering advancement in the processing of sugars with MEW with a resolution under 100 microns was made. Furthermore, by introducing the “print-and-fuse” strategy as a groundbreaking method, biomimetic branching microchannels embedded in hydrogel matrices were fabricated, which can then be endothelialized to mirror in vivo vascular conditions. The second part of the dissertation explores extrusion bioprinting. By introducing a simple binary bioink formulation, the correlation between physical properties and printability was showcased. In the next step, employing state-of-the-art machine-learning approaches revealed a deeper understanding of the correlations between bioink properties and printability in an extended library of hydrogel formulations. This dissertation offers in-depth insights into two key biofabrication technologies. Future work could merge these into hybrid methods for the fabrication of vascularized constructs, combining MEW's precision with fine-tuned bioink properties in automated extrusion bioprinting. N2 - Biofabrikationstechnologien müssen zahlreiche Parameter und Bedingungen berücksichtigen, um die Komplexität von Gewebe in vitro zu rekonstruieren. Eine entscheidende Herausforderung ist die Vaskularisierung, insbesondere bei großen Konstrukten, die die Diffusionsgrenzen überschreiten. Dies erfordert die Schaffung künstlicher Gefäßstrukturen, eine Aufgabe, die die Konvergenz und Integration verschiedener technischer Ansätze erfordert. Mit dieser Dissertation sollen zwei Hauptziele erreicht werden: erstens die Implementierung und Verfeinerung technischer Methoden zur Herstellung künstlicher mikrovaskulärer Strukturen mit Hilfe des "Melt Electrowriting" (MEW) und zweitens die Vertiefung des Verständnisses der kritischen Faktoren, die die Druckbarkeit von Biotintenformulierungen beim 3D-Extrusions-Bioprinting beeinflussen. Im ersten Teil dieser Dissertation werden zwei innovative Opferschablonentechniken unter Verwendung von MEW erforscht. Unter Verwendung eines Kohlenhydratglases als flüchtiges Material wurde ein bahnbrechender Fortschritt bei der Verarbeitung von Zuckern mit MEW mit einer Auflösung von unter 100 Mikrometern erzielt. Darüber hinaus wurden durch die Einführung der "Print-and-Fuse"-Strategie als bahnbrechende Methode biomimetische, verzweigte Mikrokanäle hergestellt, die in Hydrogelmatrizen eingebettet sind und anschließend endothelialisiert werden können, um die vaskulären Bedingungen in vivo wiederzugeben. Der zweite Teil der Dissertation befasst sich mit dem Extrusions-Bioprinting. Durch die Einführung einer einfachen binären Biotintenformulierung wurde die Korrelation zwischen physikalischen Eigenschaften und Druckbarkeit aufgezeigt. Im nächsten Schritt wurde durch den Einsatz modernster Methoden des maschinellen Lernens ein tieferes Verständnis für die Zusammenhänge zwischen den Eigenschaften der Biotinte und der Druckbarkeit in einer erweiterten Bibliothek von Hydrogelformulierungen gewonnen. Diese Dissertation bietet tiefe Einblicke in zwei Schlüsseltechnologien der Biofabrikation. Zukünftige Arbeiten könnten diese zu hybriden Methoden für die Herstellung vaskularisierter Konstrukte zusammenführen und dabei die Präzision von MEW mit fein abgestimmten Biotinteneigenschaften im automatisierten Extrusionsbioprinting kombinieren. KW - 3D-Druck KW - Rheologie KW - Maschinelles Lernen KW - Bioinks KW - Hyrogels KW - Valscularization KW - Melt Electrowriting Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-345892 ER - TY - THES A1 - Lorson, Thomas T1 - Novel Poly(2-oxazoline) Based Bioinks T1 - Neuartige Poly(2-oxazolin) Basierte Biotinten N2 - Motivated by the great potential which is offered by the combination of additive manufacturing and tissue engineering, a novel polymeric bioink platform based on poly(2 oxazoline)s was developed which might help to further advance the young and upcoming field of biofabrication. In the present thesis, the synthesis as well as the characteristics of several diblock copolymers consisting of POx and POzi have been investigated with a special focus on their suitability as bioinks. In general, the copolymerization of 2-oxazolines and 2-oxazines bearing different alkyl side chains was demonstrated to yield polymers in good agreement with the degree of polymerization aimed for and moderate to low dispersities. For every diblock copolymer synthesized during the present study, a more or less pronounced dependency of the dynamic viscosity on temperature could be demonstrated. Diblock copolymers comprising a hydrophilic PMeOx block and a thermoresponsive PnPrOzi block showed temperature induced gelation above a degree of polymerization of 50 and a polymer concentration of 20 wt%. Such a behavior has never been described before for copolymers solely consisting of poly(cyclic imino ether)s. Physically cross linked hydrogels based on POx b POzi copolymers exhibit reverse thermal gelation properties like described for solutions of PNiPAAm and Pluronic F127. However, by applying SANS, DLS, and SLS it could be demonstrated that the underlying gel formation mechanism is different for POx b POzi based hydrogels. It appears that polymersomes with low polydispersity are formed already at very low polymer concentrations of 6 mg/L. Increasing the polymer concentration resulted in the formation of a bicontinuous sponge like structure which might be formed due to the merger of several vesicles. For longer polymer chains a phase transition into a gyroid structure was postulated and corresponds well with the observed rheological data. Stable hydrogels with an unusually high mechanical strength (G’ ~ 4 kPa) have been formed above TGel which could be adjusted over a range of 20 °C by changing the degree of polymerization if maintaining the symmetric polymer architecture. Variations of the chain ends revealed only a minor influence on TGel whereas the influence of the solvent should not be neglected as shown by a comparison of cell culture medium and MilliQ water. Rotationally as well as oscillatory rheological measurements revealed a high suitability for printing as POx b POzi based hydrogels exhibit strong shear thinning behavior in combination with outstanding recovery properties after high shear stress. Cell viability assays (WST-1) of PMeOx b PnPrOzi copolymers against NIH 3T3 fibroblasts and HaCat cells indicated that the polymers were well tolerated by the cells as no dose-dependent cytotoxicity could be observed after 24 h at non-gelling concentrations up to 100 g/L. In summary, copolymers consisting of POx and POzi significantly increased the accessible range of properties of POx based materials. In particular thermogelation of aqueous solutions of diblock copolymers comprising PMeOx and PnPrOzi was never described before for any copolymer consisting solely of POx or POzi. In combination with other characteristics, e.g. very good cytocompatibility at high polymer concentrations and comparably high mechanical strength, the formed hydrogels could be successfully used for 3D bioprinting. Although the results appear promising and the developed hydrogel is a serious bioink candidate, competition is tough and it remains an open question which system or systems will be used in the future. N2 - Motiviert durch das große Potential, das die Kombination aus additiver Fertigung und künstlicher Geweberegeneration bietet, wurde eine neuartige polymerbasierte Biotintenplattform auf Basis von Poly(2 oxazolin)en entwickelt. Diese soll zukünftig dazu beitragen das noch junge, aber aufstrebende Forschungsfeld der Biofabrikation weiterzuentwickeln. In der vorliegenden Arbeit wurden die Synthese sowie die Eigenschaften von mehreren Diblock Copolymeren, bestehend aus POx und POzi, untersucht, wobei der Hauptfokus auf deren Eignung als Biotinte lag. Grundsätzlich konnte gezeigt werden, dass Copolymere, bestehend aus 2 Oxazolinen und 2 Oxazinen, die unterschiedliche Alkylseitenketten besitzen, synthetisiert werden können. Dabei lagen die ermittelten Polymerisationsgrade nahe am zuvor errechneten Wert. Die Polymere wiesen mittlere bis niedrigere Dispersitäten auf. Für jedes der im Rahmen der vorliegenden Arbeit synthetisierten Diblock Copolymere konnte eine mehr oder weniger starke Abhängigkeit der dynamischen Viskosität von der Temperatur gezeigt werden. Allerdings ist es nicht möglich, aus den thermischen Eigenschaften des Bulkmaterials Rückschlüsse auf das temperaturabhängige Verhalten in Lösung zu ziehen. Diblock Copolymere mit einem hydrophilen PMeOx Block und einem thermoresponsiven PnPrOzi Block bildeten oberhalb einer Kettenlänge von 50 Einheiten und einer Polymerkonzentration von 20 Gew% ein physikalisches Gel. Solch ein Verhalten wurde bisher noch nicht für Copolymere, die ausschließlich auf POx oder seinen höheren Homologen basieren, beschrieben. Physikalische Hydrogele, basierend auf POx b POzi Copolymeren, weisen eine umgekehrte thermische Gelierung wie auch wässrige Lösungen von PNiPAAm und Pluronic F127 auf. Allerdings konnte durch die komplementäre Verwendung von SANS, DLS und SLS gezeigt werden, dass sich der zugrundeliegende Gelbildungsmechanismus für POx b POzi basierte Hydrogele deutlich von den beiden zuvor genannten unterscheidet. Es wird davon ausgegangen, dass sich zunächst bei einer sehr geringen Polymerkonzentration von 6 mg/L Vesikel mit geringer Polydispersität ausbilden. Eine Erhöhung der Konzentration resultiert in der Ausbildung eines bikontinuierlichen Netzwerks mit schwammartiger Struktur. Dieses bildet sich vermutlich durch die Fusion mehrerer Vesikel. Des Weiteren wird für höhere Polymerisationsgrade ein Phasenübergang zu einer gyroidalen Struktur postuliert der sich sehr gut mit den gewonnenen rheologischen Daten deckt. Stabile Hydrogele mit außergewöhnlich hoher mechanischer Stärke (G‘ ≈ 4kPa) bildeten sich oberhalb der Tgel, die über eine Temperaturspanne von 20 °C durch Änderung des Polymerisationsgrades eingestellt werden konnte. Veränderung der Kettenenden zeigten nur einen geringen Einfluss auf die TGel, wobei der Einfluss des verwendeten Lösemittels nicht unterschätzt werden sollte. Dies konnte durch den direkten Vergleich von MilliQ Wasser und Zellkulturmedium gezeigt werden. Rheologische Untersuchungen, die sowohl im rotierenden als auch im oszillierenden Modus durchgeführt wurden, zeigten eine gute Eignung der POx b POzi basierten Hydrogele für Extrusion basierte Druckverfahren. Insbesondere aufgrund des stark ausgeprägten scherverdünnenden Verhaltens und der ausgezeichneten Strukturerholung nach hoher Scherbelastung sollten gute Druckergebnisse erzielbar sein. Zellviabilität-Assays (WST-1) von PMeOx b PnPrOzi Copolymeren an NIH 3T3 Fibroblasten und HaCat-Zellen zeigten, dass die Polymere bei Konzentrationen von bis zu 100 g/L und Inkubationszeiten von 24 h keine dosisabhängige Zytotoxizität besitzen. Zusammenfassend kann festgehalten werden, dass die Copolymerisation von POx und POzi den verfügbaren Eigenschaftsbereich von POx basierten Materialien deutlich vergrößert hat. Insbesondere die temperaturinduzierte Gelierung von wässrigen Polymerlösungen wurde noch nie zuvor für ein anderes Copolymer auf Basis von POx und POzi beschrieben. Aufgrund ihrer herausragenden Eigenschaften, wozu unter anderem eine sehr gute Zytokompatibilität bei hohen Polymerkonzentrationen und eine vergleichsweise hohe mechanische Festigkeit zählen, konnten die entwickelten Hydrogele erfolgreich für den 3D Biodruck verwendet werden. Obwohl die beschriebenen Ergebnisse sehr vielversprechend sind und die entwickelte Hydrogelplattform folglich als ernstzunehmender Biotintenkandidat angesehen werden sollte, ist die Konkurrenz sehr groß und es bleibt abzuwarten, welche Tinte bzw. Tinten in Zukunft zum Einsatz kommen. KW - Polymere KW - Ringöffnungspolymerisation KW - Lichtstreuung KW - Biomaterial KW - 3D-Druck KW - Poly(2-oxazolin)e KW - poly(2-oxazoline)s KW - Biofabrikation KW - biofabrication KW - Biotinten KW - bioinks KW - Hydrogel KW - hydrogel KW - Ringöffnungspolymerisation KW - ring-opening polymerization Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-180514 ER - TY - THES A1 - Kade, Juliane Carolin T1 - Expanding the Processability of Polymers for a High-Resolution 3D Printing Technology T1 - Erweiterung der Verarbeitbarkeit von Polymeren für eine hochauflösende 3D-Drucktechnologie N2 - This thesis identifies how the printing conditions for a high-resolution additive manufacturing technique, melt electrowriting (MEW), needs to be adjusted to process electroactive polymers (EAPs) into microfibers. Using EAPs based on poly(vinylidene difluoride) (PVDF), their ability to be MEW-processed is studied and expands the list of processable materials for this technology. N2 - Im Rahmen dieser Arbeit wird melt electrowriting (MEW), eine hochauflösende additive Fertigungstechnik, zur Herstellung von Polymerfasern im unteren Mikrometerbereich eingesetzt. Neue Materialien, hauptsächlich elektroaktive Polymere (EAPs) auf Basis von Poly(vinylidendifluorid) (PVDF), werden hinsichtlich ihrer Druckbarkeit untersucht, um die Liste der prozessierbaren Materialien für diese Technologie zu erweitern. KW - Polymere KW - Melt electrowriting KW - Biofabrication KW - 3D-Druck KW - 3D Printing KW - Polymers Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-270057 ER - TY - THES A1 - Jüngst, Tomasz T1 - Establishing and Improving Methods for Biofabrication T1 - Etablierung und Verbesserung von Methoden für die Biofabrikation N2 - Die Biofabrikation ist ein junges und sehr dynamisches Forschungsgebiet mit viel Potential. Dieses Potential spiegelt sich unter anderem in den ambitionierten Zielen wieder, die man sich hier gesetzt hat. Wissenschaftler in diesem Gebiet wollen eines Tages beispielsweise funktionale menschliche Gewebe nachbilden, die aus patienteneigenen Zellen bestehen. Diese Gewebe sollen entweder für die Testung neuer Arzneimittel und Therapien oder sogar als Implantate einsetzt werden. Der Schlüssel zum Erfolg soll hier die Verwendung automatisierter Prozesse in Verbindung mit innovativen Materialien sein, die es ermöglichen, die Hierarchie und Funktion des zu ersetzenden natürlichen Gewebes nachbilden. Obwohl in den letzten Jahren große Fortschritte gemacht worden sind, gibt es immer noch Hürden, die überwunden werden müssen. Ziel dieser Arbeit war es deshalb, die derzeit eingeschränkte Auswahl kompatibler Materialien für die Biofabrikation zu erweitern und bereits etablierte Verfahren wie den extrusionsbasierten Biodruck noch besser verstehen zu lernen. Auch neue Verfahren, wie etwa das Melt Electrospinning Writing (MEW) sollten etabliert werden. In Kapitel 3 dieser Arbeit wurde das MEW dazu verwendet, tubuläre Strukturen zu fertigen, die sich aus Polymerfasern mit einem durchschnittlichen Durchmesser von nur etwa 12 μm zusammensetzen. Die mit Hilfe von Druckluft in Verbindung mit einer hohen elektrischen Spannung aus einer Nadelspitze austretende Polymerschmelze wurde hierbei auf zylinderförmigen Kollektoren mit Durchmessern zwischen 0.5 und 4.8mm gesammelt. Auf diese Weise wurden röhrenförmige Faserkonstrukte generiert. Das Hauptaugenmerk lag auf dem Einfluss des Durchmessers, der Rotations- und Translationsbewegung des Kollektors auf die Morphologie der Faserkonstrukte. Hierzu wurden die Fasern erst auf unbewegten Kollektoren mit unterschiedlichen Durchmessern gesammelt und die entstehenden Muster analysiert. Es zeigte sich, dass das Fasermuster mit zunehmendem Durchmesser des Kollektors mehr den symmetrischen Konstrukten mit runder Grundfläche glich, die auch von flachen Kollektoren bekannt sind. Je kleiner der Kollektordurchmesser wurde, desto ovaler wurde die Grundfläche der Muster, was den Einfluss der Krümmung deutlich machte. In weiteren Experimenten wurden die zylindrischen Kollektoren mit Geschwindigkeiten von 4,2 bis 42 Umdrehungen pro Minute um ihre Längsachse gedreht. Die von flachen Kollektoren bekannten Übergänge der Fasermorphologie konnten auch für runde Kollektoren bestätigt werden. So änderte sich die Morphologie mit zunehmender Geschwindigkeit der Oberfläche von einer achterförmigen Gestalt über eine sinusförmige Ausrichtung der Fasern hin zu einer geraden Linie. Der Einfluss des Kollektordurchmessers wurde auch hier deutlich, da sich etwa die Amplitude der bei Rotationsgeschwindigkeiten im Bereich sinusförmiger Ausrichtung abgelegten Fasern mit abnehmendem Radius erhöhte. Im nächsten Schritt wurde neben der Rotation der Kollektoren auch eine Translation induziert. Durch geeignete Kombination von Rotation und Translation konnten Konstrukte mit definiertem Wickelwinkel hergestellt werden. Es zeigte sich, dass die Wiedergabe des vorher kalkulierten Winkels unter Verwendung von Oberflächengeschwindigkeiten, die nahe am Übergang zur geraden Faserausrichtung waren, am besten war. Im Rahmen dieser Arbeit konnten Winkel zwischen 5 und 60° mit hoher Präzision wiedergegeben werden. Im Falle von sich wiederholenden Mustern konnte auch in Bezug auf die Stapelbarkeit der Fasern aufeinander eine hohe Präzision erreicht werden. Kapitel 4 dieser Arbeit befasste sich mit dem extrusionsbasierten 3D-Druck. Das etabliere Verfahren wurde auf eine bisher wenig untersuchte Materialzusammensetzung von Nanopartikeln-beladenen Hydrogeltinten ausgeweitet. Die Tinte bestand aus einer Kombination von funktionalisierten Polyglyzidolen und einer unmodifizierten langkettingen Hyaluronsäure. Dieser wurden mesoporöse Silika-Nanopartikel mit unterschiedlicher Ladung zugesetzt und deren Freisetzung aus gedruckten Konstrukten mit einstellbarer Geometrien untersucht. Da die Hyaluronsäure selbst negativ geladen ist, wurde erwartet und auch gezeigt, dass aminofunktionalisierte Partikel mit positiver Ladung langsamer freigesetzt werden als carboxylfunktionalisierte Partikel mit negativer Ladung. Interessanterweise änderten die Partikel nicht die rheologischen Eigenschaften der Tinte und es konnten Hydrogele, die mit positiv geladenen Partikeln beladen waren, bei den gleichen Druckparametern verdruckt werden, wie Hydrogele, die mit negativ geladenen Partikeln beladen waren. Die guten Druckeigenschaften der Tinten ermöglichten die präzise Fertigung von Konstrukten mit einer Größe von 12x12x3mm^3, also von Konstrukten mit bis zu 16 aufeinanderfolgenden Lagen. Die Strangdurchmesser betrugen hierbei 627±31μm und die Verteilung der Partikel innerhalb der Stränge war sehr homogen. Zudem konnten auch Strukturen gedruckt werden, bei denen beide Tintenarten, mit positiven und mit negativen Partikeln beladene Hydrogele, in einem Konstrukt kombiniert wurden. Hierbei zeigte sich, dass die Freisetzung der Partikel, die über 6 Wochen hinweg untersucht wurde, auch stark von der Geometrie der zwei-Komponenten-Konstrukte abhing. Insbesondere die Auswirkung des direkten Kontakts zwischen den Komponenten innerhalb eines Konstruktes war hier sehr deutlich. Wurden die Stränge über Kreuz aufeinander abgelegt und hatten direkten Kontakt an den Kreuzungspunkten, konnte beobachtet werden, dass die positiv geladenen Partikel aus ihrem System in das mit den negativ geladenen Partikeln wanderten. Wurden die Stränge ohne direkten Kontakt parallel nebeneinander abgelegt, wurden die positiv geladenen Partikel in umgebendes Medium freigesetzt, konnten aber selbst nach 6 Wochen nicht in den Strängen mit den negativ geladenen Partikeln nachgewiesen werden. Dies verdeutlicht, dass Geometrie und Ladung der Partikel einen Einfluss auf die Freisetzung der Partikel hatten und sich die Freisetzung der Partikel durch eine geschickte Kombination beider Parameter steuern lässt. In Kapitel 5 dieser Arbeit wurde eine neue Materialklasse als Biotinte für den extrusionsbasierten Biodruck untersucht. Bei dem Material handelte es sich um Hydrogele auf Basis rekombinanter Spinnenseidenproteine. Diese konnten ab einer Proteinkonzentration von 3 %Gew./Vol. ohne die Verwendung von Verdickungsmittel oder anderen Additiven und auch ohne eine nachträgliche Vernetzung verdruckt werden. Sowohl Hydrogele auf Basis des rekombinanten Proteins eADF4(C16) als auch eine mit einer RGD-Sequenz versehene Modifikation (eADF4(C16)-RGD) konnten mit einer hohen Formtreue verdruckt werden. Die RGD-Sequenz zeigte einen positiven Effekt auf das Anhaften von humanen Fibroblasten, die auf gedruckte Konstrukte ausgesät wurden. Zudem konnten mit Hilfe der Hydrogele auch zellbeladene Konstrukte gefertigt werden. Hierzu wurden die Hydrogele mit einer Zellsuspension so vermengt, dass eine finale Konzentration von 1,2 Millionen Zellen/ml erreicht wurde. Die beladenen Gele wurden verdruckt und es konnte eine Überlebensrate von 70,1±7,6% nachgewiesen werden. Das in diesem Kapitel etablierte Materialsystem ermöglichte zum ersten Mal das Verdrucken lebender Zellen in einer neuen Klasse von Tinten, die weder die Beimengung von Verdickungsmittel noch einen zusätzlichen Nachhärtungsschritt für die Herstellung zellbeladener stabiler Konstrukte benötigt. N2 - Biofabrication is an advancing new research field that might, one day, lead to complex products like tissue replacements or tissue analogues for drug testing. Although great progress was made during the last years, there are still major hurdles like new types of materials and advanced processing techniques. The main focus of this thesis was to help overcoming this hurdles by challenging and improving existing fabrication processes like extrusion-based bioprinting but also by developing new techniques. Furthermore, this thesis assisted in designing and processing materials from novel building blocks like recombinant spider silk proteins or inks loaded with charged nanoparticles. A novel 3D printing technique called Melt Electrospinning Writing (MEW) was used in Chapter 3 to create tubular constructs from thin polymer fibers (roughly 12 μm in diameter) by collecting the fibers onto rotating and translating cylinders. The main focus was put on the influence of the collector diameter and its rotation and translation on the morphology of the constructs generated by this approach. In a first step, the collector was not moving and the pattern generated by these settings was analyzed. It could be shown that the diameter of the stationary collectors had a big impact on the morphology of the constructs. The bigger the diameter of the mandrel (smallest collector diameters 0.5 mm, biggest 4.8 mm) got, the more the shape of the generated footprint converged into a circular one known from flat collectors. In a second set of experiments the mandrels were only rotated. Increasing the rotational velocity from 4.2 to 42.0 rpm transformed the morphology of the constructs from a figure-of-eight pattern to a sinusoidal and ultimately to a straight fiber morphology. It was possible to prove that the transformation of the pattern was comparable to what was known from increasing the speed using flat collectors and that at a critical speed, the so called critical translation speed, straight fibers would appear that were precisely stacking on top of each other. By combining rotation and translation of the mandrel, it was possible to print tubular constructs with defined winding angles. Using collections speeds close to the critical translation speed enabled higher control of fiber positioning and it was possible to generate precisely stacked constructs with winding angles between 5 and 60°. In Chapter 4 a different approach was followed. It was based on extrusion-based bioprinting in combination with a hydrogel ink system. The ink was loaded with nanoparticles and the nanoparticle release was analyzed. In other words, two systems, a printable polyglycidol/hyaluronic acid ink and mesoporous silica nanoparticles (MSN), were combined to analyze charge driven release mechanism that could be fine-tuned using bioprinting. Thorough rheological evaluations proved that the charged nanoparticles, both negatively charged MSN-COOH and positively charged MSN-NH2, did not alter the shear thinning properties of the ink that revealed a negative base charge due to hyaluronic acid as one of its main components. Furthermore, it could be shown that the particles did also not have a negative effect on the recovery properties of the material after exposure to high shear. During printing, the observations made via rheological testing were supported by the fact that all materials could be printed at the same settings of the bioprinter. Using theses inks, it was possible to make constructs as big as 12x12x3 mm3 composed of 16 layers. The fiber diameters produced were about 627±31 μm and two-component constructs could be realized utilizing the two hydrogel print heads of the printer to fabricate one hybrid construct. The particle distribution within those constructs was homogeneous, both from a microscopic and a macroscopic point of view. Particle release from printed constructs was tracked over 6 weeks and revealed that the print geometry had an influence on the particle release. Printed in a geometry with direct contact between the strands containing different MSN, the positively charged particles quickly migrated into the strand previously containing only negatively charged MSN-COOH. The MSN-COOH seemed to be rather released into the surrounding liquid and also after 6 weeks no MSN-COOH signal could be detected in the strand previously only containing MSN-NH2. In case of a geometry without direct contact between the strands, the migration of the positively charged nanoparticles into the MSN-COOH containing strand was strongly delayed. This proved that the architecture of the printed construct can be used to fine-tune the particle release from nanoparticle containing printable hydrogel ink systems. Chapter 5 discusses an approach using hydrogel inks based on recombinant spider silk proteins processed via extrusion-based bioprinting. The ink could be applied for printing at protein concentrations of 3 % w/v without the addition of thickeners or any post process crosslinking. Both, the recombinant protein eADF4(C16) and a modification introducing a RGD-sequence to the protein (eADF4(C16)-RGD), could be printed revealing a very good print fidelity. The RGD modification had positive effect on the adhesion of cells seeded onto printed constructs. Furthermore, human fibroblasts encapsulated in the ink at concentrations of 1.2 million cells per mL did not alter the print fidelity and did not interfere with the crosslinking mechanism of the ink. This enabled printing cell laden constructs with a cell survival rate of 70.1±7.6 %. Although the cell survival rate needs to be improved in further trials, the approach shown is one of the first leading towards the shift of the window of biofabrication because it is based on a new material that does not need potentially harmful post-process crosslinking and allows the direct encapsulation of cells staying viable throughout the print process. KW - 3D-Druck KW - Elektrospinnen KW - 3D Bioprinting KW - Melt Electrowriting KW - Biofabrication Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-173444 ER - TY - THES A1 - Hauptstein, Julia T1 - Hyaluronic Acid-based Multifunctional Bioinks for 3D Bioprinting of Mesenchymal Stromal Cells for Cartilage Regeneration T1 - Hyaluronsäure-basierte multifunktionale Biotinten für den 3D Biodruck von mesenchymalen Stromazellen zur Knorpelregeneration N2 - Articular cartilage is a highly specialized tissue which provides a lubricated gliding surface in joints and thereby enables low-friction movement. If damaged once it has a very low intrinsic healing capacity and there is still no treatment in the clinic which can restore healthy cartilage tissue. 3D biofabrication presents a promising perspective in the field by combining healthy cells and bioactive ink materials. Thereby, the composition of the applied bioink is crucial for defect restoration, as it needs to have the physical properties for the fabrication process and also suitable chemical cues to provide a supportive environment for embedded cells. In the last years, ink compositions with high polymer contents and crosslink densities were frequently used to provide 3D printability and construct stability. But these dense polymeric networks were often associated with restricted bioactivity and impaired cell processes like differentiation and the distribution of newly produced extracellular matrix (ECM), which is especially important in the field of cartilage engineering. Therefore, the aim of this thesis was the development of hyaluronic acid (HA)-based bioinks with a reduced polymer content which are 3D printable and additionally facilitate chondrogenic differentiation of mesenchymal stromal cells (MSCs) and the homogeneous distribution of newly produced ECM. Starting from not-printable hydrogels with high polymer contents and restricted bioactivity, distinct stepwise improvements were achieved regarding stand-alone 3D printability as well as MSC differentiation and homogeneous ECM distribution. All newly developed inks in this thesis made a valuable contribution in the field of cartilage regeneration and represent promising approaches for potential clinical applications. The underlying mechanisms and established ink design criteria can further be applied to other biofabricated tissues, emphasizing their importance also in a more general research setting. N2 - Gelenkknorpel ermöglicht durch seine gleitfähige Oberfläche reibungsarme Bewegungen der Gelenke. Ist der Knorpel jedoch einmal geschädigt, kann er sich kaum selbst regenerieren und es gibt noch keine klinische Lösung, die das native Gewebe wiederherstellen kann. Ein vielversprechender Ansatz im Feld ist die 3D Biofabrikation, da sie gesunde Zellen mit bioaktiven Tintenmaterialen kombiniert. Hierbei ist die Zusammensetzung der Tinte besonders wichtig für die Funktionsweise des Konstruktes, da sie sowohl die physikalischen Voraussetzungen für den 3D Druck als auch die biologische Unterstützung für die Zellkultivierung mitbringen muss. Bisher wurden häufig Tintenzusammensetzungen mit hohen Polymergehalten und Vernetzungsdichten verwendet, um 3D-Druckbarkeit und Konstruktstabilität zu gewährleisten. Das verursachte jedoch häufig eine eingeschränkte Bioaktivität und die Beeinträchtigung von Zellprozessen wie Differenzierung und der Verteilung der neu gebildeten Extrazellulärmatrix (ECM), die insbesondere in der Knorpelregeneration von großer Bedeutung ist. Daher war das Ziel dieser Arbeit 3D-druckbare Tinten auf Hyaluronsäure (HA)-Basis mit reduziertem Polymergehalt zu entwickeln, die die chondrogene Differenzierung von mesenchymalen Stromazellen (MSCs) unterstützen und eine homogene Verteilung der neu produzierten ECM ermöglichen. Ausgehend von nicht-druckbaren Hydrogelen mit hohem Polymergehalt und eingeschränkter Bioaktivität wurde eine schrittweise Verbesserung hinsichtlich 3D-Druckbarkeit, MSC-Differenzierung und homogener ECM-Verteilung erreicht. Alle hier neu entwickelten Tinten leisten einen wertvollen Beitrag auf dem Gebiet der Knorpelregeneration mit Potenzial zur klinischen Anwendung. Die zugrunde liegenden Mechanismen und etablierten Designkriterien können weiterhin auch auf andere biofabrizierte Gewebe übertragen werden, was ihre Bedeutung auch für ein weiter gefasstes Forschungsfeld unterstreicht. KW - Hyaluronsäure KW - 3D-Druck KW - Mesenchymale Stromazelle KW - Gelenkknorpel KW - Extrazelluläre Matrix KW - Chondrogenic Differentiation KW - Biofabrication KW - Bioink KW - Cartilage Tissue Engineering KW - Bioprinting KW - Hyaluronic Acid KW - Mesenchymal Stromal Cell Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-260681 ER - TY - THES A1 - Bakirci, Ezgi T1 - Development of \(In\) \(vitro\) Models for Tissue Engineering Applications Using a High-Resolution 3D Printing Technology T1 - Entwicklung von \(In\) \(vitro\)-Modellen für Tissue-Engineering-Anwendungen mithilfe einer hochauflösenden 3D-Drucktechnologie N2 - In vitro models mimic the tissue-specific anatomy and play essential roles in personalized medicine and disease treatments. As a sophisticated manufacturing technology, 3D printing overcomes the limitations of traditional technologies and provides an excellent potential for developing in vitro models to mimic native tissue. This thesis aims to investigate the potential of a high-resolution 3D printing technology, melt electrowriting (MEW), for fabricating in vitro models. MEW has a distinct capacity for depositing micron size fibers with a defined design. In this thesis, three approaches were used, including 1) extending the MEW polymer library for different biomedical applications, 2) developing in vitro models for evaluation of cell growth and migration toward the different matrices, and 3) studying the effect of scaffold designs and biochemical cues of microenvironments on cells. First, we introduce the MEW processability of (AB)n and (ABAC)n segmented copolymers, which have thermally reversible network formulation based on physical crosslinks. Bisurea segments are combined with hydrophobic poly(dimethylsiloxane) (PDMS) or hydrophilic poly(propylene oxide)-poly(ethylene oxide)-poly(propylene oxide) (PPO-PEG-PPO) segments to form the (AB)n segmented copolymers. (ABAC)n segmented copolymers contain all three segments: in addition to bisurea, both hydrophobic and hydrophilic segments are available in the same polymer chain, resulting in tunable mechanical and biological behaviors. MEW copolymers either support cells attachment or dissolve without cytotoxic side effects when in contact with the polymers at lower concentrations, indicating that this copolymer class has potential in biological applications. The unique biological and surface properties, transparency, adjustable hydrophilicity of these copolymers could be beneficial in several in vitro models. The second manuscript addresses the design and development of a melt electrowritten competitive 3D radial migration device. The approach differs from most of the previous literature, as MEW is not used here to produce cell invasive scaffolds but to fabricate an in vitro device. The device is utilized to systematically determine the matrix which promotes cell migration and growth of glioblastoma cells. The glioblastoma cell migration is tested on four different Matrigel concentrations using a melt electrowritten radial device. The glioblastoma U87 cell growth and migration increase at Matrigel concentrations 6 and 8 mg mL-1 In the development of this radial device, the accuracy, and precision of melt electrowritten circular shapes were investigated. The results show that the printing speed and design diameter are essential parameters for the accuracy of printed constructs. It is the first instance where MEW is used for the production of in vitro devices. The influence of biochemical cues and scaffold designs on astrocytes and glioblastoma is investigated in the last manuscript. A fiber comprising the box and triangle-shaped pores within MEW scaffolds are modified with biochemical cues, including RGD and IKVAV peptides using a reactive NCO-sP(EO-stat-PO) macromer. The results show that astrocytes and glioblastoma cells exhibit different phenotypes on scaffold designs and peptide-coated scaffolds. N2 - In-vitro-Modelle sind Werkzeuge, die die gewebespezifische Anatomie nachbilden und eine wesentliche Rolle in der personalisierten Medizin und bei der Behandlung von Krankheiten spielen. Als hochentwickelte, multifunktionale Fertigungstechnologie überwindet der 3D-Druck die Grenzen herkömmlicher Technologien und bietet ein hervorragendes Potenzial für die Herstellung von In-vitro-Modellen. Der 3D-Druck ist eine der vielversprechendsten Techniken, um biologische Materialien in einer komplexen Anordnung zusammenzusetzen, die das natürliche Gewebe nachahmt. In dieser Arbeit soll das Potenzial der hochauflösenden 3D-Drucktechnologie melt electrowriting (MEW), für die Herstellung von In-vitro-Modellen untersucht werden. Wir konzentrieren uns auf drei Ansätze: 1) die Erweiterung der MEW-Polymerbibliothek für verschiedene biomedizinische Anwendungen, 2) die Entwicklung von In-vitro-Modellen zur Bewertung des Zellwachstums und der Zellmigration in Richtung der verschiedenen Matrizes und 3) die Untersuchung der Auswirkungen von MEW-Gerüstdesigns und biochemischen Faktoren der Mikroumgebung auf Zellen. Zunächst haben wir die MEW-Verarbeitbarkeit von segmentierten (AB)n- und (ABAC)n-Copolymeren vorgestellt, die eine thermisch reversible Netzwerkformulierung auf der Grundlage physikalischer Vernetzungen aufweisen. Bisurea-Segmente werden mit hydrophoben hydrophobic poly(dimethyl siloxane) (PDMS) oder hydrophilen poly(propylene oxide)-poly(ethylene oxide)-poly(propylene oxide) (PPO-PEG-PPO) Segmenten kombiniert, um die (AB)n segmentierten Copolymere zu bilden. Segmentierte (ABAC)n-Copolymere enthalten alle drei Segmente: Zusätzlich zu den Bisurea-Segmenten sind sowohl hydrophobe als auch hydrophile Segmente in derselben Polymerkette vorhanden, was den segmentierten (ABAC)n-Copolymeren abstimmbare mechanische und biologische Eigenschaften verleiht. MEW-Copolymere unterstützten entweder die Anhaftung an Zellen oder lösten sich ohne zytotoxische Nebenwirkungen auf, wenn sie in niedrigeren Konzentrationen mit ihnen in Berührung kamen, was darauf hindeutet, dass diese Copolymerklasse über umfassende biologische Eigenschaften verfügt. Die einzigartigen biologischen Eigenschaften und Oberflächeneigenschaften, die Transparenz und die einstellbare Hydrophilie dieser Copolymere könnten in verschiedenen In-vitro-Modellen von Vorteil sein. Das zweite Manuskript befasst sich mit einem durch MEW hergestellten wettbewerbsfähigen 3D-Radialmigrationsdesign. Der Ansatz unterscheidet sich vom Großteil der MEW-Literatur, da MEW nicht zur Herstellung von invasiven Zellgerüsten verwendet wurde, sondern zur Herstellung eines In-vitro-Designs diente. Das Design wurde verwendet, um systematisch die Matrix zu bestimmen, die die Zellmigration und das Wachstum von Glioblastomzellen fördert. Die Migration der Glioblastomzellen wurde auf vier verschiedenen Matrigel-Konzentrationen unter Verwendung einer durch MEW hergestellten Radialvorrichtung getestet. Das Wachstum und die Migration der Glioblastomzellen U87 nahmen bei Matrigelkonzentrationen von 6 und 8 mg mL-1 zu. Wir untersuchten auch die Genauigkeit und Präzision der durch MEW erzeugten Kreisformen. Die Ergebnisse zeigten, dass die Druckgeschwindigkeit und der Designdurchmesser wesentliche Parameter für die Genauigkeit der gedruckten Konstrukte sind. Die Arbeit ist die erste Studie, die MEW für die Herstellung von In-vitro-Modellen verwendet. Im letzten Manuskript wurde der Einfluss von biochemische Funktionalisierung in Kombination mit Gerüstdesigns auf Astrozyten und Glioblastome untersucht. Die kastenförmigen und achteckigen MEW-Gerüste wurden mit biochemischen Wirkstoffen modifiziert, darunter RGD- und IKVAV-Peptide unter Verwendung von reaktivem NCO-sP(EO-stat-PO). Wir fanden heraus, dass Astrozyten und Glioblastomzellen unterschiedliche Phänotypen auf den verschiedenen Designs und mit Peptiden beschichteten Gerüsten aufweisen. KW - Melt electrowriting KW - 3D-Druck KW - 3D printing KW - In vitro model Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-251645 ER -