TY - THES A1 - Krauß, Manuel Ernst T1 - Non-minimal supersymmetric models: LHC phenomenology and model discrimination T1 - Nichtminimale supersymmetrische Modelle: LHC-Phänomenologie und Modellunterscheidung N2 - It is generally agreed upon the fact that the Standard Model of particle physics can only be viewed as an effective theory that needs to be extended as it leaves some essential questions unanswered. The exact realization of the necessary extension is subject to discussion. Supersymmetry is among the most promising approaches to physics beyond the Standard Model as it can simultaneously solve the hierarchy problem and provide an explanation for the dark matter abundance in the universe. Despite further virtues like gauge coupling unification and radiative electroweak symmetry breaking, minimal supersymmetric models cannot be the ultimate answer to the open questions of the Standard Model as they still do not incorporate neutrino masses and are besides heavily constrained by LHC data. This does, however, not derogate the beauty of the concept of supersymmetry. It is therefore time to explore non-minimal supersymmetric models which are able to close these gaps, review their consistency, test them against experimental data and provide prospects for future experiments. The goal of this thesis is to contribute to this process by exploring an extraordinarily well motivated class of models which bases upon a left-right symmetric gauge group. While relaxing the tension with LHC data, those models automatically include the ingredients for neutrino masses. We start with a left-right supersymmetric model at the TeV scale in which scalar \(SU(2)_R\) triplets are responsible for the breaking of left-right symmetry as well as for the generation of neutrino masses. Although a tachyonic doubly-charged scalar is present at tree-level in this kind of models, we show by performing the first complete one-loop evaluation that it gains a real mass at the loop level. The constraints on the predicted additional charged gauge bosons are then evaluated using LHC data, and we find that we can explain small excesses in the data of which the current LHC run will reveal if they are actual new physics signals or just background fluctuations. In a careful evaluation of the loop-corrected scalar potential we then identify parameter regions in which the vacuum with the phenomenologically correct symmetry-breaking properties is stable. Conveniently, those regions favour low left-right symmetry breaking scales which are accessible at the LHC. In a slightly modified version of this model where a \(U(1)_R × U(1)_{B−L}\) gauge symmetry survives down to the TeV scale, we implement a minimal gauge-mediated supersymmetry breaking mechanism for which we calculate the boundary conditions in the presence of gauge kinetic mixing. We show how the presence of the extended gauge group raises the tree-level Higgs mass considerably so that the need for heavy supersymmetric spectra is relaxed. Taking the constraints from the Higgs sector into account, we then explore the LHC phenomenology of this model and point out where the expected collider signatures can be distinguished from standard scenarios. In particular if neutrino masses are explained by low-scale seesaw mechanisms as is done throughout this work, there are potentially spectacular signals at low-energy experiments which search for charged lepton flavour violation. The last part of this thesis is dedicated to the detailed exploration of processes like μ → e γ, μ → 3 e or μ−e conversion in nuclei in a supersymmetric framework with an inverse seesaw mechanism. In particular, we disprove claims about a non-decoupling effect in Z-mediated three-body decays and study the prospects for discovering and distinguishing signals at near-future experiments. In this context we identify the possibility to deduce from ratios like BR(\(τ → 3 μ\))/BR(\(τ → μ e^+ e^−\)) whether the contributions from ν − W loops dominate over supersymmetric contributions or vice versa. N2 - Man ist sich einig darüber, dass das Standardmodell der Teilchenphysik in seiner aktuellen Form nicht der Weisheit letzter Schluss ist – zu viele grundlegende Fragen lässt es offen. Lediglich die genaue Form der nötigen Erweiterung wird heiß debattiert. Supersymmetrische Modelle gehören zu den vielversprechendsten Ansätzen zu Physik jenseits des Standardmodells, da sie gleichzeiting das Hierarchieproblem lösen und die Dichte der beobachteten dunklen Materie im Universum erklären können. Obwohl das minimale supersymmetrische Modell weitere Vorzüge vorzuweisen hat – hierzu gehört die Vereinheitlichung der Eichkopplungen an großen Skalen sowie radiative elektroschwache Symmetriebrechung – sprechen die aktuellen Messungen am LHC eine andere Sprache. Zudem sind auch in diesem Modell die Neutrinos masselos, sodass es nicht die endgültige Theorie darstellen kann. Dies mindert jedoch nicht die Schönheit des Konzepts der Supersymmetrie, weshalb es an der Zeit ist, nichtminimale supersymmetrische Modelle zu untersuchen, welche die o. g. Probleme nicht aufweisen. Diese Modelle müssen auf Herz und Nieren geprüft werden, bevor man sie mit experimentellen Daten vergleichen und Vorhersagen für zukünftige Experimente treffen kann. Das Ziel dieser Arbeit ist es, zu diesem wichtigen Prozess beizutragen. Hierzu soll die besonders aussichtsreiche Klasse von supersymmetrischen Modellen, welche auf einer links-rechts-Eichsymmetrie basieren, genau untersucht werden. Diese Modelle sind deutlich weniger von LHC-Ausschlussgrenzen betroffen und sagen zudem rechtshändige Neutrinos voraus, mit welchen die leichten Neutrinomassen erklärt werden können. Zu Beginn wenden wir uns einem links-rechts-supersymmetrischen Modell an der TeV-Skala zu, in welchem \(SU(2)_R\) -Tripletts sowohl für die Brechung der Links-Rechts-Symmetrie als auch für die Generation von Neutrinomassen verantwortlich sind. Zur führenden Ordnung in der Störungstheorie beinhaltet diese Art von Modellen ein tachyonisches doppelt geladenes Skalarfeld. Wir wenden uns der Ermittlung der zugehörigen Masse auf dem Einschleifenniveau zu und zeigen erstmals in einer konsistenten, vollständigen Berechnung derselben, dass die Masse im Allgemeinen reell ist. Anschließend werden die Beschränkungen an die Links-Rechts-Brechungsskala aus aktuellen LHC-Daten ermittelt. Wir zeigen, dass unser Modell gewisse Signal- Uberschüsse in jenen Daten erklären kann – der aktuelle LHC-Lauf wird klären, ob diese tatsächlich neuer Physik oder doch nur statistischen Fluktuationen entsprechen. Schließlich bestimmen wir in einer Untersuchung der Vakuumstruktur auf dem Einschleifenniveau diejenigen Parameterregionen, in welchen die phänomenologisch korrekte elektroschwache Symmetriebrechung angenommen wird. Passenderweise werden Regionen bevorzugt, welche messbare Signale am LHC vorhersagen. In einem leicht unterschiedlichen Modell, in dem eine \(U(1)_R × U(1)_{B−L}\) bis herunter an die TeV-Skala überleben kann, implementieren wir einen über Eichwechselwirkungen vermittelten Supersymmetrie-Brechungsmechanismus, mit besonderem Augenmerk auf die eichkinetische Mischung in den Randbedingungen. Durch die erweiterte Eichgruppe wird die Higgsmasse bereits auf führender Ordnung erhöht. Wir ermitteln die Konsequenzen für die Skala der Supersymmetrie-Brechungsskala. Anschließend untersuchen wir die am LHC zu erwartende Phänomenologie und zeigen auf, in welchen Prozessen sich dieses Modell von Standard-Szenarien unterscheidet. Durch diese Arbeit hinweg nehmen wir an, dass die leichten Neutrinomassen duch einen Seesaw-Mechanismus an der TeV-Skala erklärt werden. Dass dies zu potentiell höchst interessanten Signalen in Niederenergieexperimenten führt, wird im letzten Teil dieser Arbeit thematisiert. Der Fokus liegt hierbei auf Lepton-Flavour-verletzenden Prozessen wie μ → e γ, μ → 3 e oder die μ−e-Umwandlung in Atomkernen, welche wir im Rahmen eines supersymmetrischen Modells mit inversem Seesaw-Mechanismus genauer untersuchen. Insbesondere widerlegen wir Behauptungen von nichtentkoppelnden Z-Pinguin-Diagrammen und untersuchen die Aussichten, Signale an zukünftigen Experimenten zu messen sowie Rückschlüsse auf das zugrundeliegende Modell ziehen zu können. In diesem Zusammenhang demonstrieren wir die Möglichkeit, durch die relativen Verhältnisse von Verzweigungsverhältnissen wie BR(\(τ → 3 μ\))/BR(\(τ → μ e^+ e^−\)) unterscheiden zu können, ob die zugehörigen Prozesse hauptsächlich durch supersymmetrische oder durch W − ν-Diagramme herbeigeführt wurden. KW - Supersymmetrie KW - Standardmodell KW - beyond Standard Model KW - Physik jenseits des Standardmodells KW - lepton flavour violation KW - extra gauge bosons KW - extended gauge symmetry KW - Lepton-Flavour-Verletzung KW - extra Eichbosonen KW - erweiterte Eichsymmetrie KW - LHC KW - Vektorboson KW - Higgs-Teilchen Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-123555 ER - TY - THES A1 - Schreyer, Manuel T1 - Search for supersymmetry in events containing light leptons, jets and missing transverse momentum in \(\sqrt{s}\) = 8 TeV pp collisions with the ATLAS detector T1 - Suche nach Supersymmetrie in Ereignissen mit leichten Leptonen, Jets und fehlendem Transversalimpuls in pp-Kollisionen bei \(\sqrt{s}\) = 8 TeV mit dem ATLAS-Detektor N2 - The results of two analyses searching for supersymmetry (SUSY) in data of the ATLAS experiment are presented in this thesis. The data were recorded in proton-proton collisions at the Large Hadron Collider in 2012 at a centre of mass energy of \(\sqrt{s}\)=8 TeV and correspond to an integrated luminosity of 20.3 fb\(^{−1}\). The first search is performed in signatures containing an opposite-sign electron or muon pair, which is compatible with originating from a Z boson decay, in addition to jets and large missing transverse momentum. The analysis targets the production of squarks and gluinos in R-parity conserving (RPC) models with SUSY breaking via General Gauge Mediation (GGM). The main Standard Model (SM) backgrounds are \(t\overline t\), WW, W+t and Z to \(\tau \tau\) processes which are entirely estimated from data using different-flavour events. Besides that, the SM production of Z bosons in association with jets and large fake missing momentum from mismeasurements plays a role and is predicted with the data-driven jet smearing method. Backgrounds from events with fake leptons are estimated with the data-driven matrix method. WZ/ZZ production as well as smaller background contributions are determined from Monte-Carlo simulations. The search observes an excess of data over the SM prediction with a local significance of 3.0 \(\sigma\) in the electron channel, 1.7 \(\sigma\) in the muon channel and 3.0 \(\sigma\) when the two channels are added together. The results are used to constrain the parameters of the GGM model. The second analysis uses the already published results of an ATLAS search for SUSY in events with one isolated electron or muon, jets and missing transverse momentum to reinterpret them in the context of squark and gluino production in SUSY models with R-parity violating (RPV) \(LQ\overline D\)-operators. In contrast to RPC models, the lightest SUSY particle (LSP) is not stable but decays into SM particles. "Standard" analyses often do not consider SUSY models with RPV although they are in principle sensitive to them. The exclusion limits on the squark and gluino mass obtained from the reinterpretation extend up to 1200 GeV. These are the first results by any ATLAS SUSY search which systematically cover a wide range of RPV couplings in the case of prompt LSP decays. However, the analysis is not sensitive to the full parameter space of the \(LQ\overline D\)-model and reveals gaps in the ATLAS SUSY program which have to be closed by dedicated search strategies in the future. N2 - In dieser Arbeit werden die Ergebnisse von zwei Suchen nach Supersymmetrie (SUSY) in Daten des ATLAS-Experiments präsentiert. Die Messdaten wurden im Jahr 2012 in Proton-Proton-Kollisionen am Large Hadron Collider bei einer Schwerpunktsenergie von \(\sqrt{s}\) = 8 TeV gewonnen und entsprechen einer integrierten Luminosität von 20,3 fb\(^{−1}\). Die erste Suche verwendet Signaturen mit Jets, großem fehlenden Transversalimpuls sowie einem Elektron- oder Myonpaar mit entgegengesetzter Ladung, dessen Eigenschaften mit einem Leptonpaar aus dem Zerfall eines Z-Bosons vereinbar sind. Die Analyse zielt auf die Untersuchung von Squark- und Gluinoproduktion im Rahmen R-paritätserhaltender (RPC) Modelle mit SUSY-Brechung durch General Gauge Mediation (GGM) ab. Die Hauptuntergründe des Standardmodells (SM) sind \(t\overline t\), WW, W+t und Z nach \(\tau \tau\) Prozesse. Diese werden komplett aus den Daten selbst unter Verwendung von Ereignissen mit Leptonpaaren unterschiedlichen Flavours abgeschätzt. Daneben spielt der Untergrund aus der SM-Produktion von Z-Bosonen in Verbindung mit Jets und großem fehlenden Impuls, der durch Fehlmessungen fälschlicherweise rekonstruiert wird, ein Rolle. Dieser wird mit der datengestützten Jet-Smearing-Methode abgeschätzt. Der Hintergrundbeitrag von Ereignissen mit fehlidentifizierten Leptonen wird mit der datengestützten Matrix-Methode bestimmt, während die Produktion von WZ/ZZ-Paaren sowie kleinere Untergrundprozesse mit Hilfe von Monte-Carlo-Simulationen abgeschätzt werden. Die Suche beobachtet einen Überschuss an Daten über der SM-Vorhersage mit einer lokalen Signifikanz von 3,0 \(\sigma\) im Elektronkanal, 1,7 \(\sigma\) im Myonkanal und 3,0 \(\sigma\), wenn beide Kanäle zusammengezählt werden. Mit den Ergebnissen lassen sich die Parameter des GGM-Modells einschränken. Die zweite Analyse interpretiert die bereits veröffentlichten Ergebnisse einer ATLAS SUSY-Suche in Ereignissen mit einem isolierten Elektron oder Myon, Jets und fehlendem Transversalimpuls im Rahmen von Squark- und Gluinoproduktion in SUSY-Modellen, in denen die R-Parität durch \(LQ\overline D\)-Operatoren verletzt wird. Im Gegensatz zu RPC-Modellen ist das leichteste SUSY-Teilchen (LSP) dort nicht stabil, sondern zerfällt in SM-Teilchen. R-paritätsverletzende (RPV) SUSY-Modelle werden von "Standardanalysen" oft vernachlässigt, obwohl diese prinzipiell sensitiv auf RPV SUSY sind. Die Ausschlussgrenzen auf die Squark- und Gluinomasse, die sich aus der Reinterpretation ergeben, reichen bis zu 1200 GeV. Dies sind die ersten derartigen Ergebnisse einer ATLAS SUSY-Suche, die einen großen Bereich möglicher RPV-Kopplungen für den Fall prompter LSP-Zerfälle auf systematische Art und Weise abdecken. Allerdings ist die Analyse nicht im gesamten Parameterraum des \(LQ\overline D\)-Modells sensitiv und deckt somit Lücken im ATLAS SUSY-Programm auf. Diese sollten in Zukunft durch speziell optimierte Suchstrategien geschlossen werden. KW - Supersymmetrie KW - Supersymmetry KW - Supersymmetrie KW - LHC KW - ATLAS-Detektor KW - Neue Physik KW - New physics KW - ATLAS KW - Proton-Proton-Streuung Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-120863 ER - TY - THES A1 - Krauß, Martin Bernhard T1 - Testing Models with Higher Dimensional Effective Interactions at the LHC and Dark Matter Experiments T1 - Tests von Modellen mit höherdimensionalen effektiven Operatoren am LHC und Experimenten zur Suche dunkler Materie N2 - Dark matter and non-zero neutrino masses are possible hints for new physics beyond the Standard Model of particle physics. Such potential consequences of new physics can be described by effective field theories in a model independent way. It is possible that the dominant contribution to low-energy effects of new physics is generated by operators of dimension d>5, e.g., due to an additional symmetry. Since these are more suppressed than the usually discussed lower dimensional operators, they can lead to extremly weak interactions even if new physics appears at comparatively low scales. Thus neutrino mass models can be connected to TeV scale physics, for instance. The possible existence of TeV scale particles is interesting, since they can be potentially observed at collider experiments, such as the Large Hadron Collider. Hence, we first recapitulate the generation of neutrino masses by higher dimensional effective operators in a supersymmetric framework. In addition, we discuss processes that can be used to test these models at the Large Hadron Collider. The introduction of new particles can affect the running of gauge couplings. Hence, we study the compatibilty of these models with Grand Unified Theories. The required extension of these models can imply the existence of new heavy quarks, which requires the consideration of cosmological constraints. Finally, higher dimensional effective operators can not only generate small neutrino masses. They also can be used to discuss the interactions relevant for dark matter detection experiments. Thus we apply the methods established for the study of neutrino mass models to the systematic discussion of higher dimensional effective operators generating dark matter interactions. N2 - Dunkle Materie und nichtverschwindende Neutrinomassen sind nur zwei Hinweise auf das mögliche Vorhandensein neuer Physik jenseits des Standardmodells der Teilchenphysik. Solche möglichen Konsequenzen neuer Physik können modellunabhängig mit effektiven Feldtheorien beschrieben werden. Beispielsweise aufgrund zusätzlicher Symmetrien ist es möglich, dass Operatoren mit Dimension $d>5$ den dominanten Beitrag zu den Effekten neuer Physik bei niedrigen Energieskalen liefern. Da diese stärker unterdrückt sind als die gewöhnlicherweise betrachteten Operatoren niedrigerer Dimension, können sie zu äußerst schwachen Wechselwirkungen führen, selbst wenn neue Physik bereits bei vergleichsweise niedrigen Energien auftritt. Dies ermöglicht unter anderem neue Teilchen mit Massen im Bereich der TeV-Skala mit der Erzeugung der sehr geringen Neutrinomassen in Verbindung zu bringen. Solche Teilchen sind besonders interessant, da sie an Beschleunigerexperimenten wie dem Large Hadron Collider untersucht werden können. Deswegen wird in dieser Arbeit zunächst die Erzeugung von Neutrinomassen durch höherdimensionale effektive Operatoren in supersymmetrischen Modellen rekapituliert. Darüber hinaus sollen mögliche Prozesse zum Nachweis dieser Modelle am Large Hadron Collider anhand eines Beispiels diskutiert werden. Da das Einführen neuer Teilchen das Laufen der Kopplungskonstanten beeinflussen kann, wird ferner betrachtet, inwiefern solche Szenarien vereinbar mit großen vereinheitlichten Theorien (Grand Unified Theories) sind. Die entsprechende Erweiterung dieser Modelle kann beispielsweise das Auftreten neuer schwerer Quarks zur Folge haben, die auf ihre Vereinbarkeit mit kosmologischen Beobachtungen untersucht werden. Höherdimensionale Operatoren können jedoch nicht nur sehr kleine Neutrinomassen erzeugen, sondern auch für Experimente zum Nachweis dunkler Materie relevant sein. Daher sollen die zuvor angewandten Methoden zur systematischen Diskussion effektiver Operatoren, die Wechselwirkungen dunkler Materie beschreiben, verwendet werden. KW - Neutrino KW - Supersymmetrie KW - Dunkle Materie KW - Effektive Theorie KW - Theoretische Teilchenphysik KW - Theoretical High Energy Physics KW - Neutrino Physics KW - Neutrinophysik KW - Supersymmetry KW - Supersymmetrie KW - Dark Matter KW - Dunkle Materie KW - Effective Field Theory KW - Effektive Feldtheorien KW - Elementarteilchenphysik Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-94519 ER - TY - THES A1 - Liebler, Stefan T1 - LHC phenomenology and higher order electroweak corrections in supersymmetric models with and without R-parity T1 - LHC Phänomenologie und elektroschwache Korrekturen in SUSY Modellen mit und ohne R-Parität N2 - During the last decades the standard model of particle physics has evolved to one of the most precise theories in physics, describing the properties and interactions of fundamental particles in various experiments with a high accuracy. However it lacks on some shortcomings from experimental as well as from theoretical point of view: There is no approved mechanism for the generation of masses of the fundamental particles, in particular also not for the light, but massive neutrinos. In addition the standard model does not provide an explanation for the observance of dark matter in the universe. Moreover the gauge couplings of the three forces in the standard model do not unify, implying that a fundamental theory combining all forces can not be formulated. Within this thesis we address supersymmetric models as answers to these various questions, but instead of focusing on the most simple supersymmetrization of the standard model, we consider basic extensions, namely the next-to-minimal supersymmetric standard model (NMSSM), which contains an additional singlet field, and R-parity violating models. R-parity is a discrete symmetry introduced to guarantee the stability of the proton. Using lepton number violating terms in the context of bilinear R-parity violation and the munuSSM we are able to explain neutrino physics intrinsically supersymmetric, since those terms induce a mixing between the neutralinos and the neutrinos. Since 2009 the Large Hadron Collider (LHC) at CERN explores the new energy regime of Tera-electronvolt, allowing the production of potentially existing heavy particles by the collision of protons. Thus the near future might provide answers to the open questions of mass generation in the standard model and show hints towards physics beyond the standard model. Therefore this thesis works out the phenomenology of the supersymmetric models under consideration and tries to point out differences to the well-known features of the simplest supersymmetric realization of the standard model. In case of the R-parity violating models the decays of the light neutralinos can result in displaced vertices. In combination with a light singlet state these displaced vertices might offer a rich phenomenology like non-standard Higgs decays into a pair of singlinos decaying with displaced vertices. Within this thesis we present some calculations at next order of perturbation theory, since one-loop corrections provide possibly large contributions to the tree-level masses and decay widths. We are using an on-shell renormalization scheme to calculate the masses of neutralinos and charginos including the neutrinos and leptons in case of the R-parity violating models at one-loop level. The discussion shows the similarities and differences to existing calculations in another renormalization scheme, namely the DRbar scheme. Moreover we consider two-body decays of the form chi_j^0 -> chi_l^\pm W^\mp involving a heavy gauge boson in the final state at one-loop level. Corrections are found to be large in case of small or vanishing tree-level decay widths and also for the R-parity violating decay of the lightest neutralino chi_1^0 -> l^\pm W^\mp. An interesting feature of the models based on bilinear R-parity violation is the correlation between the branching ratios of the lightest neutralino decays and the neutrino mixing angles. We discuss these relations at tree-level and for two-body decays chi_1^0 -> l^\pm W^\mp also at one-loop level, since only the full one-loop corrections result in the tree-level expected behavior. The appendix describes the two programs MaCoR and CNNDecays being developed for the analysis carried out in this thesis. MaCoR allows for the calculation of mass matrices and couplings in the models under consideration and CNNDecays is used for the one-loop calculations of neutralino and chargino mass matrices and the two-body decay widths. N2 - Das heutige Standardmodell der Teilchenphysik ist eine der präzisesten Theorien der Physik, welche die Eigenschaften der bekannten Elementarteilchen und deren Wechselwirkungen in zahlreichen Experimenten mit hoher Genauigkeit beschreibt. Gleichwohl zeigt es Schwachpunkte auf experimenteller wie theoretischer Seite: Zwar gibt es mit dem Higgs-Mechanismus einen theoretischen Ansatz für die Erzeugung von Massen der Elementarteilchen im Standardmodell, jedoch ist dieser experimentell (noch) nicht nachgewiesen. Insbesondere benötigt das Standardmodell für die Erklärung der leichten Massen der Neutrinos noch eine Erweiterung. Darüber hinaus liefert das Standardmodell keinen Kandidaten für dunkle Materie, welche den dominanten Anteil der Materie im Universum ausmacht. Antworten auf viele dieser Fragestellungen liefern supersymmetrische Modelle, auf denen auch diese Arbeit fußt. Statt der einfachsten supersymmetrischen Realisierung des Standardmodells beschäftigen wir uns mit Erweiterungen, darunter das nächstminimale supersymmetrischen Standardmodell (NMSSM), welches ein zusätzliches Singletfeld enthält, sowie R-Paritätsverletzende Modelle. R-Parität ist eine diskrete Symmetrie, die die Stabilität des Protons in supersymmetrischen Erweiterungen garantiert. Die Nutzung von leptonzahlverletzenden Termen im Kontext von bilinearer R-Paritätsverletzung und dem munuSSM erlaubt die Erklärung von Neutrinodaten, da besagte Terme eine Mischung der Neutralinos mit den Neutrinos bewirken. Seit 2009 stößt der Large Hadron Collider'' (Großer Hardonenbeschleuniger, LHC) am CERN in Genf in den Energiebereich von Teraelektronenvolt vor und erlaubt so die Produktion von schweren, noch unbekannten Teilchen. Somit könnte die nahe Zukunft die Frage nach der Massenerzeugung im Standardmodell beantworten und Hinweise auf neue Physik liefern. Daher arbeiten wir die Phänomenologie der oben erwähnten supersymmetrischen Modelle an Beschleunigerexperimenten heraus und diskutieren die Unterschiede zur einfachsten supersymmetrischen Realisierung des Standardmodells. Im Falle von R-Paritätsverletzung können die Zerfälle des leichtesten Neutralinos Vertices mit Abstand zum Wechselwirkungspunkt erzeugen. In Kombination mit leichten singletartigen Teilchen können diese Zerfälle eine reiche Phänomenologie bereithalten wie beispielsweise Higgszerfälle in leichte singletartige Neutralinos, welche vor ihrem Zerfall eine messbare Strecke im Detektor zurücklegen. In dieser Arbeit präsentieren wir auch Rechnungen in der nächsthöheren Ordnung Störungs-theorie, da Einschleifenbeiträge große Korrekturen zu den Massen und Zerfallsbreiten auf Baumgraphenniveau liefern können. Wir berechnen die Massen von Neutralinos und Charginos, welche im Falle der R-Paritätsverletzung Neutrinos und Leptonen beinhalten, in nächsthöherer Ordnung und heben die Gemeinsamkeiten und Unterschiede zu exisitierenden Rechnungen in anderen Renormierungsschemata hervor. Darüberhinaus betrachten wir Zweikörperzerfälle der Form chi_j^0 -> chi_l^\pm W^\mp auf Einschleifenniveau. Im Falle von verschwindenden Zerfallsbreiten auf Baumgraphenniveau können die Korrekturen groß werden, genauso auch für die $R$-Paritäts-verletzenden Zerfälle des leichtesten Neutralinos chi_1^0 -> l^\pm W^\mp. Ein Charakteristikum von Modellen basierend auf bilinearer R-Paritätsverletzung ist die Korrelation zwischen den Verzweigungsverhältnissen der leichtesten Neutralinozerfälle und den Neutrinomischungswinkeln. Wir zeigen diese Beziehungen auf Baumgraphenniveau und für die Zweikörperzerfälle chi_1^0 -> l^\pm W^\mp auch in nächsthöherer Ordnung, da nur die volle Einschleifenkorrektur das erwartete Ergebnis liefert. Im Anhang werden die zwei für diese Arbeit erzeugten Programme MaCoR und CNNDecays vorgestellt. Während MaCoR die Berechnung von Massenmatrizen und Kopplungen in den besagten Modellen erlaubt, wurde mit CNNDecays die numerische Auswertung der Einschleifenrechnungen vorgenommen. KW - Supersymmetrie KW - LHC KW - Neutrino KW - Elementarteilchenphysik KW - R-Paritaet KW - Schleifendiagramm KW - Renormierung KW - supersymmetry KW - LHC phenomenology KW - R-parity KW - electroweak corrections KW - on-shell renormalization Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-69367 ER - TY - THES A1 - Staub, Florian T1 - Considerations on supersymmetric Dark Matter beyond the MSSM T1 - Supersymmetrische Dunkle Materie in Erweiterungen des MSSM N2 - The standard model (SM) of particle physics is for the last three decades a very successful description of the properties and interactions of all known elementary particles. Currently, it is again probed with the first collisions at the Large Hadron Collider (LHC). It is widely expected that new physics will be detected at the LHC and the SM has to be extended. The most exhaustive analyzed extension of the SM is supersymmetry (SUSY). SUSY can not only solve intrinsic problems of the SM like the hierarchy problem, but it also postulates new particles which might explain the nature of dark matter in the universe. The majority of all studies about dark matter in the framework of SUSY has focused on the minimal supersymmetric standard model (MSSM). The aim of this work is to consider scenarios beyond that scope. We consider two models which explain not only dark matter but also neutrino masses: the gravitino as dark matter in gauge mediated SUSY breaking (GMSB) with bilinear broken $R$-parity as well as different seesaw scenarios with the neutralino as dark matter candidate. Furthermore, we also study the next-to-minimal supersymmetric standard model (NMSSM) which solves the \(\mu\)-problem of the MSSM and discuss the properties of the neutralino as dark matter candidate. In case of $R$-parity violation, light gravitinos are often the only remaining candidate for dark matter in SUSY because of their very long life time. We reconsider the cosmological gravitino problem arising for this kind of models. It will be shown that the proposed solution for the overclosure of the universe by light gravitinos, namely the entropy production by decays of GMSB messenger, just works in a small subset of models and in fine-tuned regions of the parameter space. This is a consequence of two effects so far overlooked: the enhanced decay channels in massive vector bosons and the impact of charged messenger particles. Both aspects cause an interplay between different cosmological restrictions which lead to strong constraints on the parameters of GMSB models. Afterwards, a minimal supergravity (mSugra) scenario with additional chiral superfields at high energy scales is considered. These fields are arranged in complete $SU(5)$ multiplets in order to maintain gauge unification. The new fields generate a dimension 5 operator to explain neutrino data. Furthermore, they cause large differences in mass spectrum of MSSM fields because of the different evaluation of the renormalization group equations what changes also the properties of the lightest neutralino as dark matter candidate. We discuss the parameter space of all three possible seesaw scenarios with respect to dark matter and the impact on rare lepton flavor violating processes. As we will see, especially in seesaw type~III but also in type~II the mass spectrum and regions of parameter space consistent with dark matter differ significantly in comparison to a common mSugra scenario. Moreover, the experimental bounds, in particular of branching ratios like \(l_i \rightarrow l_j \gamma\), cause large constraints on the seesaw parameters. N2 - Das Standardmodell der Teilchenphysik ist seit drei Jahrzehnten eine überaus erfolgreiche \linebreak Beschreibung der Eigenschaften und Wechselwirkungen der bekannten Elementarteilchen. Derzeit wird es durch die ersten Kollisionen des Large Hadron Colliders (LHC) erneut auf die Probe gestellt. Es wird weitläufig erwartet, dass am LHC neue Physik entdeckt wird und somit das \linebreak Standardmodell erweitert werden muss. Die am meisten untersuchte Erweiterung des\linebreak Standardmodells ist Supersymmetrie (SUSY). In SUSY können nicht nur intrinsische Probleme des Standardmodells wie das Hierarchieproblem gelöst werden, sondern es werden auch Teilchen postuliert, welche die gemessene Dunkle Materie im Universum erklären können. Der Gro{\ss}teil der bisherigen Studien über Dunkle Materie in SUSY hat sich hierbei auf die minimale supersymmetrische Erweiterung des Standardmodells, das MSSM, beschränkt. Das Ziel dieser Arbeit ist es, Szenarien zu betrachten, die darüber hinaus gehen. Hierbei handelt es sich um zwei Modelle, mit denen auch Neutrinomassen erklärt werden können: Das Gravitino als Dunkle Materie im Rahmen von Gauge Mediated SUSY Breaking (GMSB) mit $R$-Paritätsverletzung sowie Seesaw-Modelle mit einem Neutralino als leichtestem SUSY Teilchen. Weiterhin betrachten wir das "Next-to-Minimal Supersymmetric Standard Model" (NMSSM), welches das \(\mu\)-Problem des MSSM löst, und diskutieren dort das leichteste Neutralino als Dunkle Materie Kandidaten. \\ Im Rahmen von leichten Gravitinos als Dunkle Materie wird das kosmologische Gravitino Problem betrachtet. Es wird gezeigt, dass die in der Literatur vorgeschlagene Lösung gegen die Überbevölkerung des Universums durch solche Gravitinos, nämlich die Entropieproduktion durch Zerfälle der GMSB-Messenger, nur in ausgewählten Modellen und kleinen Regionen des Parameterraums funktioniert. Die Ursache hierfür sind zwei Faktoren, die bislang außer Acht gelassen wurden: Mögliche Zerfälle der neutralen Messenger in massive Vektorbosonen sowie der Einfluss geladener Messenger. Beide Aspekte bewirken zusammen ein Wechselspiel von verschiedenen, kosmologischen Randbedingungen, welches zu starken Bedingungen an die zu Grunde liegenden Parameter führt.\\ Als nächstes werden Modelle im Rahmen minimaler Supergravitation (mSugra) untersucht, welche bei sehr hohen Energien über zusätzliche chirale Superfelder verfügen. Diese zusätzlichen Teilchen sind in kompletten $SU(5)$ Multiplets angeordnet, um Eichvereinheitlichung nicht zu gefährden. Die neuen Teilchen erzeugen durch den so genannten Seesaw-Mechanismus einen Dimension~5 Operator, welcher Neutrinodaten erklären kann. Darüber hinaus erzeugen sie aber durch das geänderte Laufen der Renormierungsgruppengleichungen Unterschiede im Massenspektrum der SUSY Teilchen, was natürlich auch die Eigenschaften des Neutralinos als Dunkle Materie Kandidaten verändert. Wir diskutieren den Parameterraum aller drei möglichen Seesaw-Szenarien im Hinblick auf Dunkle Materie sowie die Auswirkungen auf Leptonflavor verletzende Prozesse. Wir werden sehen, dass insbesondere in Typ~III aber auch in Typ~II sowohl große Unterschiede im Massenspektrum als auch in den Parameterbereichen, welche konsistent mit Dunkler Materie sind, im Vergleich zu einem gewöhnlichen mSugra-Szenario bestehen. Darüber hinaus führen vor allem die oberen, experimentellen Schranken der Verzweigungsverhältnisse von \(l_i \rightarrow l_j \gamma\) zu starken Bedingungen an die zu Grunde liegenden Seesaw-Parameter. \\ Abschließend wird das Neutralino im Rahmen des NMSSM untersucht. In dieser Erweiterung des MSSM ist zwar das Neutralino immer noch der beste Kandidat für Dunkle Materie, kann sich jedoch auf Grund der Anteile eines Eichsinglets sehr unterschiedlich im Vergleich zum MSSM verhalten. Wir zeigen nicht nur die Unterschiede zum MSSM auf, sondern berechnen auch die Dichte Dunkler Materie im NMSSM mit der gleichen Präzision wie im MSSM. Für diesen Zweck ist es notwendig, eine komplette Einschleifenrenormierung des elektroschwachen Sektors des NMSSM durchzuführen. Es wird sich zeigen, dass insbesondere die Strahlungskorrekturen zu den Massen der Staus große Auswirkung auf die Neutralinodichte in der Koannihilationsregion haben. Weiterhin ist der so genannte Higgs-Funnel, also Bereiche im Parameterraum, in denen die Masse eines Higgs Bosons in etwa der zweifachen Masse des leichtesten Neutralinos entspricht, sehr sensitiv auf die Ein- und Zweischleifenkorrekturen im pseudoskalaren Sektor. \\ Im Rahmen dieser Projekte wurde ein Mathematica Package namens SARAH entwickelt, um supersymmetrische Modelle schnell, effektiv und mit sehr hoher Präzision untersuchen zu können. SARAH berechnet für ein gegebenes Modell alle analytischen Ausdrücke für die Massen, Wechselwirkungen, Selbstenergien auf Einschleifenniveau sowie Renormierungsgruppengleichungen auf Ein- und Zweischleifenniveau. Eine große Bandbreite von SUSY Modellen kann analysiert und auch von dem Benutzer intuitiv verändert werden. Die berechneten Ausdrücke können dazu benutzt werden, um neue Modelle in Programme zum diagrammatischen Berechnen von Prozessen (FeynArts/FormCalc bzw. CalcHep/CompHep) zu implementieren oder das gesamte Spektrum und alle Parameter des neuen SUSY Modells mit Hilfe von \SPheno berechnen zu lassen. Die sich durch SARAH bietenden Möglichkeiten gehen hierbei über reine Studien zur Dunkle Materie weit hinaus. KW - Supersymmetrie KW - Dunkle Materie KW - Supersymmetry KW - Dark Matter Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-55343 ER - TY - THES A1 - Knochel, Alexander Karl T1 - Supersymmetry in a Sector of Higgsless Electroweak Symmetry Breaking T1 - Supersymmetrie in einem Higgslosen Elektroschwachen Symmetriebrechungs-Sektor N2 - Seit der Popularisierung durch Randall/Sundrum (RS) vor etwa 10 Jahren, und insbesondere in Verbindung mit der $AdS/CFT$-Korrespondenz, ist der Einsatz von gekrümmten Raumzeithintergründen mit Extradimensionen (insb. des $AdS_5$) eine der fruchtbarsten neuen Ideen bei der Suche nach Modellen jenseits des Standardmodells (SM). Dieser Ansatz brachte nicht nur frische Einsichten in die Physik stark wechselwirkender Feldtheorien, die zuvor störungstheoretischen Methoden verschlossen waren, sondern schaffte auch einen faszinierenden neuen Zusammenhang zwischen phänomenologi-schen Modellen an der TeV-Skala und der Gravitation. Dies hat unter anderem auch das Interesse an Modellen der elektroschwachen Symmetriebrechung ohne physikalische Skalarfelder (Higgslose Modelle'') in diesem Kontext mit dem Ziel neu aufleben lassen, Alternativen zu dem im Standardmodell der Teilchenphysik enthaltenen Higgs-Mechanismus zu finden. Bei der Umsetzung dieser Ideen lag das Hauptaugenmerk meisst auf potentiellen neuen Beträgen zu elektroschwachen Präzisionsobservablen. Gleichzeitig gibt es jedoch sehr starke astrophysikalische Indizien dafür dass die Antwort auf die Frage nach dem Ursprung der beobachteten Dunkelmaterie in Teilchenmodellen jenseits des Standardmodells zu finden ist. Die Natur der elektroschwachen Symmetriebrechung und der Dunkelmaterie gehören zu den zentralen Fragen deren Beantwortung dank aktueller und anstehender Experimente z.B. an Beschleunigern wie dem Tevatron wie auch in naher Zukunft am LHC in greifbare Nähe rückt. Diese Situation legt nahe dass neue Szenarien jenseits des Standardmodells beide Fragestellungen gleicherma\ss en thematisieren sollten. In der vorliegenden Arbeit untersuchen wir die phänomenologischen Implikationen einer Erweiterung Higgsloser Modelle in 5D um Supersymmetrie mit erhaltener R-Parität im elektroschwachen Symmetriebrechungssektor. Das Ziel war, eine möglichst einfache Erweiterung zu finden, die ein realistisches leichtes Spektrum aufweist und gleichzeitig einen guten Kandidaten für kalte Dunkelmaterie enthält, ohne zu viele freie Parameter einzuführen. Um dies zu bewerkstelligen, bot sich der gleiche Mechanismus an, der bereits für die Brechung der Eichsymmetrien zum Einsatz kommt, nämlich die Brechung durch Randbedingungen. Während Supersymmetrie in 5D vier Superladungen beinhaltet und somit eng mit $\mathcal{N}=2$ Supersymmetrie in 4D verwandt ist, wird allein durch den RS-Hintergrund die Hälfte der Symmetrien gebrochen, so dass nach der Kaluza-Klein-Reduktion lediglich eine erhaltene Supersymmetrie verbleibt. Davon ausgehend war das einfachste gangbare Szenario, die Brechung der verbleibenden Generatoren effektiv durch Randbedingungen auf der UV-Brane der RS-Raumzeit zu beschreiben. Obwohl hierdurch Teile des leichten SUSY-Spektrums, insb. die Superpartner der Fermionen, ausprojeziert werden, verbleibt die reichhaltige Phänomenologie von vollständigen $\mathcal{N}=2$-Multiplets im Kaluza-Klein-Sektor. Das leichte erweiterte Spektrum besteht aus den Superpartnern der elektroschwachen Eichbosonen, die Massen um $\mathcal{O}(100\mbox{ GeV})$ erhalten. Die Neutralinos als Masseneigenzustände des neutralen Bino-Wino-Sektors sind automatisch die leichtesten Supersymmetrischen Teilchen (LSP) und damit natürliche Kandidaten für kalte Dunkelmaterie. Ihre Reliktdichte kann ohne exzessive Feineinstellung von Parametern in Einklang mit Beobachtungen gebracht werden. Das Modell sagt somit eine leichte NLSP-Masse im Bereich $m_{\chi^+}\approx 100\dots 110$ GeV und einen LSP bei etwa $m_\chi\approx 90$ GeV voraus. Am LHC hat der nicht-supersymmetrische Teilcheninhalt des Modells weitestgehend die gleichen phänomenologischen Konsequenzen wie sie bereits von Studien Higgsloser Modelle bekannt sind. Wir haben uns daher auf die Produktion des LSP und NLSP am LHC als typische Signatur des erweiterten Modells konzentriert, und insbesondere Monte-Carlo-Simulationen mit \nameomega/\namewhizard~zur Beobachtung von fehlender transversaler Energie ($\ptmiss$) in Assoziation mit schweren Quarks durchgeführt. Wir diskutieren geeignete Schnitte auf Winkel, invariante Massen und Impulse, und erhalten Hadronische Produktionsquerschnitte von $\sigma>100\mbox{ fb}$ bei $14\mbox{ TeV}$, die charakteristische $\ptmiss$-Verteilungen im $\chi\chi t\overline{t}$ Endzustand aufweisen. Der Nachweis über die Produktion von $b$-Paaren erweist sich als schwieriger. Unsere Ergebnisse legen nahe dass die Entdeckung dieses Typs von Dunkelmaterie in Higgslosen Modellen am LHC über fehlende transversale Energie mit wenigen fb$^{-1}$ bei 14 TeV möglich ist, insofern eine zuverlässige Identifikation schwerer Quarks gegeben ist. N2 - Since its popularization due to Randall and Sundrum (RS) one decade ago, and in connection with the $AdS/CFT$ correspondence in particular, 5D warped background spacetime has been one of the most fruitful new ideas in physics beyond the standard model (SM), leading to new insights into symmetry breaking and the properties of strongly interacting theories inaccessible to direct perturbative calculations, while at the same time relating gravity to phenomenological model building. This has, among others, led to a renewed interest in models of electroweak symmetry breaking without physical scalar fields in the guise of so-called 'warped higgsless' models, which could provide an alternative to the famed Higgs mechanism of electroweak symmetry breaking which is part of the Standard Model of particle physics. However, little emphasis was put on reconciling these models with the strong evidence from astrophysical observations that one or several new, as yet unknown, stable particle species exist which form the cold dark matter content of the universe. The nature of dark matter and electroweak symmetry breaking are among the most prominent puzzles subject to experimental scrutiny at the Tevatron, direct search experiments, and in the near future at the LHC, which compels us the believe that both issues should be addressed together in any alternative scenario beyond the Standard Model. In this thesis we have investigated phenomenological implications which arise for cosmology and collider physics when the electroweak symmetry breaking sector of warped higgsless models is extended to include warped supersymmetry with conserved $R$ parity. The goal was to find the simplest supersymmetric extension of these models which still has a realistic light spectrum including a viable dark matter candidate. To accomplish this, we have used the same mechanism which is already at work for symmetry breaking in the electroweak sector to break supersymmetry as well, namely symmetry breaking by boundary conditions. While supersymmetry in five dimensions contains four supercharges and is therefore directly related to 4D $\mathcal{N}=2$ supersymmetry, half of them are broken by the background leaving us with ordinary $\mathcal{N}=1$ theory in the massless sector after Kaluza-Klein expansion. We thus use boundary conditions to model the effects of a breaking mechanism for the remaining two supercharges. The simplest viable scenario to investigate is a supersymmetric bulk and IR brane without supersymmetry on the UV brane. Even though parts of the light spectrum are effectively projected out by this mechanism, we retain the rich phenomenology of complete $\mathcal{N}=2$ supermultiplets in the Kaluza-Klein sector. While the light supersymmetric spectrum consists of electroweak gauginos which get their $\mathcal{O}(100\mbox{ GeV})$ masses from IR brane electroweak symmetry breaking, the light gluinos and squarks are projected out on the UV brane. The neutralinos, as mass eigenstates of the neutral bino-wino sector, are automatically the lightest gauginos, making them LSP dark matter candidates with a relic density that can be brought to agreement with WMAP measurements without extensive tuning of parameters. For chargino masses close to the experimental lower bounds at around $m_{\chi^+}\approx 100\dots 110$ GeV, the dark matter relic density points to LSP masses of around $m_\chi\approx 90$ GeV. At the LHC, the standard particle content of our model shares most of the key features of known warped higgsless models. We have performed Monte Carlo simulations of warped higgsless LSP and NLSP production at a benchmark point using \nameomega/\namewhizard, concentrating on $\ptmiss$ in association with third generation quarks. After background reduction cuts on the quark momenta and angles, we get hadronic cross sections of $\sigma>100\mbox{ fb}$ at $14\mbox{ TeV}$ with characteristic $\ptmiss$ distributions for $\chi\chi t\overline{t}$ final states, while the final states with $b\overline{b}$ pairs have much lower event rates and shapes which are hard to discern in experiments. Our results suggest that the discovery of warped higgsless LSP dark matter at the LHC via missing energy is within reach for the first few $\mbox{ fb}^{-1}$ at $14$ TeV if $b$ and in particular $t$ identification is reliable. KW - Supersymmetrie KW - Dunkle Materie KW - Physik jenseits des Standardmodells KW - Extradimensionen KW - Randall-Sundrum KW - Higgslose Modelle KW - Elementarteilchenphysik KW - Physics Beyond the Standard Model KW - Extra Dimensions KW - Randall-Sundrum KW - Warped Space KW - Higgsless Models Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-47899 ER - TY - THES A1 - Wagner, Alexander T1 - Production of Sleptons in e¯e¯-Collisions T1 - Produktion von Sleptonen in e¯e¯-Kollisionen N2 - Supersymmetry is currently the best motivated extension of the Standard Model and will be subject to extensive studies in the upcoming generation of colliders. The e-e- mode would be a straight forward extension to the currently planed International Linear Collider, planned to operate in e+e- mode. The low background in this mode may prove advantageous in the study of CP- and Lepton Flavour Violtation. In this work a CP sensitive observable based on transverse beam polarisation is introduced and the impact of neutralino mixing on the total cross section in cas of non-vanishing CP-violtating phases is studied in representative scenarios including non-GUT scenarios. Additionally, the mixing of sleptons is studied in the context of LFV, an analytical approximation is developed, and possible background free measurements of these effects are investigated. N2 - Supersymmetrie ist derzeit die bestmotivierte Erweiterung des Standardmodells und wird in der nächsten Generation von Beschleunigern intensiv studiert werden. Der e-e- Modus des geplanten International Linear Collider, welcher zunächst im e+e- Modus betrieben werden soll, stellt hier eine direkte Erweiterung da, die durch ihren niedrigen Untergrund vorteilhaft für das Studium CP- und Lepton Flavour verletzender Effekte sein kann. In dieser Arbeit wird eine CP sensitive Observable basierend auf transversaler Strahlpolarisation vorgestellt sowie der Einfluss der Neutralinomischung auf den totalen wirkungsquerschnitt im Falle nichtverschwindender CP-verletztender Phasen in repräsentativen Szenarien, auch non-GUT-Szenarien, untersucht. Ferner wird die Mischung der Sleptonen im Kontext von Lepton-Flavour-Verletzung näher beleuchtet, eine analytische Näherung entwickelt und die möglicherweise Untergrundfreie Messung dieser Effekte untersucht. KW - Supersymmetrie KW - Tesla KW - ILC KW - Teilchenspektrum KW - CP-Parität KW - Flavourmischung KW - Slepton KW - Leptonflavourverletzung KW - CP-Veretzung KW - MSSM KW - Linearbeschleuniger KW - Elektron-Elektron-Streuung KW - Strahlpolarisation KW - Slepton KW - MSSM KW - Linearcollider KW - LFV KW - CP-Violation KW - Beam polarisation Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-28307 ER - TY - THES A1 - Franke, Fabian T1 - Produktion und Zerfall von Neutralinos im Nichtminimalen Supersymmetrischen Standardmodell T1 - Production and Decay of Neutralinos in the Nonminimal Supersymmetric Standard Model N2 - Das Ziel der vorliegenden Arbeit ist eine umfassende Analyse von Erzeugung und anschließenden Zerfällen von Neutralinos im Nichtminimalen Supersymmetrischen Standardmodell (NMSSM) speziell für den nächsten verfügbaren Elektron-Positron-Speicherring LEP2 am CERN mit einer voraussichtlichen Schwerpunktsenergie von 190 GeV. Das NMSSM ist die einfachste Erweiterung des Minimalen Supersymmetrischen Standardmodells MSSM mit einem Singlett-Superfeld, so dass der Higgs-Sektor insgesamt sieben physikalische Higgs-Teilchen enthält, und zwar drei neutrale skalare, zwei pseudoskalare und zwei geladene. Weiterhin enthält das NMSSM fünf Neutralinos gegenüber vier im MSSM. In dieser Arbeit präsentieren wir die 5 x 5 Neutralinomischungsmatrix, stellen die Eigenwertgleichung auf und analysieren das Massenspektrum und die Parameterabhängigkeit möglicher masseloser Zustände. Für die Untersuchung von Neutralinoproduktion und -zerfall wurden verschiedene Szenarien gewählt, in denen das leichteste Neutralino eine Masse von 10 GeV und eine Singlettkomponente von über 90% besitzt oder in denen das leichteste Neutralino bis zu 50 Gev schwer ist und sich der Singlettanteil auf die beiden leichtesten Neutralinos verteilt. Die Wirkungsquerschnitte für die Neutralinoproduktion wurden in den gewählten Szenarien für Schwerpunktsenergien von 100 GeV bis 600 GeV berechnet, also bis zu einem Bereich, den ein geplanter Elektron-Positron-Linearbeschleuniger erreichen kann. Typische Wirkungsquerschnitte für die direkte Produktion vorwiegend singlettartiger Neutralinos liegen im Bereich von 100 fb. Selbst wenn das leichteste Neutralino sehr leicht ist, kann das nächste bereits so schwer sein, dass bei LEP2 nur die nicht nachtweisbare Paarproduktion des leichtesten supersymmetrischen Teilchens möglich ist. Somit ist bei LEP2 keine Erhöhung der unteren Neutralinomassengrenzen im NMSSM zu erwarten, falls kein Neutralino gefunden wird. In Szenarien mit leichten singlettartigen Neutralinos können sehr oft auch sehr leichte Higgs-Bosonen mit Massen unterhalb der im MSSM vorhandenen Grenzen existieren. Somit kann in allen unseren Szenarien der Neutralinozerfall in ein skalares oder pseudoskalares Higgs-Boson möglich sein und dann Verweigungsverhältnisse bis zu fast 100% erreichen. Wir berechnen in dieser Arbeit für die bei LEP2 produzierbaren Neutralinos die Verwzeigungsverhältnisse für die Zweikörperzerfälle in Higgs-Bosonen, die Dreikörperzerfälle in zwei Fermionen und den Schleifenzerfall in ein Photon. In allen Fällen befindet sich im Endzustand außerdem das unsichtbare leichteste Neutralino, dass sich experimentell als fehlende Energie niederschlägt. Zur Bestimmung der Signaturen betrachten wir außerdem die anschließenden Zerfallsmodi der leichten Higgs-Bosonen. Der Nachweis von leichten singlettartigen Neutralinos im NMSSM kann einerseits unmöglich sein, wenn entweder die schweren Neutralinos bei der verfügbaren Schwerpunktsenergie nicht produziert werden können oder über Higgs-Bosonen vollkommen in das LSP zerfallen, andererseits aber auch durch klare Signaturen mit einem Photon oder mit Jets im Endzustand erleichtert werden. Bei LEP2 sollten also durchaus Chancen bestehen, auch im Rahmen des NMSSM ein Neutralino zu entdecken. Zumindest werden sich weitere Einschränkungen des Parameterraums ergeben. Der Dissertation ist ein Anhang beigefügt, der eine vollständige Liste aller Feynman-Regeln des NMSSM enthält, die sich von denjenigen des MSSM unterscheiden. N2 - The aim of our study is a comprehensive analysis of the production and the subsequent decays of neutralinos in the Nonminimal Supersymmetric Standard Model (NMSSM) especially for a center-of-mass energy of 190 Gev expected at the electon-positron storage ring LEP2 at CERN. The NMSSM is the simplest extension of the Minimal Supersymmetric Standard Modell (MSSM) by a singlet superfield. The Higgs sector contains seven physical Higgs particles, three scalars, two pseudoscalar and two charged Higgs bosons. The neutralino sector consists of five neutralinos instead of four in the MSSM. We present the 5 x 5 neutralino mixing matrix, compute the eigenvalue equation and analyse the mass spectrum and the parameter dependence of massless neutralino states. For the study of neutralino production and decay we choose scenarios where the lightest neutralino has a mass of 10 GeV and a singlet component of more than 90%, or where the lightest neutralino has a mass of up to 50 GeV and the lightest two neutralinos contains significant singlet contributions. In these scenarios the cross sections are computed for center-of-mass energies ranging from 100 GeV to 600 GeV of a electron-positron linear collider. Typical cross sections for the direct production of mainly singlet-like neutralinos are around 100 fb. Even if a neutralino is rather light, the next neutralino could already be so heavy that at LEP energies only the invisible pair production of the lightest neutralino is kinematically allowed. Therefore one cannot expect to raise the lower NMSSM neutralino mass bound if no neutralino is found. In scenarios with light singlet-like neutralinos there often exist also light Higgs bosons with masses below the MSSM mass bounds. Therefore in our scenarios the neutralino decay in a scalar or pseudoscalar Higgs can reach decay rates up to 100%. We compute the decay rates for the two-body decays into Higgs bosons, for the three-body decays into two fermions and the loop decay into a photon. All final states contain the invisible lightest neutralino with the experimental signature of missing energy. In order to determine the signatures we also consider the decay modes of the light Higgs bosons. The detection of light singlet-like neutralino could be impossible if the heavier neutralinos can not be produced at the collider or if they decay via Higgs bosons into the LSP. But it could also faciliated by clear signatures with a photon or jets in the final states. LEP2 offers some chances to detect a NMSSM neutralino, at least further restrictions of the NMSSM parameter space can be expected. The dissertation contains an appendix with a complete list of all Feyman rules of the NMSSM that are different from their MSSMM counterparts. KW - Supersymmetrie KW - Neutralino KW - Produktion KW - Zerfall KW - LEP KW - Nichtminimales Suerpsymmetrisches Standardmodell KW - Neutralino KW - Produktion KW - Zerfall KW - LEP2 KW - Nonminimal Supersymmetric Standard Model KW - Neutralino KW - Production KW - Decay KW - LEP2 Y1 - 1995 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-25666 ER - TY - THES A1 - Csallner, Sigrun T1 - Produktion und Nachweis schwerer Selektronen T1 - Production and Decay of Heavy Selectrons N2 - Wir studieren die Produktion und den Nachweis von Selektronen mit Massen jenseits der Schwelle zur Paarerzeugung an künftigen Linearbeschleunigern mit Schwerpunktsenergien von 500 GeV und 800 GeV. Hierzu betrachten wir die Produktion von linken und rechten Selektronen in Assoziation mit dem jeweils leichtesten Neutralino oder Chargino durch Elektron-Elektron-, Elektron-Positron- und Elektron-Photon-Streuung im Rahmen des MSSM. Die Produktion durch Elektron-Elektron-Streuung untersuchen wir zusätzlich in zwei erweiterten Modellen, dem NMSSM und einem E6-Modell mit einem zusätzlichen U(1)-Eichfaktor. N2 - We investigate the production and the decay of selectrons with masses beyond the threshold for pair production at future linear colliders with center-of-mass energies of 500 GeV and 800 GeV. For this we study the production of left and right selectrons in association with the lightest neutralino or chargino, respectively, via electron-electron, electron-positron and electron-photon scattering in the framework of the MSSM. Furthermore we analyse the production via electron-electron scattering in two extended models, the NMSSM and an E6-model with an additional U(1) gauge factor. KW - Linearbeschleuniger KW - Elektron-Elektron-Streuung KW - Supersymmetrie KW - Selektron KW - Supersymmetrie KW - Linearbeschleuniger KW - erweiterte Modelle KW - Elektron-Elektron-Streuung KW - selectron KW - supersymmetry KW - linear collider KW - extended models KW - electron-electron scattering Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-22433 ER - TY - THES A1 - Pahlen, Federico von der T1 - Polarization and Spin Effects in Production and Decay of Charginos and Neutralinos at a Muon Collider T1 - Polarisations- und Spineffekte in der Produktion und dem Zerfall von Charginos und Neutralinos am Myon-Beschleuniger N2 - The mechanism of spontaneous symmetry breaking is essential to provide masses to the W and Z gauge bosons and fermions of the SM. We hope to elucidate this mechanism at the next generation of colliders. While the SM has been tested with astonishing precision it is believed to be an effective theory of a more fundamental Great Unified Theory. SUSY is one of the most attractive extensions of the SM of particle physics. Therefore, the search for SUSY is a top priority at the next generation of colliders. Once Higgs bosons are discovered, a precise determination of their properties is necessary to differentiate between different models, in particular the MSSM. A muon collider, running at center of mass energies around the neutral Higgs boson resonances, would allow precise measurements of masses and widths, as well as the couplings to their decay products. In particular their couplings to supersymmetric particles are essential to probe SUSY. Therefore, we study the decays of the heavier CP-even and CP-odd Higgs bosons into lighter chargino or neutralino pairs. In this thesis we have analyzed the polarization effects of the beams and the charginos and neutralinos produced in mu+ mu- annihilation around the center of mass energies of the Higgs boson resonances H and A. For the production of equal charginos we have shown that the ratio of H-chargino and A-chargino couplings can be precisely determined independently of the chargino decay mechanism. This method avoids reference to other experiments and makes only a few model-dependent assumptions. Here we have analyzed the effect of the energy spread and of the error from the non-resonant channels, including an irreducible standard model background contribution. For small tan(beta) the process yields large cross sections of up to a pb. For the production of two different charginos we have shown that the H-A interference can be analyzed using asymmetries of the charge conjugated processes. The asymmetries depend on the muon longitudinal beam polarizations and vanish for unpolarized beams. For the chargino pair production with subsequent two-body decay of one of the charginos we have shown that charge and beam polarization asymmetries in the energy distributions of the decay particles are sensitive to the interference of scalar exchange channels with different CP quantum numbers. This process provides unique information on the interference of overlapping Higgs boson resonances. The effect is larger for regions of parameter space with intermediate values of tan(beta) and light sleptons or LSP neutralinos. For the chargino pair production with subsequent two-body decays of both charginos we have defined energy distribution and angular asymmetries in the final particles, in order to analyze the spin-spin correlations of the charginos. The transverse polarizations of the charginos are sensitive to the CP quantum number of the exchanged Higgs bosons and can thus be used to separate overlapping resonances, as well as to determine the CP quantum number of a single resonance. For equal charginos, these asymmetries are not sensitive to the interference of CP-even and CP-odd Higgs exchange channels. For the neutralino pair production in mu+ mu- annihilation we study similar processes as for chargino production. Line shape measurements of neutralino pair production allow to precisely determine the ratio of H-neutralino and A-neutralino couplings. Neutralino pair production with subsequent two-body decay of one of the neutralinos in the intermediate tan(beta) region is sensitive to the interference of H and A and may be measured with a large statistical significance. The Majorana nature of the neutralinos implies that the beam polarization asymmetries vanish for the remaining production channels. For neutralino pair production with subsequent two-body decays of both neutralinos we analyze similar observables as in chargino production. The main difference consists in the intrinsic relative CP quantum number of the neutralino pair, which depends on the chosen scenario. We have thus shown that the interaction of the Higgs bosons to the gaugino-higgsino sector can be probed at a muon collider in chargino and neutralino pair production, both analyzing the production line-shape around the resonances as well as studying the chargino and neutralino polarizations via their decays. N2 - Der Mechanismus der spontanen Symmetriebrechung ist notwendig, um den W-und Z-Eichbosonen sowie den Fermionen des Standardmodels Masse geben zu können. Wir hoffen, diesen Mechanismus in der nächsten Generation von Teilchenbeschleunigern nachweisen zu können. Obwohl die Vorhersagen des Standardmodels (SM) bisher mit sehr großer Präzision bestätigt werden konnten, glaubt man, dass es sich um einen effektiven Niederenergielimes einer fundamentaleren Großvereinheitlichten Theorie handelt. Supersymmetrie (SUSY) ist eine der attraktivsten Erweiterungen des Standardmodels der Teilchenphysik. Deswegen ist die Suche nach SUSY eine der Prioritäten der nächsten Generation von Beschleunigern. Werden Higgs-Bosonen entdeckt, ist eine präzise Bestimmung ihrer Eigenschaften nötig. Ein Myonenbeschleuniger mit einer Schwerpunktsenergie in der Nähe der Resonanzen der neutralen Higgs-Bosonen würde eine ideale ,,Higgs-Fabrik'' darstellen, die genaue Messungen der Massen und Breiten sowie der Kopplungen und Zerfallsprodukte der Higgsbosonen erlauben würde. Insbesondere deren Kopplungen an SUSY-Teilchen ist wichtig, um das in der Natur realisierte SUSY-Szenario zu ermitteln. Deswegen haben wir die Zerfälle der schwereren CP-geraden und CP-ungeraden Higgs-Bosonen in leichtere Chargino- oder Neutralino-Paare studiert. In dieser Arbeit wurden der Einfluss der Strahlpolarisation der Myonen sowie die Polarisation der Charginos bzw. Neutralinos erzeugt in Myon Annihilation untersucht. Für die Produktion gleicher Charginos wurde gezeigt, dass das Verhältnis der H-Chargino-und der A-Chargino Kopplungen unabhängig vom Chargino Zerfallsmechanismus mit hoher Präzision bestimmt werden kann. Diese Methode vermeidet Anleihen bei anderen Experimenten und macht nur wenige modelabhängige Annahmen. Hier wurde der Effekt der Energieverteilung der Myonenstrahlen und des Fehlers aus den nicht-resonanten Kanäle, mit Berücksichtigung des irreduziblen Standardmodel-Hintergrundbeitrags, untersucht. Für kleine Werte von tan(beta) werden bei diesem Prozess große Wirkungsquerschnitte von bis zu einem pb erzielt. Für die Produktion von zwei unterschiedlichen Charginos wurde gezeigt, dass die H-A-Interferenz mit der Asymmetrie der Wirkungsquerschnitte für ladungskonjugierten Prozesse analysiert werden kann. Diese Asymmetrie hängt von der longitudinalen Strahlpolarisation ab und verschwindet für unpolarisierten Myon-Strahlen. Für Chargino-Paarproduktion mit anschließendem Zweikörperzerfall eines der Charginos haben wir gezeigt, dass die Ladungs-und Polarisationsasymmetrien den Energieverteilungen der Zerfallsprodukte auf die Interferenz der skalaren Austausch-Kanäle mit unterschiedlichen CP-Quantenzahlen sensitiv sind. Dieser Prozess liefert eindeutige Informationen über die Interferenz überlappender Higgsboson-Austausch-Resonanzen. Der Effekt ist für Regionen des Parameterraums mit mittleren Werten von tan(beta) und für leichte Sleptonen oder LSP Neutralinos größer. Für Chargino-Paarproduktion mit anschließendem Zweikörperzerfall beider Charginos wurden Energie- und Winkelverteilungen der Zerfallsprodukte definiert, um damit die Chargino-Spin-Spin-Korrelationen analysieren zu können. Die transversalen Polarisationen der Charginos sind auf die CP-Quantenzahl des ausgetauschten Higgs-Bosons sensitiv. Dadurch kann man überlappende Resonanzen trennen, sowie auch die CP-Quantenzahl einer einzelnen Resonanz bestimmen. Für gleiche Charginos sind diese Asymmetrien auf die Interferenz CP-gerader und CP-ungerader Higgs-Kanäle nicht sensitiv. Es ist deswegen nicht möglich, mit ihrer Hilfe zwischen zwei überlappenden skalaren Resonanzen mit unterschiedlichen CP-Quantenzahlen und einer CP-verletzenden einzelnen Resonanz zu unterscheiden. Für Neutralino Paarproduktion in Myon Annihilation werden, analog zum Chargino Produktionsprozess, Lineshape sowie die anschließenden Zerfälle untersucht. Lineshape-Messungen der Neutralino-Paarproduktion erlauben eine präzise Bestimmung des Verhältnisses der H-Neutralino- und A-Neutralino-Kopplungen. Neutralino Paarproduktion mit anschließendem Zweikörperzerfall eines der Neutralinos für mittleren Werten von tan(beta) ist sensitiv auf Interferenz von H und A ist und kann möglicherweise mit ausreichender statistischer Signifikanz gemessen werden können. Für Neutralino-Paarproduktion mit anschließendem Zweikörperzerfall beider Neutralinos werden die analogen Observablen wie bei der Chargino Paarproduktion analysiert. Ein wesentlicher Unterschied besteht darin, dass die relative intrinsische CP-Quantenzahl des erzeugten Neutralinopaares vom Szenario abhängt. Es wurde somit gezeigt, dass die Wechselwirkung der Higgsbosonen an den Gaugino-Higgsino-Sektor an einem Myonbeschleuniger aus Analysen der Chargino bzw. Neutralino Paar-Produktions-Lineshape an den Resonanzen sowie auch aus der Strahlpolarisations-Abhängigkeit der anschließenden Zerfälle getestet werden können. KW - Neutralino KW - Paarerzeugung KW - Chargino KW - Zerfall KW - Supersymmetrie KW - Myon-Beschleuniger KW - Higgs KW - Supersymmetry KW - Muon Collider KW - Higgs Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-18421 ER -