TY - JOUR A1 - Bratengeier, Klaus A1 - Holubyev, Kostyantyn A1 - Wegener, Sonja T1 - Steeper dose gradients resulting from reduced source to target distance—a planning system independent study JF - Journal of Applied Clinical Medical Physics N2 - Purpose: To quantify the contribution of penumbra in the improvement of healthy tissue sparing at reduced source‐to‐axis distance (SAD) for simple spherical target and different prescription isodoses (PI). Method: A TPS‐independent method was used to estimate three‐dimensional (3D) dose distribution for stereotactic treatment of spherical targets of 0.5 cm radius based on single beam two‐dimensional (2D) film dosimetry measurements. 1 cm target constitutes the worst case for the conformation with standard Multi‐Leaf Collimator (MLC) with 0.5 cm leaf width. The measured 2D transverse dose cross‐sections and the profiles in leaf and jaw directions were used to calculate radial dose distribution from isotropic beam arrangement, for both quadratic and circular beam openings, respectively. The results were compared for standard (100 cm) and reduced SAD 70 and 55 cm for different PI. Results: For practical reduction of SAD using quadratic openings, the improvement of healthy tissue sparing (HTS) at distances up to 3 times the PTV radius was at least 6%–12%; gradient indices (GI) were reduced by 3–39% for PI between 40% and 90%. Except for PI of 80% and 90%, quadratic apertures at SAD 70 cm improved the HTS by up to 20% compared to circular openings at 100 cm or were at least equivalent; GI were 3%–33% lower for reduced SAD in the PI range 40%–70%. For PI = 80% and 90% the results depend on the circular collimator model. Conclusion: Stereotactic treatments of spherical targets delivered at reduced SAD of 70 or 55 cm using MLC spare healthy tissue around the target at least as good as treatments at SAD 100 cm using circular collimators. The steeper beam penumbra at reduced SAD seems to be as important as perfect target conformity. The authors argue therefore that the beam penumbra width should be addressed in the stereotactic studies. KW - radiotherapy KW - stereotactic irradiation KW - penumbra KW - leaf width KW - virtual isocenter Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-177424 VL - 20 IS - 1 ER - TY - JOUR A1 - Greber, Johannes A1 - Polat, Bülent A1 - Flentje, Michael A1 - Bratengeier, Klaus T1 - Properties of the anisotropy of dose contributions: A planning study on prostate cases JF - Medical Physics N2 - Purpose To characterize the static properties of the anisotropy of dose contributions for different treatment techniques on real patient data (prostate cases). From this, we aim to define a class of treatment techniques with invariant anisotropy distribution carrying information of target coverage and organ-at-risk (OAR) sparing. The anisotropy presumably is a helpful quantity for plan adaptation problems. Methods The anisotropy field is analyzed for different intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) techniques for a total of ten planning CTs of prostate cases. Primary irradiation directions ranged from 5 to 15. The uniqueness of anisotropy was explored: In particular, the anisotropy distribution inside the planning treatment volume (PTV) and in its vicinity was investigated. Furthermore, deviations of the anisotropy under beam rotations were explored by direct plan comparison as an indicating the susceptibility of each planned technique to changes in the geometric plan configuration. In addition, plan comparisons enabled the categorization of treatment techniques in terms of their anisotropy distribution. Results The anisotropy profile inside the PTV and in the transition between OAR and PTV is independent of the treatment technique as long as a sufficient number of beams contribute to the dose distribution. Techniques with multiple beams constitute a class of almost identical and technique-independent anisotropy distribution. For this class of techniques, substructures of the anisotropy are particularly pronounced in the PTV, thus offering good options for applying adaptation rules. Additionally, the techniques forming the mentioned class fortunately allow a better OAR sparing at constant PTV coverage. Besides the characterization of the distribution, a pairwise plan comparison reveals each technique's susceptibility to deviations which decreases for an increasing number of primary irradiation directions. Conclusions Techniques using many irradiation directions form a class of almost identical anisotropy distributions which are assumed to provide a basis for improved adaptation procedures. Encouragingly, these techniques deliver quite invariant anisotropy distributions with respect to rotations correlated with good plan qualities than techniques using few gantry angles. The following will be the next steps toward anisotropy-based adaptation: first, the quantification of anisotropy regarding organ deformations; and second, establishing the interrelation between the anisotropy and beam shaping. KW - adaptation KW - IMRT KW - radiotherapy KW - VMAT Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-228237 VL - 46 ER -