TY - THES A1 - Selle, Reimer Andreas T1 - Adaptive Polarization Pulse Shaping and Modeling of Light-Matter Interactions with Neural Networks T1 - Adaptive Polarisationspulsformung und Modellierung von Licht-Materie-Wechselwirkungen mit Neuronalen Netzwerken N2 - The technique of ultrafast polarization shaping is applied to a model quantum system, the potassium dimer. The polarization dependence of the multiphoton ionization dynamics in this molecule is first investigated in pump–probe experiments, and it is then more generally addressed and exploited in an adaptive quantum control experiment utilizing near–IR polarization–shaped laser pulses. The extension of these polarization shaping techniques to the UV spectral range is presented, and methods for the generation and characterization of polarization–shaped laser pulses in the UV are introduced. Systematic scans of double–pulse sequences are introduced for the investigation and interpretation of control mechanisms. This concept is first introduced and illustrated for an optical demonstration experiment, and it is then applied for the analysis of the intrapulse dumping mechanism that is observed in the excitation of a large dye molecule in solution with ultrashort laser pulses. Shaped laser pulses are employed as a means for obtaining copious amounts of data on light–matter interactions. Neural networks are introduced as a novel tool for generating computer–based models for these interactions from the accumulated data. The viability of this approach is first tested for second harmonic generation (SHG) and molecular fluorescence processes. Neural networks are then utilized for modeling the far more complex coherent strong–field dynamics of potassium atoms. N2 - Die Technik der ultraschnellen Polarisationspulsformung wird auf ein Modell-Quantensystem, das Kalium-Dimer angewandt. Die Polarisationsabhängigkeit der Ionisationsdynamik wird zunächst mit Anrege-Abfrage-Experimenten untersucht, und anschließend in einem adaptiven Optimierungsexperiment mit polarisationsgeformten Nahinfrarot-Laserpulsen ausgenutzt. Die Polarisationspulsformungstechnik wird auf den ultravioletten Spektralbereich erweitert, und es werden Methoden zur Erzeugung und Charakterisierung von polarisationsgeformten UV-Pulsen vorgestellt. Systematische Abtastungen von Doppelpulsfolgen werden für die Untersuchung und Interpretation von Kontrollmechanismen vorgestellt. Geformte Laserpulse werden verwendet, um umfangreiche Daten über die Licht-Materie Wechselwirkung zu sammeln. Neuronale Netzwerke werden erstmals dazu verwendet, um aus den Daten numerische Modelle für die Wechselwirkung von Licht und Materie zu erzeugen. Die Durchführbarkeit dieses Ansatzes wird zunächst an SHG und Fluoreszenzprozessen demonstriert. Neuronale Netzwerke werden desweiteren dazu verwendet, um die weitaus komplexere Dynamik von Kaliumatomen in starken elektromagnetischen Feldern zu modellieren. KW - Lasertechnologie KW - Impulslaser KW - Optimale Kontrolle KW - Pulsformung KW - Neuronale Netzwerke KW - adaptive Optimierung KW - Polarisation KW - pulse shaping KW - neural networks KW - adaptive optimization KW - polarization Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-25596 ER - TY - THES A1 - Weinhold, Dietmar Thomas T1 - Transfektion migrierender Nierenepithelzellen mit dem Kalium-Kanal ROMK2 T1 - Transfection of migrating renal epithelial cells with the potassium channel ROMK2 N2 - Epithelzellen sind entlang einer apico-basolateralen Achse polarisiert. Die korrekte Insertion von Ionenkanälen und Transportproteinen ist für die normale Epithelfunktion unerlässlich. Im Gegensatz dazu sind migrierende Zellen in ihrer Bewegungsebene polarisiert, mit einem Lamellipodium und Zellkörper, die als Vorder- und Hinterende der Zell zu verstehen sind. In vorhergehenden Un- tersuchungen konnte gezeigt werden, dass Ionenkanäle und Transporter in be- stimmten Regionen von migrierenden Nierenepithelzellen (MDCK-F-Zellen) zu fin- den sind (z. B.: NHE1, Cl/HCO -Austauscher AE2). Diese reichern sich am Vor- derende der MDCK-F-Zellen an. Es war nicht bekannt, wo sich Markerproteine der apikalen Membran wiederfinden. Um dieser Frage nachzugehen, transfizierte ich MDCK-F-Zellen stabil mit dem Kalium-Kanal ROMK2. Dieser wird in der apikalen Membran im Nierensammelbecken expressioniert. Transfizierte Zellklone konnten durch Subcloning und RT-PCR-Experimente mit spezifischen ROMK2-Primern gefun- den werden. Desweiteren wurden Patch-Clamp-Experimente im Ganzzellmodus durch- geführt, um die Insertion von funktionellen ROMK2-Kanälen in die Zellmembran von transfizierten MDCK-F-Zellen nachzuweisen. Die mit dem Kalium-Kanal trans- fizierten Zellen produzieren einen Barium-hemmbaren Kalium-Strom, der in Mock- transfizierten Zellen nicht nachzuweisen war. Mock-transfizierte MDCK-F-Zellen migrieren mit einer Geschwindigkeit von ca 1,1 µm/min. Im Gegensatz dazu re- duziert die Insertion von ROMK2-Kanälen die Migrationsgeschwindigkeit auf 0,7 µm/min.In immunhistochemischen Experimenten konnte eine diffuse Verteilung des ROMK2 in MDCk-F-Zellen gezeigt werden. Diese Ergebnisse deuten darauf hin, daß es für 'apikale' und basolaterale' Proteine verschiedene intrazelluläre Transportwege in die Plasmamembran von migrierenden Zellen gibt. N2 - Differentiated epithelial cells are polarized along an apico-basolateral axis and the insertion of ion channels and transporters into apical and basolateral membranes is a prerequisite for normal epithelial function. In contrast, migrating cells are polarized within the plane of movement with lamellipodium and cell body representing fromt and rear end of the cell. Previously, it was shown that ion channels and transporters are distributed unevenly in migrating renal epithelial MDCK-F cells. Proteins which are found in the basolateral membrane of differented epithelial cells (e. g. Cl/HCO exchanger AE2) are concentrated at the front of MDCK-F cells. It was unknown whether marker pro- teins of the apical membrane are also distributed unevenly in MDCK-F cells. To adress this question and gain more insight into the sorting mechanisms in mig- rating cells, I stably transfected the potassium channel ROMK2 into MDCK-F cells. ROMK2 is found in the apical membrane of the renal collecting duct. Transfected cell clones were identified by subcloning and sequencing RT-PCR products amplified with specific ROMK2 primers. I performed patch clamp ex- periments in the whole cell configuration in order to demonstrate the inser- tion of functional ROMK2 channels into the membrane of transfected MDCK-F cells. ROMK2 transfected MDCK-F cells express a Barium-sensitive potassium current which is absent in mock-transfected cells. While mock-transfected cells migrate at a rate of 1.1 µm/min ROMK2 channel expression reduces the rate of migration to 0.7 µm/min. The immunocytochemical analysis revealed a diffuse distribution of the ROMK2 protein in MDCK-F cells. These results pro- vide evidence that 'apical' and 'basolateral' proteins are delivered to the plasma membrane of migrating cells via distinct intracellular transport ways. KW - Zellmigration KW - Niere KW - Epithelzelle KW - Polarisation KW - Migration KW - ROMK2 KW - MDCK-F-Zellen KW - Polarisation KW - Sorting KW - Migration KW - ROMK2 KW - MDCK-F cells KW - Polarisation KW - Sorting Y1 - 2001 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-339 ER -