TY - THES A1 - Bayer, Florian T1 - Investigating electromagnetic properties of topological surface states in mercury telluride T1 - Untersuchung elektromagnetischer Eigenschaften topologischer Oberflächenzustände in Quecksilber-Tellurid N2 - This doctoral thesis investigates magneto-optical properties of mercury telluride layers grown tensile strained on cadmium telluride substrates. Here, layer thicknesses start above the usual quantum well thickness of about 20 nm and have a upper boundary around 100 nm due to lattice relaxation effects. This kind of layer system has been attributed to the material class of three-dimensional topological insulators in numerous publications. This class stands out due to intrinsic boundary states which cross the energetic band gap of the layer's bulk. In order to investigate the band structure properties in a narrow region around the Fermi edge, including possible boundary states, the method of highly precise time-domain Terahertz polarimetry is used. In the beginning, the state of the art of Teraherz technology at the start of this project is discussed, moving on to a detailed description and characterization of the self-built measurement setup. Typical standard deviation of a polarization rotation or ellipticity measurement are on the order of 10 to 100 millidegrees, according to the transmission strength through investigated samples. A range of polarization spectra, depending on external magnetic fields up to 10 Tesla, can be extracted from the time-domain signal via Fourier transformation. The identification of the actual band structure is done by modeling possible band structures by means of the envelope function approximation within the framework of the k·p method. First the bands are calculated based on well-established model parameters and from them the possible optical transitions and expected ellipticity spectra, all depending on external magnetic fields and the layer's charge carrier concentration. By comparing expected with measured spectra, the validity of k·p models with varying depths of detail is analyzed throughout this thesis. The rich information encoded in the ellipitcity spectra delivers key information for the attribution of single optical transitions, which are not part of pure absorption spectroscopy. For example, the sign of the ellipticity signals is linked to the mix of Landau levels which contribute to an optical transition, which shows direct evidence for bulk inversion asymmetry effects in the measured spectra. Throughout the thesis, the results are compared repeatedly with existing publications on the topic. It is shown that the models used there are often insufficient or, in worst case, plainly incorrect. Wherever meaningful and possible without greater detours, the differences to the conclusions that can be drawn from the k·p model are discussed. The analysis ends with a detailed look on remaining differences between model and measurement. It contains the quality of model parameters as well as different approaches to integrate electrostatic potentials that exist in the structures into the model. An outlook on possible future developments of the mercury cadmium telluride layer systems, as well as the application of the methods shown here onto further research questions concludes the thesis. N2 - Diese Doktorarbeit untersucht die magneto-optischen Eigenschaften zugverspannter Quecksilbertelluridschichten auf Cadmiumtelluridsubstraten. Die Schichtdicken sind hierbei dicker als die gewöhnlicher Quantentrogsysteme bis etwa 20 nm und nach oben hin beschränkt durch Gitterrelaxationeffekte ab ca. 100 nm. Dieses Schichtsystem wurde in zahlreichen Publikationen der Materialklasse dreidimensionaler Topologischer Isolatoren zugeordnet, welche sich durch intrinsische Grenzflächenzustände auszeichnet, die energetisch in der Bandlücke des Schichtinneren liegen. Um die Eigenschaften der Bandstruktur im direkten Umfeld der Fermi-Kante, inklusive etwaiger Grenzflächenzustände, untersuchen zu können, kommt die Methode der hochpräzisen Zeitdomänen-Terahertz-Polarimetrie zum Einsatz. Der Stand der dazu nötigen Technik wird zu Beginn der Doktorarbeit einleitend diskutiert und der daraus entstandene Messaufbau wird im Detail beschrieben, sowie dessen Charakterisierung erläutert. Die typischerweise erzielbare Standardabweichung einer Messung liegt, je nach Transmissionsgrad der untersuchten Probenstrukturen, im Bereich weniger 10 bis 100 Tausendstel Grad für die Polarisationgrößen Rotation und Elliptizität. In Abhängigkeit externer Magnetfelder bis hin zu 10 Telsa ergeben sich so mittels Fourier-Transformation des Zeitsignals verschiedene Polarisationspektren. Der Rückschluss auf die zugrunde liegende Bandstruktur gelingt durch die Modellierung möglicher Bandstrukturen mittels der Einhüllenden-Funktionen-Näherung der k·p-Methode. Hierzu wird zunächst die Bandstruktur nach den gewählten Modellparametern berechnet und aus dieser wiederum die zu erwartenden Elliptizitätsspektren in Abhängigkeit des externen Magnetfeldes und der Ladungsträgerkonzentration berechnet. Aus dem Vergleich berechneter und tatsächlich gemessener Spektren wird im Laufe der Arbeit die Validität verschieden detaillierter k·p-Modelle analysiert. Die reichhaltigen Informationen aus der Elliptizitätsmesung liefern bei der Zuordnung einzelner optischer Übergänge entscheidende Hinweise, die in reiner Absorptionsspektroskopie nicht enthalten sind. So ist das Vorzeichen der Elliptizität verknüpft mit der Zusammensetzung der am optischen Übergang beteiligten Landau-Level Zustände. Dies ermöglicht einen direkten Nachweis sogenannter Bulk-Inversions-Asymmetrie-Effekte aus den Spektren. Im Verlauf der Arbeit wird zudem wiederholt ein Vergleich der Ergebnisse mit existierenden Publikationen gezogen, wobei sich zeigt, dass dort verwendete Modelle häufig unzureichend oder inkorrekt sind. Wo immer dies sinnvoll und ohne größeren Aufwand möglich ist, werden die Unterschiede zu Aussagen, die aus dem k·p-Modell heraus getroffen werden können, diskutiert. Zum Ende der Analyse hin wird verstärkt auf die Grenzen der k·p-Methode eingegangen und verbleibende Abweichungen zwischen Modell und Messung diskutiert. Dies beinhaltet sowohl die Qualität der verwendeten Modellparameter, als auch verschiedene Versuche, die in den Strukturen vorhandenen elektrostatischen Potentiale mit in die Modellierung zu integrieren. Abschließend wird ein Ausblick auf mögliche zukünftige Entwicklungen des Quecksilbercadmiumtellurid Schichtsystems und die Anwendung der hier vorgestellten Methodiken auf weitere Fragestellungen gegeben. KW - Quecksilbertellurid KW - Topologie KW - Oberfläche KW - Mercury telluride KW - Topology KW - THz KW - Surface Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-352127 ER - TY - THES A1 - Ünzelmann, Maximilian T1 - Interplay of Inversion Symmetry Breaking and Spin-Orbit Coupling – From the Rashba Effect to Weyl Semimetals T1 - Zusammenspiel aus Inversionssymmetriebruch und Spin-Bahn-Kopplung – Vom Rashba-Effekt zu Weyl-Halbmetallen N2 - Breaking inversion symmetry in crystalline solids enables the formation of spin-polarized electronic states by spin-orbit coupling without the need for magnetism. A variety of interesting physical phenomena related to this effect have been intensively investigated in recent years, including the Rashba effect, topological insulators and Weyl semimetals. In this work, the interplay of inversion symmetry breaking and spin-orbit coupling and, in particular their general influence on the character of electronic states, i.e., on the spin and orbital degrees of freedom, is investigated experimentally. Two different types of suitable model systems are studied: two-dimensional surface states for which the Rashba effect arises from the inherently broken inversion symmetry at the surface, and a Weyl semimetal, for which inversion symmetry is broken in the three-dimensional crystal structure. Angle-resolved photoelectron spectroscopy provides momentum-resolved access to the spin polarization and the orbital composition of electronic states by means of photoelectron spin detection and dichroism with polarized light. The experimental results shown in this work are also complemented and supported by ab-initio density functional theory calculations and simple model considerations. Altogether, it is shown that the breaking of inversion symmetry has a decisive influence on the Bloch wave function, namely, the formation of an orbital angular momentum. This mechanism is, in turn, of fundamental importance both for the physics of the surface Rashba effect and the topology of the Weyl semimetal TaAs. N2 - Wird die Inversionssymmetrie kristalliner Festkörper gebrochen, ermöglicht dies die Ausbildung von spinpolarisierten elektronischen Zuständen durch Spin-Bahn-Kopplung ohne die Notwendigkeit von Magnetismus. In den vergangenen Jahren wurde eine Vielzahl interessanter physikalischer Phänomene diskutiert, die mit diesem Effekt zusammenhängen, darunter der Rashba-Effekt, topologische Isolatoren sowie Weyl-Halbmetalle. In dieser Arbeit wird das Zusammenspiel von Inversionssymetriebruch und Spin-Bahn-Kopplung sowie insbesondere deren Einfluss auf die Eigenschaften der elektronischen Zustände, also auf die Spin- und Orbital-Freiheitsgrade, experimentell untersucht. Zwei verschiedene Arten geeigneter Modellsysteme werden dazu betrachtet: zweidimensionale Oberflächenzustände, in denen der Rashba-Effekt aufgrund der an der Oberfläche inhärent gebrochenen Inverisonssymetrie auftritt, und ein Weyl-Halbmetall, dessen dreidimensionale Kristallstruktur kein Inversionszentrum besitzt. Winkelaufgelöste Photoelektronenspektroskopie bietet einen impulsaufgelösten Zugang zur Spinpolarisation sowie zur orbitalen Zusammensetzung der elektronischen Zustände mittels Photoelektronenspindetektion und Dichroismus mit polarisiertem Licht. Die in dieser Arbeit gezeigten experimentellen Ergebnisse werden außerdem durch ab-initio Dichtefunktionaltheorierechnungen sowie einfachen Modellbetrachtungen ergänzt und untermauert. Insgesamt zeigt sich, dass das Brechen von Inversionssymmetrie einen entscheidenden Einfluss auf die Bloch-Wellenfunktion hat, nämlich die Ausbildung eines orbitalen Bahndrehimpulses. Dieser Mechanismus ist wiederum von grundlegender Bedeutung sowohl für die Physik des Oberflächen- Rashba-Effekts als auch für die Topologie desWeyl-Halbmetalls TaAs. KW - Rashba-Effekt KW - Inversion Symmetry Breaking KW - Topologie KW - ARPES KW - Spin-Orbit Coupling KW - Orbital Angular Momentum Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-283104 ER - TY - THES A1 - Harder, Tristan H. T1 - Topological Modes and Flatbands in Microcavity Exciton-Polariton Lattices T1 - Topologische Moden und Flachbänder in Mikrokavitäts-Exziton-Polariton-Gittern N2 - The fascination of microcavity exciton-polaritons (polaritons) rests upon the combination of advanced technological control over both the III-V semiconductor material platform as well as the precise spectroscopic access to polaritonic states, which provide access to the investigation of open questions and complex phenomena due to the inherent nonlinearity and direct spectroscopic observables such as energy-resolved real and Fourier space information, pseudospin and coherence. The focus of this work was to advance the research area of polariton lattice simulators with a particular emphasis on their lasing properties. Following the brief introduction into the fundamental physics of polariton lattices in chapter 2, important aspects of the sample fabrication as well as the Fourier spectroscopy techniques used to investigate various features of these lattices were summarized in chapter 3. Here, the implementation of a spatial light modulator for advanced excitation schemes was presented. At the foundation of this work is the capability to confine polaritons into micropillars or microtraps resulting in discrete energy levels. By arranging these pillars or traps into various lattice geometries and ensuring coupling between neighbouring sites, polaritonic band structures were engineered. In chapter 4, the formation of a band structure was visualised in detail by investigating ribbons of honeycomb lattices. Here, the transition of the discrete energy levels of a single chain of microtraps to the fully developed band structure of a honeycomb lattice was observed. This study allows to design the size of individual domains in more complicated lattice geometries such that a description using band structures becomes feasible, as it revealed that a width of just six unit cells is sufficient to reproduce all characteristic features of the S band of a honeycomb lattice. In particular in the context of potential technological applications in the realms of lasing, the laser-like, coherent emission from polariton microcavities that can be achieved through the excitation of polariton condensates is intriguing. The condensation process is significantly altered in a lattice potential environment when compared to a planar microcavity. Therefore, an investigation of the polariton condensation process in a lattice with respect to the characteristics of the excitation laser, the exciton-photon detuning as well as the reduced trap distance that represents a key design parameter for polaritonic lattices was performed. Based on the demonstration of polariton condensation into multiple bands, the preferred condensation into a desired band was achieved by selecting the appropriate detuning. Additionally, a decreased condensation threshold in confined systems compared to a planar microcavity was revealed. In chapter 5, the influence of the peculiar feature of flatbands arising in certain lattice geometries, such as the Lieb and Kagome lattices, on polaritons and polariton condensates was investigated. Deviations from a lattice simulator described by a tight binding model that is solely based on nearest neighbour coupling cause a remaining dispersiveness of the flatbands along certain directions of the Brillouin zone. Therefore, the influence of the reduced trap distance on the dispersiveness of the flatbands was investigated and precise technological control over the flatbands was demonstrated. As next-nearest neighbour coupling is reduced drastically by increasing the distance between the corresponding traps, increasing the reduced trap distance enables to tune the S flatbands of both Lieb and Kagome lattices from dispersive bands to flatbands with a bandwidth on the order of the polariton linewidth. Additionally to technological control over the band structures, the controlled excitation of large condensates, single compact localized state (CLS) condensates as well as the resonant excitation of polaritons in a Lieb flatband were demonstrated. Furthermore, selective condensation into flatbands was realised. This combination of technological and spectroscopic control illustrates the capabilities of polariton lattice simulators and was used to study the coherence of flatband polariton condensates. Here, the ability to tune the dispersiveness from a dispersive band to an almost perfect flatband in combination with the selectivity of the excitation is particularly valuable. By exciting large flatband condensates, the increasing degree of localisation to a CLS with decreasing dispersiveness was demonstrated by measurements of first order spatial coherence. Furthermore, the first order temporal coherence of CLS condensates was increased from τ = 68 ps for a dispersive flatband, a value typically achieved in high-quality microcavity samples, to a remarkable τ = 459 ps in a flatband with a dispersiveness below the polarion linewidth. Corresponding to this drastic increase of the first order coherence time, a decrease of the second order temporal coherence function from g(2)(τ =0) = 1.062 to g(2)(0) = 1.035 was observed. Next to laser-like, coherent emission, polariton condensates can form vortex lattices. In this work, two distinct vortex lattices that can form in polariton condensates in Kagome flatbands were revealed. Furthermore, chiral, superfluid edge transport was realised by breaking the spatial symmetry through a localised excitation spot. This chirality was related to a change in the vortex orientation at the edge of the lattice and thus opens the path towards further investigations of symmetry breaking and chiral superfluid transport in Kagome lattices. Arguably the most influential concept in solid-state physics of the recent decades is the idea of topological order that has also provided a new degree of freedom to control the propagation of light. Therefore, in chapter 6, the interplay of topologically non-trivial band structures with polaritons, polariton condensates and lasing was emphasised. Firstly, a two-dimensional exciton-polariton topological insulator based on a honeycomb lattice was realised. Here, a topologically non-trivial band gap was opened at the Dirac points through a combination of TE-TM splitting of the photonic mode and Zeeman splitting of the excitonic mode. While the band gap is too small compared to the linewidth to be observed in the linear regime, the excitation of polariton condensates allowed to observe the characteristic, topologically protected, chiral edge modes that are robust against scattering at defects as well as lattice corners. This result represents a valuable step towards the investigation of non-linear and non-Hermitian topological physics, based on the inherent gain and loss of microcavities as well as the ability of polaritons to interact with each other. Apart from fundamental interest, the field of topological photonics is driven by the search of potential technological applications, where one direction is to advance the development of lasers. In this work, the starting point towards studying topological lasing was the Su-Schrieffer-Heeger (SSH) model, since it combines a simple and well-understood geometry with a large topological gap. The coherence properties of the topological edge defect of an SSH chain was studied in detail, revealing a promising degree of second order temporal coherence of g(2)(0) = 1.07 for a microlaser with a diameter of only d = 3.5 µm. In the context of topological lasing, the idea of using a propagating, topologically protected mode to ensure coherent coupling of laser arrays is particularly promising. Here, a topologically non-trivial interface mode between the two distinct domains of the crystalline topological insulator (CTI) was realised. After establishing selective lasing from this mode, the coherence properties were studied and coherence of a full, hexagonal interface comprised of 30 vertical-cavity surface-emitting lasers (VCSELs) was demonstrated. This result thus represents the first demonstration of a topological insulator VCSEL array, combining the compact size and convenient light collection of vertically emitting lasers with an in-plane topological protection. Finally, in chapter 7, an approach towards engineering the band structures of Lieb and honeycomb lattices by unbalancing the eigenenergies of the sites within each unit cell was presented. For Lieb lattices, this technique opens up a path towards controlling the coupling of a flatband to dispersive bands and could enable a detailed study of the influence of this coupling on the polariton flatband states. In an unbalanced honeycomb lattice, a quantum valley Hall boundary mode between two distinct, unbalanced honeycomb domains with permuted sites in the unit cells was demonstrated. This boundary mode could serve as the foundation for the realisation of a polariton quantum valley Hall effect with a truly topologically protected spin based on vortex charges. Modifying polariton lattices by unbalancing the eigenenergies of the sites that comprise a unit cell was thus identified as an additional, promising path for the future development of polariton lattice simulators. N2 - Die Faszination von Exziton-Polaritonen (Polaritonen) basiert auf der einzigartigen Kombination aus technologischer Kontrolle über die III-V Halbleiterplattform und umfassendem spektroskopischen Zugang zu polaritonischen Zuständen, die aufgrund ihrer inhärenten Nichtlinearität und vielfältigen Observablen, wie zum Beispiel Real- und Fourierraumspektren, Pseudospin und Kohärenz, Zugang zu diversen offenen Fragen und komplexen physikalischen Phänomenen bieten. Im Fokus dieser Arbeit lag die Weiterentwicklung von Polaritongittern als Simulatoren für diverse physikalische Phänomene. Dabei wurde insbesondere die das kohärente, Laser-artige Licht, das von Polaritonkondensaten ausgesendet wird, untersucht. Die Arbeit beginnt mit einer kurzen Zusammenfassung der für das Verständnis relevanten physikalischen Grundlagen in Kapitel 2, gefolgt von einer Beschreibung der Probenherstellung sowie der spektroskopischen Methoden, die für die Untersuchung der polaritonischen Gitter verwendet wurden, in Kapitel 3. Hier wurde insbesondere die Implementierung eines Spatial Light Modulators für die Erzeugung beliebig definierbarer Anregungsmuster präsentiert. Diese Arbeit basiert auf der Fähigkeit, Einschlusspotentiale in Form von Mikrotürmchen oder Mikrofallen für Polaritonen zu erzeugen, die zu einem diskretisierten Modenspektrum führen. Wird nun ein Gitter aus solchen Türmchen oder Fallen hergestellt, führt die Kopplung zwischen benachbarten Gitterpositionen zur Ausbildung von Bandstrukturen. Die Ausbildung einer solchen Bandstruktur wurde in Kapitel 4 anhand von Streifen eines Honigwabengitters veranschaulicht. Dabei konnte der Übergang vom diskreten Energiespektrum einer eindimensionalen Kette bis hin zur vollständig ausgebildeten Bandstruktur eines Honigwabengitters dargestellt werden. Diese systematische Untersuchung ermöglicht das gezielte Design neuer, komplizierterer Gittergeometrien, die aus verschiedenen Domänen bestehen, da gezeigt werden konnte, dass eine Domänengröße von sechs Einheitszellen ausreicht, um eine Bandstruktur zu erzeugen. Neben der Ausbildung von Bandstrukturen in Gittern ist das Phänomen der Polaritonkondensation, das zur Emission von kohärenter Strahlung führt, besonders spannend, da es in direktem Bezug zu möglichen technologischen Anwendungen als Laser steht. Da sich der Kondensationsprozess in einem Gitter grundsätzlich vom Kondensationsprozess in einer planaren Kavität unterscheidet, wurde dieser detailliert untersucht. Hierbei wurde insbesondere der Einfluss des Anregungslasers, der Verstimmung zwischen Exziton und Photon, sowie des reduzierten Fallenabstandes, der einen wichtigen Parameter im Design neuer Gitter darstellt, untersucht. Im Rahmen dieser Untersuchung konnte die Polaritonkondensation in mehrere Bänder nachgewiesen werden. Außerdem wurde selektive Kondensation in ein gewünschtes Band durch die Wahl einer geeigneten Verstimmung zwischen Exziton und Photon erreicht. Abschließend konnte eine Verringerung der Kondensationsschwelle in einem Gitter gegenüber einer planaren Kavität nachgewiesen werden. Ein bemerkenswertes Phänomen, das zum Beispiel in den Bandstrukturen von Lieb- und Kagomegittern auftritt, sind Flachbänder, deren Einfluss auf Polaritonen und Polaritonkondensate, insbesondere in Bezug zu ihren Kohärenzeigenschaften, in Kapitel 5 untersucht wurde. Abweichungen von einem Gittersimulator, der sich mit einem Tight Binding Modell, das nur Kopplung zwischen nächsten Nachbarn berücksichtigt, beschreiben lässt, führen dazu, dass Flachbänder entlang bestimmter Richtungen in der Brillouinzone dispersiv werden. Mit einer Untersuchung des Einflusses des reduzierten Fallenabstandes auf Flachbänder konnte technologische Kontrolle über diese Dispersivität gezeigt werden. Da die Kopplung zwischen übernächsten Nachbarn mit steigendem Abstand zwischen den Fallen stark abnimmt, lassen sich die Flachbänder in den S Bändern von Lieb und Kagomegittern von dispersiven in nahezu perfekte Flachbänder, deren Bandbreite in der Größenordnung der polaritonischen Linienbreite liegt, überführen, indem der reduzierte Fallenabstand vergrößert wird. Zusätzlich zur technologischen Kontrolle über die Dispersivität der Flachbänder wurde die kontrollierte Anregung von großen Flachbandkondensaten, Kondensaten in einzelnen Compact Localised States (CLS), sowie die resonante Anregung von Polaritonen in einem Lieb Flachband demonstriert. Insbesondere für das Flachband des Kagomegitters konnte selektive Kondensation realisiert werden. Diese Kombination aus technologischer und spektroskopischer Kontrolle verdeutlicht das Potential polaritonischer Gittersimulatoren. Aufbauend auf der Kontrolle über polaritonische Flachbänder wurde die Kohärenz von Flachbandkondensaten untersucht. In diesem Zusammenhang erwies sich die Kombination aus der Möglichkeit, die Dispersivität des Flachbandes zu beeinflussen, und der selektiven Kondensation als besonders wertvoll. Durch interferometrische Messungen an großen Flachbandkondensaten konnte gezeigt werden, dass sich die Kohärenz mit abnehmender Dispersivität des Flachbandes auf einen CLS lokalisiert. Außerdem konnte eine Steigerung der Kohärenzzeit von τ = 68 ps, einem für hochwertige Mikrokavitäten typischen Wert, in einem dispersiven Flachband zu beeindruckenden τ = 459 ps in einem Flachband, dessen Dispersivität kleiner als die polaritonische Linienbreite ist, gezeigt werden. Passend zu dieser deutlichen Steigerung der Kohärenzzeit erster Ordnung konnte eine Abnahme der Kohärenzfunktion zweiter Ordnung von g(2)(τ =0) = 1.062 zu g(2)(0) = 1.035 beobachtet werden. Neben den mit einem Laser vergleichbaren Emissionseigenschaften können Polaritonkondensate Gitter aus Vortices ausbilden. Im Rahmen dieser Arbeit wurden zwei verschiedene Vortexgitter nachgewiesen. Außerdem konnte durch Symmetriebrechung mittels eines lokalisierten Anregungslasers chiraler, superfluider Randtransport realisiert werden. Diese Chiralität konnte mit einer Änderung der Vortexausrichtung am Rand des Gitters in Verbindung gebracht werden und motiviert daher weitere Untersuchungen zu Symmetriebrechung und chiralem, superfluidem Transport in Kagomegittern. Das vermutlich einflussreichste Konzept in der Festkörperphysik der letzten Jahrzehnte ist die Idee einer topologischen Ordnung, die auch einen neuen Freiheitsgrad zur Kontrolle der Propagation von Licht bietet. Daher wurde in Kapitel 6 das Zusammenspiel aus topologisch nicht-trivialen Bandstrukturen und Polaritonen, Polarionkondensaten und Lasern untersucht. Zuerst wurde ein zweidimensionaler, polaritonischer, topologischer Isolator, der auf einem Honigwabengitter basiert, realisiert. Die topologisch nicht-triviale Bandlücke wurde durch eine Kombination aus einer Modenaufspaltung zwischen der transversal-elektrischen und der transversal-magnetischen Komponente der photonischen Mode sowie einer Zeeman-Aufspaltung der exzitonischen Mode geöffnet. Da die Bandlücke zu klein gegenüber der Linienbreite war, um sie im linearen Regime nachweisen zu können, wurden Polaritonkondensate angeregt. Mithilfe dieser Kondensate war es möglich, die charakteristischen, topologisch geschützten, chiralen Randmoden, die robust gegenüber Rückstreuung und Streuung an Defekten sowie den Ecken des Gitters sind, nachzuweisen. Dieses Ergebnis stellt einen wichtigen Schritt in der Untersuchung nicht-linearer und nichthermitischer, topologischer Systeme dar, da Mikrokavitäten eine intrinsische Nichtlinearität aufweisen und Polaritonen untereinander wechselwirken können. Neben dem fundamentalen Interesse wird das Feld der topologischen Photonik vor allem durch die Suche nach neuen technologischen Anwendungen vorangetrieben. Eine wichtige Forschungsrichtung ist dabei die Entwicklung neuer Laser. In dieser Arbeit war der Ausgangspunkt für die Untersuchung topologischer Laser das Su-Schrieffer-Heeger (SSH) Modell, da es eine einfache, gut verstandene Geometrie und eine große topologische Bandlücke bietet. Die Kohärenzeigenschaften des topologischen Randdefekts in SSH Ketten wurden detailliert untersucht und ein Grad zeitlicher Kohärenz zweiter Ordnung von g(2)(0) = 1.07 erreicht. Für einen Mikrolaser mit einem Durchmesser von nur d = 3.5 µm ist dies ein sehr gutes Ergebnis. Besonders vielversprechend in der Entwicklung topologischer Laser ist allerdings vor allem die kohärente Kopplung vieler Laser mithilfe einer propagierenden, topologisch geschützten Mode. Um diese Kopplung zu untersuchen wurde eine topologisch nichttriviale Mode an der Domänengrenze zwischen zwei kristallinen, topologischen Isolatoren implementiert. Nachdem selektive Laseremission aus dieser Mode erreicht wurde, wurden insbesondere die Kohärenzeigenschaften untersucht. Dabei konnte gezeigt werden, dass 30 vertikal emittierende Laser, die eine geschlossene, hexagonale Domänengrenze bilden, kohärent gekoppelt werden können. Dieser erste Nachweis eines topologisch geschützten Gitters aus gekoppelten, vertikal emittieren Lasern überzeugt vor allem durch die Kombination der kompakten Bauform und einfachen Bündelung der Laseremission vertikal emittierenden Laser mit dem topologischen Schutz der zwischen den Lasern propagierenden Mode. Zuletzt wurde in Kapitel 7 untersucht, wie die Bandstrukturen von Lieb- und Honigwabengittern durch die Einführung eines Energieunterschiedes zwischen den Untergittern gezielt verändert werden können. In Liebgittern bietet diese Technologie einen Weg, die Kopplungsumgebung des Flachbandes drastisch zu ändern, da das Flachband nun nicht mehr einen Dirac-Punkt mit linearer Dispersion schneidet, sondern ein dispersives Band an einem Potentialminimum berührt. In Honigwabengittern konnte eine Quantum Valley Hall Mode an der Grenzfläche zwischen zwei Domänen mit invertiertem Untergitter gezeigt werden. Diese Mode könnte die Basis für die Entwicklung eines Quantum Valley Hall Zustandes mit echtem topologischem Schutz auf der Basis von Vortizes bilden. Eine Variation der Eigenenergien der Untergitter stellt also einen vielversprechenden, weiteren Weg für zukünftige Experimente mit polaritonischen Gittersimulatoren dar. KW - Exziton-Polariton KW - Topologie KW - Laser KW - Fourier-Spektroskopie KW - Topologische Laser KW - Gittersimulator Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-259008 ER -