TY - THES A1 - Keupp, Luzia Esther T1 - Hochaufgelöste Erfassung zukünftiger Klimarisiken für Land- und Forstwirtschaft in Unterfranken T1 - High resolution assessment of future climate risks for agriculture and forestry in Lower Franconia N2 - Das Klima und seine Veränderungen wirken sich direkt auf die Land- und Forstwirtschaft aus. Daher ist die Untersuchung der zukünftigen Klimarisiken für diese Sektoren von hoher Relevanz. Dies ist auch und vor allem für den schon heute weiträumig trockheitsgeprägten und vom Klimawandel besonders betroffenen nordwestbayerischen Regierungsbezirk Unterfranken der Fall, dessen Gebiet zu über 80 % land- oder forstwirtschaftlich genutzt wird. Zur Untersuchung der Zukunft in hoher räumlicher Auflösung werden Projektionen von regionalen Klimamodellen genutzt. Da diese jedoch Defizite in der Repräsentation des beobachteten Klimas der Vergangenheit aufweisen, sollte vor der weiteren Verwendung eine Anpassung der Daten erfolgen. Dies geschieht in der vorliegenden Arbeit am Beispiel des regionalen Klimamodells REMO im Bezug auf klimatische Kennwerte für Trockenheit, Starkniederschlag, Hitze sowie (Spät-)Frost, die alle eine hohe land- und forstwirtschaftliche Bedeutung besitzen. Die Datenanpassung erfolgt durch zwei verschiedene Ansätze. Zum Einen wird eine Biaskorrektur der aus Globalmodell-angetriebenen REMO-Daten berechneten Indizes durch additive und multiplikative Linearskalierung sowie empirische und parametrische Verteilungsanpassung durchgeführt. Zum Anderen wird ein exploratives Verfahren auf Basis von Model Output Statistics angewandt: Lokale und großräumige atmosphärische Variablen von REMO mit Reanalyseantrieb, die eine zeitliche Korrespondenz zu den Beobachtungen aufweisen, dienen als Prädiktoren für die Aufstellung von Transferfunktionen zur Simulation der Indizes. Diese Transferfunktionen werden sowohl mithilfe Multipler Linearer Regression als auch mit verschiedenen Generalisierten Linearen Modellen konstruiert. Sie werden anschließend genutzt, um Analysen auf Basis von biaskorrigierten Globalmodell-angetriebenen REMO-Prädiktoren durchzuführen. Sowohl für die Biaskorrektur als auch die Model Output Statistics wird eine Kreuzvalidierung durchgeführt, um die Ergebnisse unabhängig vom jeweiligen Trainingszeitraum zu untersuchen und die jeweils besten Varianten zu finden. Werden beide Verfahren mit ihren Unterkategorien für den gesamten historischen Modellzeitraum verglichen, so weist für alle Monat-Kennwert-Kombinationen eine der beiden Verteilungskorrekturen die besten Ergebnisse auf. Die Zukunftsprojektionen unter Verwendung der jeweils erfolgreichsten Methode zeigen im regionalen Durchschnitt für das 21. Jahrhundert negative Trends der (Spät-)Frost- und Eis- sowie positive Trends der Hitzetagehäufigkeit. Winterliche Starkregenereignisse nehmen hinsichtlich ihrer Anzahl zu, im Sommer verstärkt sich die Trockenheit. Die Hinzunahme zwei weiterer regionaler Klimamodelle bestätigt die allgemeinen Zukunftstrends, jedoch ergeben sich beim Spätfrost Widersprüche, wenn dieser hinsichtlich der thermisch abgegrenzten Vegetationsperiode definiert wird. Zusätzlich werden die Model Output Statistics auf gleiche Weise mit bodennahen Prädiktoren zur Simulation von Erträgen aus Acker- und Weinbau wiederholt. Die Güte kann aufgrund mangelnder Beobachtungsdatenlänge nur anhand der Reanalyse-angetriebenen REMO-Daten abgeschätzt werden, ist hierbei jedoch deutlich besser als im Bezug auf die Kennwertsimulation. Die Zukunftsprojektionen von REMO sowie drei weiterer Regionalmodelle zeigen im Mittel über alle Landkreise Unterfrankens steigende Winter- sowie sinkende Sommerfeldfruchterträge. Hinsichtlich der Frankenweinerträge widersprechen sich die Ergebnisse der drei Klassen Weiß-, Rot- und Gesamtwein insofern, als dass REMO und ein weiteres Modell negative Weiß- und Rotweinertragstrends, jedoch positive Gesamtweinertragstrends simulieren. Die zwei anderen verwendeten Modelle führen durch positive Trendvorzeichen für den Weißwein zu insgesamt kohärenten Ergebnissen. Die Resultate im Bezug auf die land- und forstwirtschaftlich relevanten klimatischen Kennwerte bedeuten, dass Anpassungsmaßnahmen gegenüber Hitze sowie im Speziellen gegenüber Trockenheit in Zukunft im ohnehin trockenheitsgeprägten Unterfranken an Bedeutung gewinnen werden. Auch die unsicheren Projektionen im Bezug auf die Spätfrostgefahr müssen im Blick behalten werden. Die Trends der Feldfruchterträge deuten in die gleiche Richtung, da Sommergetreide eine höhere Trockenheitsanfälligkeit besitzen. Die unklaren Ergebnisse der Weinerträge hingegen lassen keine eindeutigen Schlüsse zu. Der starke anthropogene Einfluss auf die Erntemengen sowie die großen Unterschiede der Rebsorten hinsichtlich der klimatischen Eignung könnten ein Grund hierfür sein. N2 - There is a direct impact of climate and its modifications on agriculture and forestry. For this reason, analyzing future climate risks concerning these sectors is highly important. This is also and particularly the case for the northwestern Bavarian administrative district of Lower Franconia, which is characterized by dry conditions even today and which is especially affected by climate change. Additionally, more than 80 % of its area is used for agriculture or forestry. To study future conditions in high spatial resolutions, projections of regional climate models are used. As these show deficits in the representation of the observed climate of the past, an adaption of the data should happen before application. In the study at hand, this is done using the example of the regional climate model REMO regarding climatic indices for dryness, heavy precipitation, and heat as well as (late) frost, all of which are of high agricultural and silvicultural relevance. Adaption of the data is handled via two different approaches. On the one hand, a bias correction of the indices calculated from REMO data based on global climate model output is done using additive and multiplicative linear scaling as well as empirical and parametric distribution adaption. On the other hand, an explorative technique based on model output statistics is applied: Local and large-scale atmospheric variables of REMO run with reanalysis data, possessing a temporal correspondence with observations, are used as predictors for the derivation of transfer functions for simulating the indices. The transfer functions are constructed by means of Multiple Linear Regression as well as different Generalized Linear Models. Subsequently, they are used for analyses based on bias corrected REMO predictors run with global climate model data. Both bias correction and model output statstics are performed in a cross-validated manner for examining the results independently from the training period and finding the best alternative for each situation. When comparing both methods with their subcategories for the entire historical model period, for all month-index-combinations one of the distribution correction techniques exhibits the best results. Future projections using the most successful method for each situation show negative trends of (late) frost and ice as well as positive trends of heat day occurence for the 21st century. The number of heavy precipitation days increases in winter, dryness amplifies in summer. When taking into consideration two additional regional climate models, the general future trends are confirmed. Nevertheless, discrepancies result regarding late frost when the respective vegetation period is demarcated based on temperature in contrast to monthly delineation. Additionally, model output statistics are repeated in the same manner using near-surface predictors for simulating yield of agriculture and viticulture. Estimation of quality can only be performed on the basis of reanalysis-run REMO data as the duration of the observational data is too short. However, the respective results show a much better performance than for the index simulations. Averaging all rural districs of Lower Franconia, future projections of REMO as well as three additional regional models show rising yields for winter as well as falling yields for summer crops. With respect to the yield of Franconian wine, the results of the three analyzed classes of white, red and total wine disagree as REMO and one additional model simulate negative white and red wine, but positive total wine yields. More consistent results are achieved using the other models, which project positive trend signs for white wine. The outcomes concerning climatic indices of agricultural and silvicultural relevance imply a future gain of importance of adaption measures towards heat and particularly dryness in Lower Franconia which is already drought-affected today. Furthermore, uncertainty in the projections of late frost has to be kept in mind. The resulting trends of agricultural yield point along the same lines as summer crops are more drought-sensitive. However, the ambiguity of the wine yield results impede precise conclusions. A reason for this could be the strong anthropogenic influence on yields as well as the great differences between grape varieties regarding their climatic suitability. KW - Klima KW - Landwirtschaft KW - Forstwirtschaft KW - Unterfranken KW - Klima / Modell KW - regionale Klimamodelle KW - CORDEX KW - Biaskorrektur KW - Model Output Statistics KW - Klimarisiken KW - Klimamodell Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-347350 ER - TY - THES A1 - Abel, Daniel Karl-Joseph T1 - Weiterentwicklung der Bodenhydrologie des regionalen Klimamodells REMO T1 - Further development of the soil hydrology in the regional climate model REMO N2 - Die Bodenfeuchte stellt eine essenzielle Variable für den Energie-, Feuchte- und Stoffaustausch zwischen Landoberfläche und Atmosphäre dar. Ihre Auswirkungen auf Temperatur und Niederschlag sind vielfältig und komplex. Die in Klimamodellen verwendeten Schemata zur Simulation der Bodenfeuchte, auch bodenhydrologische Schemata genannt, sind aufgrund des Ursprungs der Klimamodelle aus Wettermodellen jedoch häufig sehr stark vereinfacht dargestellt. Bei Klimamodellen, die Simulationen mit einer groben Auflösung von mehreren Zehner- oder Hunderterkilometern rechnen, können viele Prozesse vernachlässigt werden. Da die Auflösung der Klimamodelle jedoch stetig steigt und mittlerweile beim koordinierten Projekt regionaler Klimamodelle CORDEX-CORE standardmäßig bei 0.22° Kantenlänge liegt, müssen auch höher aufgelöste Daten und mehr Prozesse simuliert werden. Dies gilt erst recht mit Blick auf konvektionsauflösende Simulationen mit wenigen Kilometern Kantenlänge. Mit steigenden Modellauflösungen steigt zugleich die Komplexität und Differenziertheit der Fragestellungen, die mit Hilfe von Klimamodellen beantwortet werden sollen. An diesem Punkt setzt auch das Projekt BigData@Geo an, in dessen Rahmen die vorliegende Arbeit entstand. Ziel dieses Projektes ist es, hochaufgelöste Klimainformationen für den bayerischen Regierungsbezirk Unterfranken für Akteure aus der Land- und Forstwirtschaft sowie dem Weinbau zur Verfügung zu stellen. Auf diesen angewandten und grundlegenden Anforderungen und Zielsetzungen basierend, bedarf auch das in dieser Arbeit verwendete regionale Klimamodell REMO (Version 2015) der weiteren Entwicklung. So ist das Hauptziel der Arbeit das bestehende einschichtige bodenhydrologische Schema durch ein mehrschichtiges zu ersetzen. Der Vorteil mehrerer simulierter Bodenschichten besteht darin, dass nun die vertikale Bewegung des Wassers in Form von Versickerung und kapillarem Aufstieg simuliert werden kann. Dies geschieht auf der Basis bodenhydrologischer Parameter, deren Wert in Abhängigkeit vom Boden und der Bodenfeuchte über die Wasserrückhaltekurve bestimmt wird. Für diese Kurve existieren verschiedene Parametrisierungen, von denen die Ansätze von Clapp-Hornberger und van Genuchten verwendet wurden. Außerdem kann die Bodenfeuchte nun bis zu einer Tiefe von circa 10 m beziehungsweise der Tiefe des anstehenden Gesteins simuliert werden. Damit besteht im Gegensatz zum vorherigen Schema, dessen Tiefe auf die Wurzeltiefe beschränkt ist, die Möglichkeit, dass Wasser auch unterhalb der Wurzeln zur Verfügung stehen kann und somit die absolute im Boden verfügbare Wassermenge zunimmt. Die Schichtung erlaubt darüber hinaus die Verdunstung aus unbewachsenem Boden lediglich auf Basis des in der obersten Schicht verfügbaren Wassers. Ein weiterer Prozess, der dank der Schichtung und der weiter unten erläuterten Datensätze neu parametrisiert werden kann, ist die Infiltration. Für die Verwendung des Schemas sind Informationen über bodenhydrologische Parameter, die Wurzeltiefe und die Tiefe bis zum anstehenden Gestein erforderlich. Entsprechende Datensätze müssen hierfür aufbereitet und in das Modell eingebaut werden. Bezüglich der Wurzeltiefe wurden drei sich bezüglich der Tiefe, der Definition und der verfügbaren Auflösung stark voneinander unterscheidende Datensätze verglichen. Letztendlich wird die Wurzeltiefe aus dem mit einer anderen REMO-Version gekoppelten Vegetationsmodul iMOVE verwendet, da zukünftig eine Kopplung dieses Moduls mit dem mehrschichtigen Boden geplant ist und die Wurzeltiefen damit konsistent sind. Zudem ist die zugrundeliegende Auflösung der Daten hoch und es werden maximale Wurzeltiefen berücksichtigt, die besonders wichtig für die Simulation von Landoberfläche-Atmosphäre-Interaktionen sind. Diese Vorteile brachten die anderen Datensätze nicht mit. In der finalen Modellversion werden für die Tiefe bis zum anstehenden Gestein und die Korngrößenverteilungen die Daten von SoilGrids verwendet. Ein Vergleich mit anderen Bodendatensätzen fand in einer parallel laufenden Dissertation statt (Ziegler 2022). Bei SoilGrids ist hervorzuheben, dass die Korngrößenverteilungen in einer hohen räumlichen Auflösung (1 km^2 oder höher) und mit mehreren vertikalen Schichten vorliegen. Gegenüber dem ursprünglich in REMO verwendeten Datensatz mit einer Kantenlänge von 0.5° und ohne vertikale Differenzierung ist dies eine starke Verbesserung der Eingangsdaten. Dazu kommt, dass die Korngrößenverteilungen die Verwendung kontinuierlicher Pedotransferfunktionen statt fünf diskreter Texturklassen, denen für die bodenhydrologischen Parameter fixe Tabellenwerte zugewiesen werden, ermöglichen. Dies führt zu einer deutlich besseren Differenzierung des heterogenen Bodens. Im Rahmen der Arbeit wurden insgesamt 19 Simulationen für Europa und ein erweitertes Deutschlandgebiet mit Auflösungen von 0.44° beziehungsweise 0.11° für den Zeitraum 2000 bis 2018 gerechnet. Dabei zeigte sich, dass die Einführung des mehrschichtigen Bodenschemas gegenüber dem einschichtigen Schema zu einer Verringerung der Bodenfeuchte in der Wurzeltiefe führt. Nichtsdestotrotz nimmt die absolute Wassermenge des Bodens durch die Berücksichtigung des Bodens unterhalb der Wurzelzone zu. Bezogen auf die einzelnen Schichten wird die Bodenfeuchte damit zwar unterschätzt, im Laufe der Modellentwicklung kann jedoch eine Verbesserung im Vergleich zu ERA5 erzielt werden. Das neue Schema führt zu einer Verringerung der Evapotranspiration, die über alle Schritte der Modellentwicklung und besonders während der Sommermonate auftritt. Im Vergleich zu Validationsdaten von ERA5 und GLEAM zeigt sich, dass dies eine Verbesserung dieser Größe bedeutet, die sowohl in der Fläche als auch beim Fehler und in der Verteilung auftritt. Gleiches lässt sich für den Oberflächenabfluss sagen. Hierfür implementierte Schemata (Philip, Green-Ampt), die anders als das standardmäßig verwendete Improved-Arno-Schema bodenhydrologische Parameter berücksichtigen, konnten eine weitere Verbesserung im Flachland zeigen. In Gebirgsregionen nahm der Fehler durch die nicht enthaltene Berücksichtigung der Hangneigung jedoch zu, sodass in der finalen Modellversion auf das Improved-Arno-Schema zurückgegriffen wurde. Die Temperatur steigt durch die ursprüngliche Version des mehrschichtigen Schemas zunächst an, was zu einer Über- statt der vorherigen Unterschätzung gegenüber E-OBS führt. Die Modellentwicklung resultiert zwar in einer Reduzierung der Temperatur, jedoch fällt diese zu stark aus, sodass der Temperaturfehler letztendlich größer als in der einschichtigen Modellversion ist. Da die Evapotranspiration jedoch maßgeblich verbessert wurde, kann dieser Fehler eventuell auf ein übermäßiges Tuning der Temperatur zurückgeführt werden. Die Betrachtung von Hitzeereignissen am Beispiel der Sommer 2003 und 2018 hat gezeigt, dass die Modellentwicklung dazu beiträgt, diese Ereignisse besser als das einschichtige Schema zu simulieren. Zwar trifft dies nicht auf das räumliche Verhalten der mittleren Temperatur zu, jedoch auf deren zeitlichen Verlauf. Hinzu kommt die bessere Simulation der täglichen Extrem- und besonders der Minimaltemperatur, was zu einer Erhöhung der täglichen Temperaturspanne führt. Diese wird von Klimamodellen in der Regel zu stark unterschätzt. Durch die Berücksichtigung der vertikalen Wasserflüsse hat sich jedoch auch gezeigt, dass noch enormes Entwicklungspotenzial mit Blick auf (boden)hydrologische Prozesse besteht. Dies gilt in besonderem Maße für zukünftige Simulationen mit konvektionserlaubender Auflösung. So sollten subskalige Informationen des Bodens und der Orographie berücksichtigt werden. Dies dient einerseits der Repräsentation vorliegender Heterogenitäten und kann andererseits, wie am Beispiel der Infiltrationsschemata dargelegt, zur Verbesserung bestehender Prozesse beitragen. Da die simulierte Drainage durch das mehrschichtige Bodenschema im gleichen Maße zu- wie der Oberflächenabfluss abnimmt und das Wasser dem Modell in der Folge nicht weiter zur Verfügung steht, sollte zukünftig auch Grundwasser im Modell berücksichtigt werden. Eine Vielzahl von Studien konnte einen Mehrwert durch die Implementierung dieser Variable und damit verbundener Prozesse feststellen. Mittelfristig ist jedoch insgesamt die Kopplung an ein hydrologisches Modell zu empfehlen, um die bei hochauflösenden Simulationen relevanten Prozesse angemessen repräsentieren zu können. Hierfür bieten sich beispielsweise ParFlow oder mHM an. Insgesamt ist festzuhalten, dass das mehrschichtige Bodenschema einen Mehrwert liefert, da schwer zu simulierende und in der Postprozessierung zu korrigierende Variablen wie die Evapotranspiration und der Oberflächenabfluss deutlich besser modelliert werden können als mit dem einschichtigen Schema. Dies gilt auch für die Extremtemperaturen. Beides ist klar auf die Schichtung des Bodens und damit einhergehender Prozesse zurückzuführen. Bezüglich der Daten zeigt sich, dass die Wurzeltiefe, die Berücksichtigung von SoilGrids und die vertikale Bodeninformation für die weitere Optimierung verantwortlich sind. Darüber hinaus ist der höhere Informationsgehalt, der anhand der geschichteten Bodenfeuchte zur Verfügung steht, ebenfalls als Mehrwert einzustufen. N2 - Soil moisture is an essential variable for the exchange of energy, moisture, and substances between the land surface and the atmosphere. Its effects on temperature and precipitation are diverse and complex. However, the schemes used in climate models to simulate soil moisture, also called soil hydrological schemes, are often very simplified due to the origin of climate models from weather models. In climate models, which compute simulations at coarse resolutions of tens or hundreds of kilometers of edge length, many processes can be neglected. However, the resolution of those models is steadily increasing and now generally has 0.22° in the recently published coordinated project of regional climate models called CORDEX-CORE. As a consequence, higher resolved data and more processes have to be simulated. This is even more true with respect to convection-permitting simulations having edge lengths of a few kilometers. With increasing model resolutions, the complexity and differentiation of questions to be answered by the use of climate models increases as well. This is also the case of the BigData@Geo-project, in which framework this thesis was written. The aim of this project is to provide high-resolution climate information for the Bavarian administrative district of Lower Franconia for stakeholders from agriculture, forestry, and viticulture. Due to these applied and basic requirements and objectives, there is also the need of model development for the regional climate model REMO (version 2015) used in this work. Thus, the main goal of this thesis is to replace the existing singlelayer soil hydrological scheme by a multilayer one. The advantage of multiple simulated soil layers is that the vertical movement of water, thus percolation and capillary rise, can now be simulated. This is done on the basis of soil hydrological parameters, those value is determined by the water retention curve as a function of soil texture and soil moisture. Various parameterizations have been developed for this curve, whereas the one of Clapp-Hornberger and van Genuchten were used herein. Additionally, the soil moisture can now be simulated to a depth of approximately 10 m or the bedrock's depth, respectively. Thus, in contrast to the previous scheme, which depth is limited to the rooting depth, there is the possibility that water is also available below the root zone. Hence, the absolute amount of water in the root zone is increased. Furthermore, the layering allows evaporation from bare soil based only on the water available in the uppermost layer. Another process, that can be reparameterized due to the layering and the data sets explained subsequently, is infiltration. To use the new scheme, information on soil hydrological parameters, rooting depth, and the depth to bedrock is required. For this purpose, appropriate data sets have to be prepared and implemented into the model. Regarding the rooting depth, three data sets with different depths, definitions, and resolutions were compared. Finally, the rooting depth from the vegetation module iMOVE, coupled with another REMO version, is used since a coupling between iMOVE and the multilayer soil scheme is planned in the future. With this, the rooting depths are consistent. In addition, the underlying resolution of the data is high and maximum rooting depths are considered, which are particularly important for simulating land surface-atmosphere interactions. These advantages were not provided by the other data sets. In the final model version, SoilGrids data are used for the depth to bedrock and grain size distributions. A comparison with other soil data sets was done in a parallel thesis (Ziegler 2022). For SoilGrids, it should be underlined that the grain size distributions enable the use of continuous pedotransfer functions instead of five discrete texture classes for the soil hydrological parameters. This leads to a much better differentiation of the heterogeneous soil. For this thesis, 19 simulations were calculated for Europe and an extended German region with resolutions of 0.44° and 0.11°, respectively, covering the period of 2000 to 2018. The implementation of the multilayer soil scheme leads to a decrease in root zone soil moisture compared to the singlelayer scheme. Nevertheless, the absolute amount of soil moisture increases by the consideration of soil below the root zone. Related to the individual layers, the soil moisture is thus underestimated, but in the process of model development an improvement can be achieved compared to ERA5. Furthermore, the new scheme results in a reduction of evapotranspiration that occurs across all model development steps and is especially present during summer. When compared to validation data from ERA5 and GLEAM, this is shown to be an improvement that occurs in space as well as bias and distribution. The same was found for surface runoff. Schemes implemented for this purpose (Philip, Geen-Ampt), which differ from the defaultly used Improved-Arno scheme by taking hydrlogical parameters into account, were able to show a further improvement in lowlands. In mountainous regions, however, the bias increased due to the not included consideration of slopes. Consequently, the final model version uses the Improved-Arno scheme. Temperature initially increases through the original version of the multilayer scheme, resulting in an overestimation instead of the previous underestimation by the singlelayer soil relative to E-OBS. Although the model development leads to a reduction in temperature, this reduction turns out to be too large, so that the temperature bias is ultimately higher than in the singlelayer model version. However, since evapotranspiration has been significantly improved, this error can possibly be attributed to a temperature overtuning. The analysis of heat events investigating the summers of 2003 and 2018 has shown that the model development leads to an improved simulation of these events compared to the singlelayer scheme. While this is not true for the spatial behavior of the mean temperature, there is a clear improvement of its temporal one. Additionally, the better simulation of daily extreme temperatures, especially its minimum, leads to an increase of the daily temperature range. This is usually underestimated too much by climate models. The consideration of vertical water fluxes has shown that there is still enormous potential for model development with regard to (soil) hydrological processes. This is especially true for future simulations with convection-permitting resolution. Thus, subgrid information of the soil and the orography should be considered. On the one hand, this serves to represent existing heterogeneities and, on the other hand, can contribute to the improvement of existing processes, as shown by the example of infiltration schemes. Since the simulated drainage increases due to the multilayer soil scheme to the same extent as the surface runoff decreases, the water is subsequently no longer available to the model. Therefore, groundwater should also be considered in the model. A number of studies have found an added value from integrating this variable and related processes. In the medium term, however, coupling to a hydrological model is generally recommended in order to be able to adequately represent the processes relevant in high-resolution simulations. ParFlow or mHM, for example, are suitable for this purpose. Overall, it can be noted that the multilayer soil scheme provides an added value because variables like evapotranspiration and surface runoff, that are difficult to simulate and subsequently to be bias adjusted in postprocessing, are modeled much better than using the singlelayer scheme. This is also true for extreme temperatures. Both improvements are caused by the soil layering and associated processes. Regarding the data, it can be seen that the rooting depth, the consideration of SoilGrids, and the vertical soil information is are responsible for the further optimization. In addition, the higher information content available by representing the layered soil moisture can also be classified as an added value. KW - Klima KW - Modell KW - Klimamodell KW - Modellentwicklung KW - Bodenhydrologie KW - Bodenfeuchte KW - Landoberfläche-Atmosphäre Interaktion KW - climate model KW - model development KW - soil hydrology KW - soil moisture KW - land surface-atmosphere interaction Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-311468 ER - TY - THES A1 - Ring, Christoph T1 - Entwicklung und Vergleich von Gewichtungsmetriken zur Analyse probabilistischer Klimaprojektionen aktueller Modellensembles T1 - Development and comparison of metrics for probabilistic climate change projections of state-of-the-art climate models N2 - Der anthropogene Klimawandel ist eine der größten Herausforderungen des 21. Jahrhunderts. Eine Hauptschwierigkeit liegt dabei in der Unsicherheit bezüglich der regionalen Änderung von Niederschlag und Temperatur. Hierdurch wird die Entwicklung geeigneter Anpassungsstrategien deutlich erschwert. In der vorliegenden Arbeit werden vier Evaluationsansätze mit insgesamt 13 Metriken für aktuelle globale (zwei Generationen) und regionale Klimamodelle entwickelt und verglichen, um anschließend eine Analyse der Projektionsunsicherheit vorzunehmen. Basierend auf den erstellten Modellbewertungen werden durch Gewichtung Aussagen über den Unsicherheitsbereich des zukünftigen Klimas getroffen. Die Evaluation der Modelle wird im Mittelmeerraum sowie in acht Unterregionen durchgeführt. Dabei wird der saisonale Trend von Temperatur und Niederschlag im Evaluationszeitraum 1960–2009 ausgewertet. Zusätzlich wird für bestimmte Metriken jeweils das klimatologische Mittel oder die harmonischen Zeitreiheneigenschaften evaluiert. Abschließend werden zum Test der Übertragbarkeit der Ergebnisse neben den Hauptuntersuchungsgebieten sechs global verteilte Regionen untersucht. Außerdem wird die zeitliche Konsistenz durch Analyse eines zweiten, leicht versetzten Evaluationszeitraums behandelt, sowie die Abhängigkeit der Modellbewertungen von verschiedenen Referenzdaten mit Hilfe von insgesamt drei Referenzdatensätzen untersucht. Die Ergebnisse legen nahe, dass nahezu alle Metriken zur Modellevaluierung geeignet sind. Die Auswertung unterschiedlicher Variablen und Regionen erzeugt Modellbewertungen, die sich in den Kontext aktueller Forschungsergebnisse einfügen. So wurde die Leistung der globalen Klimamodelle der neusten Generation (2013) im Vergleich zur Vorgängergeneration (2007) im Schnitt ähnlich hoch bzw. in vielen Situationen auch stärker eingeordnet. Ein durchweg bestes Modell konnte nicht festgestellt werden. Der Großteil der entwickelten Metriken zeigt für ähnliche Situationen übereinstimmende Modellbewertungen. Bei der Gewichtung hat sich der Niederschlag als besonders geeignet herausgestellt. Grund hierfür sind die im Schnitt deutlichen Unterschiede der Modellleistungen in Zusammenhang mit einer geringeren Simulationsgüte. Umgekehrt zeigen die Metriken für die Modelle der Temperatur allgemein überwiegend hohe Evaluationsergebnisse, wodurch nur wenig Informationsgewinn durch Gewichtung erreicht werden kann. Während die Metriken gut für unterschiedliche Regionen und Skalenniveaus verwendet werden Evaluationszeiträume nicht grundsätzlich gegeben. Zusätzlich zeigen die Modellranglisten unterschiedlicher Regionen und Jahreszeiten häufig nur geringe Korrelationen. Dies gilt besonders für den Niederschlag. Bei der Temperatur sind hingegen leichte Übereinstimmungen auszumachen. Beim Vergleich der mittleren Ranglisten über alle Modellbewertungen und Situationen der Hauptregionen des Mittelmeerraums mit den Globalregionen besteht eine signifikante Korrelation von 0,39 für Temperatur, während sie für Niederschlag um null liegt. Dieses Ergebnis ist für alle drei verwendeten Referenzdatensätze im Mittelmeerraum gültig. So schwankt die Korrelation der Modellbewertungen des Niederschlags für unterschiedliche Referenzdatensätze immer um Null und die der Temperaturranglisten zwischen 0,36 und 0,44. Generell werden die Metriken als geeignete Evaluationswerkzeuge für Klimamodelle eingestuft. Daher können sie einen Beitrag zur Änderung des Unsicherheitsbereichs und damit zur Stärkung des Vertrauens in Klimaprojektionen leisten. Die Abhängigkeit der Modellbewertungen von Region und Untersuchungszeitraum muss dabei jedoch berücksichtigt werden. So besitzt die Analyse der Konsistenz von Modellbewertungen sowie der Stärken und Schwächen der Klimamodelle großes Potential für folgende Studien, um das Vertrauen in Modellprojektionen weiter zu steigern. N2 - Climate change is one of the major tasks of the 21st century. The uncertainty of precipitation and temperature change is considered as a main challenge in this context. Thus, the development of appropriate adaptation strategies is very difficult. In this study, four climate model evaluation approaches with 13 metrics in total are developed and compared. Current global (two generations) and regional climate models are evaluated to assess projection uncertainty. Based on model performances, weighting is applied to future climate projections to estimate simulation uncertainty. The evaluations are performed in the Mediterranean and eight sub-regions. Seasonal trend of temperature and precipitation are evaluated for the period 1960–2009. For some metrics, the climatological mean and the spectra of the time series are evaluated as well. In addition, six globally distributed study areas are evaluated to test the metrics’ transferability. Further, temporal consistency is assessed by the evaluation of a second slightly shifted timeframe. Finally, three reference datasets are considered in order to analyse the dependence of the evaluation results between each other. Results indicate that most metrics are suitable to evaluate climate models. Their application to different variables and regions generates reasonable model assessments which fit in the context of current publications in this field of research. In many situations, the results of the current model generation (2013) are similar or better compared to those of the last generation (2007). One single model with superior performance for all variables and situations cannot be found. Most metrics show similar estimations of performances for the same situations. Precipitation turned out to be more suitable for model weighting. Here, the differences between model weights are larger because of overall higher spread and lower model performances. Against this, there are mostly high performances on an equal level for simulations of temperature which lead to a minor added value of weighting. While metrics can easily be transferred and applied to different regions and scales, some evaluation results depend on the evaluated timeframe. Further, the model rankings for different regions and seasons show only minor correlations for most situations. This is particularly true for precipitation. However, for temperature there are some significant positive correlations. Comparing the mean ranking over all evaluation results of the main study areas of the Mediterranean with that of the globally distributed regions, there is a significant correlation of 0.39 for temperature and a correlation around zero for precipitation. The choice of reference dataset for the Mediterranean areas is subordinated in this context. For different reference datasets, the overall rankings show correlations around zero for precipitation while those for temperature are between 0.36 and 0.44. Overall, the metrics are suitable for the evaluation of climate models. Thus, they offer promising contributions to improve the range of uncertainty and therefore to enhance the general confidence in climate projections. However, dependence of model assessments on the analysed region and evaluation timeframe has to be considered. Consequently, the analyses of consistency of model evaluations and of climate model strengths and weaknesses have great potential for future studies, to further enhance confidence in climate projections. KW - Anthropogene Klimaänderung KW - Unsicherheit KW - Klima KW - Modellierung KW - Statistik KW - Evaluierung und Gewichtung von Klimamodellen KW - Niederschlag und Temperatur KW - weighting of climate models Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-157294 ER - TY - THES A1 - Pollinger, Felix T1 - Bewertung und Auswirkungen der Simulationsgüte führender Klimamoden in einem Multi-Modell Ensemble T1 - Evaluation and effects of the simulation quality of leading climate modes in a multi-model ensemble N2 - Der rezente und zukünftige Anstieg der atmosphärischen Treibhausgaskonzentration bedeutet für das terrestrische Klimasystem einen grundlegenden Wandel, der für die globale Gesellschaft schwer zu bewältigende Aufgaben und Herausforderungen bereit hält. Eine effektive, rühzeitige Anpassung an diesen Klimawandel profitiert dabei enorm von möglichst genauen Abschätzungen künftiger Klimaänderungen. Das geeignete Werkzeug hierfür sind Gekoppelte Atmosphäre Ozean Modelle (AOGCMs). Für solche Fragestellungen müssen allerdings weitreichende Annahmen über die zukünftigen klimarelevanten Randbedingungen getroffen werden. Individuelle Fehler dieser Klimamodelle, die aus der nicht perfekten Abbildung der realen Verhältnisse und Prozesse resultieren, erhöhen die Unsicherheit langfristiger Klimaprojektionen. So unterscheiden sich die Aussagen verschiedener AOGCMs im Hinblick auf den zukünftigen Klimawandel insbesondere bei regionaler Betrachtung, deutlich. Als Absicherung gegen Modellfehler werden üblicherweise die Ergebnisse mehrerer AOGCMs, eines Ensembles an Modellen, kombiniert. Um die Abschätzung des Klimawandels zu präzisieren, wird in der vorliegenden Arbeit der Versuch unternommen, eine Bewertung der Modellperformance der 24 AOGCMs, die an der dritten Phase des Vergleichsprojekts für gekoppelte Modelle (CMIP3) teilgenommen haben, zu erstellen. Auf dieser Basis wird dann eine nummerische Gewichtung für die Kombination des Ensembles erstellt. Zunächst werden die von den AOGCMs simulierten Klimatologien für einige grundlegende Klimaelemente mit den betreffenden klimatologien verschiedener Beobachtungsdatensätze quantitativ abgeglichen. Ein wichtiger methodischer Aspekt hierbei ist, dass auch die Unsicherheit der Beobachtungen, konkret Unterschiede zwischen verschiedenen Datensätzen, berücksichtigt werden. So zeigt sich, dass die Aussagen, die aus solchen Ansätzen resultieren, von zu vielen Unsicherheiten in den Referenzdaten beeinträchtigt werden, um generelle Aussagen zur Qualität von AOGCMs zu treffen. Die Nutzung der Köppen-Geiger Klassifikation offenbart jedoch, dass die prinzipielle Verteilung der bekannten Klimatypen im kompletten CMIP3 in vergleichbar guter Qualität reproduziert wird. Als Bewertungskriterium wird daher hier die Fähigkeit der AOGCMs die großskalige natürliche Klimavariabilität, konkret die hochkomplexe gekoppelte El Niño-Southern Oscillation (ENSO), realistisch abzubilden herangezogen. Es kann anhand verschiedener Aspekte des ENSO-Phänomens gezeigt werden, dass nicht alle AOGCMs hierzu mit gleicher Realitätsnähe in der Lage sind. Dies steht im Gegensatz zu den dominierenden Klimamoden der Außertropen, die modellübergreifend überzeugend repräsentiert werden. Die wichtigsten Moden werden, in globaler Betrachtung, in verschiedenen Beobachtungsdaten über einen neuen Ansatz identifiziert. So können für einige bekannte Zirkulationsmuster neue Indexdefinitionen gewonnen werden, die sich sowohl als äquivalent zu den Standardverfahren erweisen und im Vergleich zu diesen zudem eine deutliche Reduzierung des Rechenaufwandes bedeuten. Andere bekannte Moden werden dagegen als weniger bedeutsame, regionale Zirkulationsmuster eingestuft. Die hier vorgestellte Methode zur Beurteilung der Simulation von ENSO ist in guter Übereinstimmung mit anderen Ansätzen, ebenso die daraus folgende Bewertung der gesamten Performance der AOGCMs. Das Spektrum des Southern Oscillation-Index (SOI) stellt somit eine aussagekräftige Kenngröße der Modellqualität dar. Die Unterschiede in der Fähigkeit, das ENSO-System abzubilden, erweisen sich als signifikante Unsicherheitsquelle im Hinblick auf die zukünftige Entwicklung einiger fundamentaler und bedeutsamer Klimagrößen, konkret der globalen Mitteltemperatur, des SOIs selbst, sowie des indischen Monsuns. Ebenso zeigen sich signifikante Unterschiede für regionale Klimaänderungen zwischen zwei Teilensembles des CMIP3, die auf Grundlage der entwickelten Bewertungsfunktion eingeteilt werden. Jedoch sind diese Effekte im Allgemeinen nicht mit den Auswirkungen der anthropogenen Klimaänderungssignale im Multi-Modell Ensemble vergleichbar, die für die meisten Klimagrößen in einem robusten multivariaten Ansatz detektiert und quantifiziert werden können. Entsprechend sind die effektiven Klimaänderungen, die sich bei der Kombination aller Simulationen als grundlegende Aussage des CMIP3 unter den speziellen Randbedingungen ergeben nahezu unabhängig davon, ob alle Läufe mit dem gleichen Einfluss berücksichtigt werden, oder ob die erstellte nummerische Gewichtung verwendet wird. Als eine wesentliche Begründung hierfür kann die Spannbreite der Entwicklung des ENSO-Systems identifiziert werden. Dies bedeutet größere Schwankungen in den Ergebnissen der Modelle mit funktionierendem ENSO, was den Stellenwert der natürlichen Variabilität als Unsicherheitsquelle in Fragen des Klimawandels unterstreicht. Sowohl bei Betrachtung der Teilensembles als auch der Gewichtung wirken sich dadurch gegenläufige Trends im SOI ausgleichend auf die Entwicklung anderer Klimagrößen aus, was insbesondere bei letzterem Vorgehen signifikante mittlere Effekte des Ansatzes, verglichen mit der Verwendung des üblichen arithmetischen Multi-Modell Mittelwert, verhindert. N2 - The recent and future increase in atmospheric greenhouse gases will cause fundamental change in the terrestrial climate system, which will lead to enormous tasks and challenges for the global society. Effective and early adaptation to this climate change will benefit hugley from optimal possible estimates of future climate change. Coupled atmosphere-ocean models (AOGCMs) are the appropriate tool for this. However, to tackle these questions, it is necessary to make far reaching assumptions about the future climate-relevant boundary conditions. Furthermore there are individual errors in each climate model. These originate from flaws in reproducing the real climate system and result in a further increase of uncertainty with regards to long-range climate projections. Hence, concering future climate change, there are pronounced differences between the results of different AOGCMs, especially under a regional point of view. It is the usual approach to use a number of AOGCMs and combine their results as a safety measure against the influence of such model errors. In this thesis, an attempt is made to develop a valuation scheme and based on that a weighting scheme, for AOGCMs in order to narrow the range of climate change projections. The 24 models that were included in the third phase of the coupled model intercomparsion project (CMIP3) are used for this purpose. First some fundamental climatologies simulated by the AOGCMs are quantitatively compared to a number of observational data. An important methodological aspect of this approach is to explicitly address the uncertainty associated with the observational data. It is revealed that statements concerning the quality of climate models based on such hindcastig approaches might be flawed due to uncertainties about observational data. However, the application of the Köppen-Geiger classification reveales that all considered AOGCMs are capable of reproducing the fundamental distribution of observed types of climate. Thus, to evaluate the models, their ability to reproduce large-scale climate variability is chosen as the criterion. The focus is on one highly complex feature, the coupled El Niño-Southern Oscillation. Addressing several aspects of this climate mode, it is demonstrated that there are AOGCMs that are less successful in doing so than others. In contrast, all models reproduce the most dominant extratropical climate modes in a satisfying manner. The decision which modes are the most important is made using a distinct approach considering several global sets of observational data. This way, it is possible to add new definitions for the time series of some well-known climate patterns, which proof to be equivalent to the standard definitions. Along with this, other popular modes are identified as less important regional patterns. The presented approach to assess the simulation of ENSO is in good agreement with other approaches, as well as the resulting rating of the overall model performance. The spectrum of the timeseries of the Southern Oscillation Index (SOI) can thus be regarded as a sound parameter of the quality of AOGCMs. Differences in the ability to simulate a realistic ENSO-system prove to be a significant source of uncertainty with respect to the future development of some fundamental and important climate parameters, namely the global near-surface air mean temperature, the SOI itself and the Indian monsoon. In addition, there are significant differences in the patterns of regional climate change as simulated by two ensembles, which are constituted according to the evaluation function previously developed. However, these effects are overall not comparable to the multi-model ensembles’ anthropogenic induced climate change signals which can be detected and quantified using a robust multi-variate approach. If all individual simulations following a specific emission scenario are combined, the resulting climate change signals can be thought of as the fundamental message of CMIP3. It appears to be quite a stable one, more or less unaffected by the use of the derived weighting scheme instead of the common approach to use equal weights for all simulations. It is reasoned that this originates mainly from the range of trends in the SOI. Apparently, the group of models that seems to have a realistic ENSO-system also shows greater variations in terms of effective climate change. This underlines the importance of natural climate variability as a major source of uncertainty concerning climate change. For the SOI there are negative Trends in the multi-model ensemble as well as positive ones. Overall, these trends tend to stabilize the development of other climate parameters when various AOGCMs are combined, whether the two distinguished parts of CMIP3 are analyzed or the weighting scheme is applied. Especially in case of the latter method, this prevents significant effects on the mean change compared to the arithmetic multi-model mean. KW - Modell KW - Klima KW - Statistik KW - Anthropogene Klimaänderung KW - El-Niño-Phänomen KW - multi-model ensemble KW - großskalige Klimavariabilität KW - Gewichtung von Klimamodellen KW - large scale climate variability KW - weighting of climate models KW - Allgemeine atmosphärische Zirkulation KW - Klimatologie KW - Klimaänderung KW - Modellierung KW - Mathematisches Modell Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-97982 ER - TY - THES A1 - Riedlinger, Torsten T1 - Charakterisierung und Modellierung der interferierenden klimatischen, orographischen und anthropogenen Einflüsse auf die Landschaftsentwicklung des oberen Rio Guadalentín (Spanien) T1 - Characterizing and modelling interacting climatic, orographic and anthropogenic influences on the landscape evolution of the upper Rio Guadalentín catchment area (Spain) N2 - Mit der vorliegenden Arbeit wurde exemplarisch die holozäne Klima- und Landschaftsentwicklung für einen semiariden Natur- und Kulturraum in Südost-Spanien rekonstruiert. Dabei wurden unterschiedliche klimatologische, orographische und anthropogene Einflussfaktoren beschrieben und deren interdependentes Wirkungsgefüge abgeleitet. Dies erfolgte durch die Analyse des subrezenten Regionalklimas, anhand eines an die semi-ariden Bedingungen angepassten Wasserhaushaltsmodells sowie durch die Einbeziehung von stratigraphischen und geochemischen Untersuchungen an Sedimentaufschlüssen, die eine Interpretation der regionalen holozänen Klima- und Umweltgeschichte ermöglicht. Um eine Vergleichsbasis für die holozänen Klimabedingungen zu erhalten, wurde das Klima der letzten 50 Jahre im Hinblick auf subrezente Änderungen analysiert. Dazu wurden die räumlichen und zeitlichen Eigenschaften der Niederschlagsquantität und –intensität ausgewertet und beschrieben. Durch die differenzierte Gegenüberstellung der Resultate der verschiedenen Auswertever¬fahren wird eine detaillierte Beschreibung der rezenten und subrezenten pluvio-klimatischen Steuergrößen für das Untersuchungsgebiet möglich. Die Analysen zeigen, dass die 30 jährigen Mittelwerte der Jahresniederschlagssummen im Untersuchungsgebiet zwischen 281 und 426 mm schwanken und, entgegen dem für das westliche Mediterraneum postulierten negativen Trend, zunehmen. Die Anzahl der annuellen Niederschlagstage unterliegt einer hohen Variabilität, wenngleich ein positiver Trend der Starkniederschlagsereignisse, insbesondere für die Monate September und Oktober, zu erkennen ist. Dies ist vor dem Hintergrund der sommerlichen Trockenheit (40 bis 150 Tage) entscheidend, da frühherbstliche Starkniederschlagsereignisse aufgrund des erhöhten Oberflächenabflusses besonders erosionswirksam sind. Die relative annuelle Niederschlagsvariabilität im Untersuchungsgebiet erreicht bis zu 36 % und liegt damit teilweise über den Werten von ariden nordafrikanischen Gebieten. Ein deutlicher Unterschied des pluvio-klimatischen Regimes konnte im Untersuchungsgebiet in Abhängigkeit der orographischen Verhältnisse festgestellt werden. So schwanken die Werte für die Niederschlagssumme, -intensität und -dauer sowie zeitlichem Auftreten in Abhängigkeit von der umgebenden Reliefstruktur und Höhenlage deutlich. Um mögliche Veränderungen der ephemeren und periodischen Abflusscharakteristik sowie der Wasserhaushaltsgrößen ableiten zu können, wurde ein flächendifferenziertes Wasserhaushalts-Simulationsmodell an die semi-ariden Bedingungen des Untersuchungsgebietes angepasst. Auf der Basis der Modellergebnisse für die Jahre 1988 bis 1993 konnte gezeigt werden, dass der mittlere Gebietsniederschlag von rund 430 mm zu 87 % verdunstet, was auf die hohen Lufttemperaturen, die häufigen Strahlungswetterlagen, die Windverhältnisse sowie die reduzierte Wasseraufnahmefähigkeit des Bodens zurückgeführt wird. Die mittlere, modellierte Gesamtabflussspende beträgt lediglich 32 mm, was rund 7.5 % der Gebietsniederschlagssumme entspricht und als charakteristisch für semi-aride Naturräume angesehen werden kann. Die Änderung des Boden- und Grundwasser¬speichers von +24 mm wird teilweise durch die anthropogene Nutzung, durch Bewässerung und den Bau von Rückhaltebecken erklärt. Neben der hydrologischen Modellierung wurden des Weiteren Landbedeckungsszenarien erstellt und in das adaptierte Modell integriert, um die holozänen Umweltbedingungen zu rekonstruieren. Dabei hat sich gezeigt, dass unter potentiell natürlicher Vegetation eine Erhöhung der Bodenfeuchte und des Zwischenabflusses, eine Reduzierung des Oberflächenabflusses und eine Steigerung der potentiellen Evapotranspiration gegenüber dem heutigen Zustand erfolgt. Unter intensivierten Landnutzungsbedingungen, die möglicherweise zu Beginn des Subatlantikums geherrscht haben oder in Zukunft auftreten könnten, erfolgt hingegen eine Erhöhung des Oberflächenabflusses, eine Reduzierung der pflanzenverfügbaren Bodenfeuchte sowie eine verminderte aktuelle Evapotranspiration, wenngleich die Änderungs¬beträge geringer als in Szenario 1 ausfallen. Dies liegt vermutlich daran, dass die heutige Landnutzung mit Trockenfeldbau, Bewässerungskulturen und Weidewirtschaft als intensiv beschrieben werden kann und durch Landdegradation und Erosion gekennzeichnet ist. Dazu zählen insbesondere Erosionsprozesse, die durch fließendes Wasser, Wind oder durch Gravitation ausgelöst werden und vornehmlich auf steilen ackerbaulich und weidewirtschaftlich genutzten Flächen auftreten. Der Mensch greift seit der Antike in unterschiedlicher Intensität in dieses Prozessgeschehen ein, und verändert durch seine wirtschaftende Tätigkeit die Pflanzenbedeckung, die Bodeneigenschaften (z.B. Bodenwasserhaushalt) sowie das Mikro- und Mesorelief, und verstärkt oder vermindert damit die natürlichen Erosionsprozesse. Die anthropogenen Auswirkungen auf die historische Landschaftsentwicklung wurden in der vergleichenden Betrachtung der stratigraphischen und geochemischen Untersuchungen von drei Sedimentaufschlüssen aufgezeigt. Zwei Sedimentaufschlüsse im hydrologischen Einzugsgebiet des Río Caramel zeigen erhöhte Akkumulationsraten, steigende Anteile von organischem Kohlenstoff und eine Änderung der stratigraphischen Charakterisik für die letzten 3.000 Jahre BP an. Auf der Basis von geochemischen Untersuchungen der Sedimente wurden Verhältniswerte zwischen MgO/CaO, Fe2O3/MnO und SiO2/(CaO+MgO) bestimmt, deren Änderungen als Maß für die vorzeitlichen Umweltbedingungen angesehen werden können. Für das Spätglazial zeigen diese Untersuchungen relativ trockene Umweltbedingungen an. Zum Ende des Präboreals steigen die Indizes an und deuten auf eine Veränderung der Umweltbedingungen im Untersuchungsraum hin, deren Trend bis ins späte Subboreal anhält. Die feuchteste Phase erfolgt im Übergang zwischen Atlantikum und Subboreal und fällt somit mit dem Beginn der ackerbau¬lichen Nutzung der Region zusammen. Seither erfolgt eine Aridisierungstendenz, die mit kurzen Unterbrechungen das gesamte Subatlantikum andauert. Basierend auf den vorgestellten klimatischen und orographischen Analysen sowie unter Berücksichtigung der Resultate der Wasserhaushaltsmodellierung und Szenarien konnte in dieser interdisziplinären Arbeit ein Beitrag zur Rekonstruktion der subrezenten und holozänen Klima- und Umweltgeschichte des hydrologischen Einzugsgebietes des oberen Rio Guadalentín geleistet werden. Dieser Beitrag ist im übergeordneten Kontext der holozänen Forschung des westlichen Mediterraneums zu sehen, die ein besseres Verständnis der allgemeinen Landschafts- und Klimaentwicklung der letzten 10.000 Jahre für die Iberische Halbinsel ermöglicht. Insbesondere die Ergebnisse der stratigraphischen und geochemischen Untersuchungen der Sedimentaufschlüsse erscheinen im Hinblick auf die holozäne Umweltgeschichte für eine großräumige Übertragung geeignet, um die zukünftige Landschaftsentwicklung besser verstehen und prognostizieren zu können. N2 - The presented study focused on the reconstruction of the Holocene climatological and landscape evolution for a semiarid natural and cultural environment in southeast Spain. Climatological, orographical and anthropogenic influencing factors were described in order to derive and evaluate their interrelationships. This work is based on an analysis of the subrecent regional climate, on a water balance simulation model, as well as on the integration of stratigraphic and geochemical investigations of fluvial sediments, which themselves allow interpretation of the regional climate and environment history. As a basis for comparing the climatic conditions during the Holocene, the climatic changes in the last 50 years were analysed. For that purpose spatio-temporal precipitation properties like quantity, intensity and distribution were evaluated and described. Based on various analysis techniques a detailed description of recent and subrecent pluvio-climatological control factors for the investigation area was possible. Results show that the 30 year average for annual precipitation varies between 281 and 426 mm with an increase for the upper Rio Guadalentín catchment, contrary to the postulated negative trend for the western Mediterranean. The number of precipitation days is highly variable, although a positive trend towards rainfall with high amounts of precipitation is recognized. This is important against the background of summer dryness (40 to 150 days) because intensive rainfall in early autumn potentially leads to increased topsoil erosion. The comparative annual rainfall variability within the investigation area reaches up to 36 % and therefore partially exceeds the magnitude for arid environments in North Africa. The precipitation regime varies significantly in relation to the orographic characteristics. Hence, the variations in rainfall amount, intensity, duration and occurrence depend on the surrounding relief and altitude. A water balance simulation model was adapted to semiarid conditions in order to derive possible changes within the ephemeral and periodical runoff characteristics and to calculate water balance magnitudes. Model results for the 1988 to 1993 period reveal that 87 % of the average areal precipitation of approximately 430 mm evaporates due to high air temperatures, clear skies, wind conditions, and the reduced infiltration capacity of the topsoil. The simulated total area run-off predicts precipitation values up to 32 mm (approximately 7.5 % of the areal precipitation) and is considered characteristic for semiarid environments. The +24 mm change in soil and groundwater storage is partially explained by intense anthropogenic use, especially for irrigation and the construction of water storage reservoirs. Besides the hydrological modelling, land use scenarios were generated and integrated in the adapted model in order to reconstruct Holocene environmental conditions. It could be demonstrated with scenario 1, where potential natural vegetation cover increases the soil moisture and subsurface runoff, that surface runoff is reduced and the potential evapotranspiration increased in comparison to the present situation. Scenario 2 describes intensified land use conditions, which might have occurred during the Subatlantic or potentially can take place in the future. This simulation scenario shows that surface runoff increases while the soil moisture available to vegetation and the actual evapotranspiration decrease, although the changes are less obvious compared with scenario 1. This can be attributed to today’s intensive land use, which involves dry harvesting, crop irrigation and pasture farming, and is characterized by land degradation and erosion processes. The increased surface runoff, as simulated by scenario 2, can be attributed mainly to erosion processes induced by fluvial, eolian or gravity processes on steep slopes used for agriculture and pasture. Since ancient times human interaction has influenced natural processes through agricultural modification of the land cover, soil properties (e.g., water balance) and the micro- and meso-relief, all of which increase or decrease natural erosion processes. The anthropogenic impact on historical land use development was shown in a comparison of stratigraphic and geochemical studies for three fluvial sediment outcrops. Two sites within the Río Caramel catchment show increased accumulation rates and organic carbon content, as well as a modified stratigraphic characteristic for the last 3,000 years BP. Sediment geochemical analysis using MgO/CaO, Fe2O3/MnO and SiO2/ (CaO+MgO) ratios proved to be a measure for prehistoric and historic environmental conditions. Dry conditions were assumed for the late glacial environments. An increase in aridity for samples taken from the end of the Preboreal indicates a change in the climatic conditions within the study area. This trend continues until the late Subboreal and is thought to represent a change from dry to more humid climatological conditions. The most humid period takes place in the transition between the Atlantic and the Subboreal which coincides with the beginning of agriculture in the region. After those times conditions became dryer, which continued with short interruptions during the whole Subatlantic. Based on the presented climatological and orographic analysis and with regard to the results of the water balance simulation models and scenarios, this interdisciplinary study contributes to the research done in the field of reconstructing the subrecent and Holocene climatic and environmental history of the upper Rio Guadalentín catchment. This investigation has to be seen in the context of Holocene research of the western Mediterranean which strives for better understanding of the general landscape and climatic evolution of the Iberian Peninsula during the last 10,000 years. Especially the results of the stratigraphic and geochemical investigations of the sediment outcrops appear to be suitable for incorporation in a Holocene environmental history, as a contribution toward better understanding and forecasting landscape evolution. KW - Oberer Rio Guadalentín KW - Landschaftsentwicklung KW - Klima KW - Holozän KW - Orographie KW - Anthropogener Einfluss KW - Holozäne Klimaentwicklung KW - Landschaftsentwicklung KW - semi-arides Klima KW - hydrologische Modellierung KW - Landnutzungswandel KW - holocene climate change KW - landscape evolution KW - semi arid climate KW - hydrologic modelling KW - land use change Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-20633 ER -