TY - THES A1 - Wittek, Anke T1 - Vergleichende elektrophysiologische Untersuchungen zweier Saccharose/H +-Symporter, ZmSUT1 (Zea mays) und UmSrt1 (Ustilago maydis) T1 - Comparative electrophysiological studies of two suc/H+-symporter ZmSUT1 (Zea mays) and UmSrt1 (Ustilago maydis) N2 - Bei der Betrachtung des Pathosystems Ustilago maydis/Zea mays kommen sich Proteine unterschiedlicher Organismen sehr nahe. Die derzeitige Hypothese zur lokalen Szenerie in der ausgebildeten Interaktionszone von Pflanze und Pilz spricht zwei SUC-Transportern dabei wichtige Rollen in der Pflanze/Pilz Interaktion zu. UmSrt1, der erste beschriebene pilzliche SUC-Transporter aus dem Maispathogen Ustilago maydis (Wahl et al., 2010) und ZmSUT1, der aus Zea mays stammende low affinity SUC-Transporter (Carpaneto et al., 2005) werden als Gegenspieler im Konkurrenzkampf um die extrazelluläre SUC beschrieben (Wahl et al., 2010). ZmSUT1 ist in der Plasmamembran der Geleitzellen lokalisiert und dort für die Beladung des Phloems mit SUC aus dem Apoplasten zuständig. UmSrt1, für den eine Lokalisation in der Plasmamembran in Hefen gezeigt werden konnte, sorgt als „high affinity“ Transporter mit dem Import extrazellulärer SUC für die Kohlenhydratversorgung der pilzlichen Entwicklung und Ernährung (Wahl et al., 2010). Gegenstand der vorliegenden Arbeit waren vergleichende elektrophysiologische Charakterisierungen der SUC-Transporteigenschaften von ZmSUT1 und UmSrt1. Durch heterologe Expression der Proteine in Xenopus Oozyten und anschließende Messungen unter Verwendung der DEVC-Technik wurden die Eigenschaften des SUC-Transports beider SUC-Transporter im Hinblick auf ihre Konzentrations-, pH-, Spannungsabhängigkeit, sowie auf die Substratspezifität hin untersucht. Diese vergleichenden Studien zur Charakterisierung beider Transportproteine ergaben ihren physiologischen Aufgaben entsprechende Unterschiede. ZmSUT1 konnte ein Verhalten als „low affinity/high capacity“ Transporter mit Affinitäten gegenüber SUC im millimolaren Bereich mit einer spannungsunabhängigen Transportaktivität bestätigt werden. Zudem konnte die Transportaktivität als stark H+-abhängig beschrieben werden (Carpaneto et al., 2005), deren Optimum nahe des physiologischen Bereichs des Apoplasten bestimmt werden konnte. Des Weiteren wurden Untersuchungen zur Substratspezifität angefertigt, die ZmSUT1 eindeutig eine Typ-II SUT Zugehörigkeit (Sivitz et al., 2005; Reinders et al., 2006; Sun et al., 2010) mit einem engen Substratspektrum belegen. Für UmSrt1 dagegen wurde ein Transportverhalten als „high affinity/low capacity“ Transporter mit höheren Affinitäten gegenüber SUC im mikromolaren Bereich ermittelt (Wahl et al., 2010). Darüber hinaus beschreiben die Ergebnisse dieser Arbeit eine weitestgehend H+-unabhängige Transportaktivität in einem weiten pH-Wert Bereich. Im Profil der Substratspezifität zeigte sich neben SUC als primärem Substrat ein eher unspezifischer Transport weiterer Mono-, Di- und Trisaccharide. Die postulierte SUC-Spezifität von UmSrt1 (Wahl et al., 2010) konnte mit den vorliegenden Ergebnissen nicht bestätigt werden. Mit einem effektivem Import von SUC mittels UmSrt1 in den Pilz umgeht U. maydis die Hydrolyse von SUC im pflanzlichen Apoplasten und damit die Bildung extrazellulärer Glukose, die ein Signal in der pflanzlichen Pathogenabwehr darstellt (Herbers et al., 1996b; Ehness et al., 1997; Kocal et al., 2008). Somit scheint es für Ustillago maydis möglich zu sein, eine von der Wirtspflanze Zea mays weitestgehend „unbemerkte“ Aufnahme von Kohlenhydraten über einen breiten pH-Wert Bereich bewerkstelligen zu können. Die vielfach höheren Affinitäten gegenüber SUC und H+ verschaffen UmSrt1 im Konkurrenzkampf um die extrazelluläre SUC einen klaren Vorteil gegenüber ZmSUT1. Diese Daten deuten darauf hin, dass U. maydis auch unter Stressbedingungen der Pflanze und damit resultierenden Schwankungen der H+-Konzentrationen in der Lage ist, den SUC-Import für seine eigene Ernährung sicher zu stellen. Das Gebiet posttranslationaler Modifikationen von SUC-Transportern ist weitestgehend unerforscht. In planta Versuche deuteten darauf hin, dass Redox-aktive Substanzen den Zuckertransport beeinflussen. Im Oozytensystem wurde deshalb die Aktivität von ZmSUT1 in Anwesenheit der Redox-aktiven Substanzen GSH, GSSG, H2O2 und DTT getestet. Der geringfügige Einfluss dieser Substanzen auf SUC-induzierte Ströme von ZmSUT1 deuten jedoch darauf hin, dass SUC-Transporter nicht ein direktes Ziel von Redox-Veränderungen darstellen. Um die Struktur des pflanzlichen SUC-Transporters ZmSUT1 näher zu beleuchten und die an der Bindung von SUC involvierten Aminosäuren zu identifizieren, wurde auf der Basis der bereits bekannten Struktur von LacY aus E.coli, ebenfalls einem Vertreter der MFS, ein 3D-Modell für ZmSUT1 erstellt. Die AS, die in LacY an der Bindung des Substrats beteiligt sind, wurden bereits identifiziert (Vadyvaloo et al., 2006). Darauf aufbauend wurden im Rahmen einer Mutagenesestudie gezielt AS im Protein ZmSUT1 ausgewählt, die in verwandten SUC-Transportern konserviert und in homolgen Positionen zu den in LacY bereits identifizierten AS vorliegen. In diesen ausgewählten Positionen wurden mittels gerichteter Mutagenese acht Mutanten generiert. Die elektrophysiologische Charakterisierung dieser ZmSUT1-Mutanten identifizierte zwei Mutanten, die in der SUC-/H+-Translokation gestört waren sowie zwei WT-ähnliche. Es konnten vier Mutanten mit erniedrigten Affinitäten gegenüber SUC identifiziert werden, von denen zwei zusätzlich Veränderungen in ihrer Substratspezifität aufweisen. Diese vier AS werden als mögliche Kandidaten angesehen, an der Bindung und/oder Translokation von SUC beteiligt zu sein. N2 - Within the Ustilago maydis/Zea mays pathosystem suc transport proteins of different organisms are coming close to each other and compete for sugar in the plant apoplast. It could be shown that two suc transport proteins play an important role in the plant/fungal interaction-zone. UmSrt1, the first described fungal suc-transporter of Ustilago maydis (Wahl et al., 2010), and ZmSUT1, a low affinity transporter from Zea mays (Carpaneto et al., 2005) are thought to have the role of opposing players in extracellular suc-transport (Wahl et al., 2010). ZmSUT1 is localized in the plasma membrane of companion cells and there it is responsible for loading the phloem with suc from the apoplast. The high affinity transporter UmSrt1, whose localization in the yeast plasma membrane has been shown, ensures the carbohydrate supply needed for fungal growth and development by importing extracellular suc (Wahl et al., 2010). The topic of this dissertation is an electrophysiological characterization of the suc-transport performance of ZmSUT1 and UmSrt1 in terms of concentration-, pH- and voltage-dependence as well as substrate specificity. These characterizations have been measured by the heterologous expression of the proteins in Xenopus oocytes and subsequent measurements via DEVC-technique. The results of these comparative studies characterize both transport proteins and present differences originating from their physiological responsibilities. ZmSUT1 was shown to be a „low affinity/high capacity“ transporter with affinities for suc and H+ in millimolar ranges and a voltage-independent transport activity. A strong H+-dependent transport activity had been shown by Carpaneto et al. (2005). This dissertation adds the finding that the optimum corresponds with the physiological environment of the apoplast. Further experiments regarding substrate specificity of ZmSUT1 have been conducted and show clearly that this protein belongs to the type-II SUT`s (Sivitz et al., 2005; Reinders et al., 2006; Sun et al., 2010; Sun et al., 2012) with a narrow spectrum of selectivity. On the other hand, for UmSrt1 a „high affinity/low capacity“ performance with values for suc affinity in micromolar ranges could be confirmed (Wahl et al., 2010). Furthermore the results of this dissertation show a H+-independent transport activity over a broad pH range. In addition to suc as the primary substrate, a broad substrate specificity involving mono-, di, and trisaccharides was shown for UmSrt1. The postulated high suc specificity for UmSrt1 (Wahl et al.) could not be confirmed. Efficient import of suc into the fungus, U. maydis seem to avoid extracellular glucose production by suc hydrolysis and therewith plant defence responses (Herbers et al., 1996b; Ehness et al., 1997; Kocal et al., 2008). For U. maydis it seems to be possible to import carbohydrates in an undetected way by UmSrt1 over a broad pH range. UmSrt1 exhibits high affinities for suc and H+, which leads to a more efficient transport of sugar compared to ZmSUT1. Thus U. maydis is able to import suc for its own feeding even under stress conditions when oscillating apoplastic H+-concentrations may occur. Up to now the posttranslational modifications of suc-transporters are nearly unexplored. In planta it was shown that redox-active substances reduce the sugar import markedly. To test whether suc-transporters are regulated by redox-active substances, such as GSH, GSSG, H2O2 and DTT, we expressed ZmSUT1 in oocytes and monitored its activity in response to the latter substances. Since ZmSUT1 activity was only weakly influenced by redox-active substances, the redox-status of plant cells seem not to regulate SUC-transporter directly. In order to examine the structure of the plant suc-transporter ZmSUT1 and further characterize the suc bindingsite by identification of involved amino acids, a 3-D model was prepared. The basis of the 3-D model was the known structure of LacY from E. coli, which also is an MFS-member. The amino acids, which in LacY are responsible for substrate binding, have already been identified (Vadyvaloo et al., 2006). According to the model, amino acids in homologous positions to those identified in LacY were selected for a mutagenesis study of ZmSUT1. Mutations were introduced in selected positions by targeted mutagenesis and eight mutants were generated. The results of electrophysiological characterization of the mutants showed two mutants with disturbance in suc-/H+-translocation and two others with a WT-like transport profile. Furthermore four mutants with modified affinity for suc have been identified. Whilst all of these four mutants show a lower affinity for suc, two of them additionally showed a modified profile in their substrate specificity. These four mutants are considered to be possible candidates regarding the involvement of theses amino acids in binding and translocation of suc. KW - Saccharose KW - corn KW - Mais KW - Ustilago zeae KW - sucrose KW - transporter KW - Stofftransport Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-85279 ER - TY - THES A1 - Glaser, Stefanie T1 - Untersuchung des RNA-Kernexportes im Modellsystem Xenopus laevis T1 - Analysis of the RNA nuclear export in the model system Xenopus laevis N2 - Der eukaryotische Initiationsfaktor 5A (eIF5A) ist evolutionär hoch konserviert und besitzt als einzig bislang bekanntes Protein die Aminosäuremodifikation Hypusin. Obwohl eIF5A ubiquitär exprimiert wird, sind die zellulären Funktionen von eIF5A noch weitgehend unklar. Hypusininhibitoren konnten die Oberflächenexpression von CD83 die CD83 mRNA im Zellkern dendritischer Zellen anreichern und folglich die Oberflächenexpression von CD83 verhindern konnten, wurde eine Beteiligung von eIF5A beim nukleozytoplasmatischen Export der CD83 mRNA vermutet. Weiterhin ist bekannt, dass HuR, ein Protein der ELAV-Familie, an ein cis-aktives RNA-Element mit einer ausgeprägten Sekundärstruktur innerhalb der kodierenden Sequenz der CD83 mRNA bindet. Während die Bindung von HuR an AU-reiche Elemente in der 3UTR bestimmter Transkripte zu deren Stabilisierung führt, wird die Stabilität von CD83-Transkripten durch die Interaktion mit HuR jedoch nicht beeinflusst. In dieser Arbeit wurden Mikroinjektionsstudien in Xenopus laevis-Oozyten zum nukleozytoplasmatischen Export von CD83 mRNA durchgeführt. Es konnte gezeigt werden, dass die charakteristische Sekundärstruktur des HuR-Response-Elements essentiell für den Kernexport von CD83-Transkripten ist. HuR wurde zudem als Bindungspartner von eIF5a identifiziert. Inhibitorische Antikörper sowohl gegen HuR als auch eIF5A waren in der Lage, den Export von CD83-Transkripten zu inhibieren. Während die meisten mRNAs durch den TAP/NXT1-vermittelten Exportweg in das Zytoplasma transportiert werden, transloziert CD83 mRNA CRM1-vermittelt, da der Export durch den CRM1-Inhibitor Leptomycin B gehemmt werden konnte. Oozytentypischer TFIIIA, ebenfalls ein Interaktionspartner von eIF5A, ist in jungen Xenopus-Oozyten sowohl bei der RNA-Polymerase III-abhängigen Transkription von 5S rRNA als auch am nukleozytoplasmatischem Export und der Lagerung von 5S rRNA im Zytoplasma beteiligt. Aufgrund der Parallele zwischen dem HIV-1-Rev vermittelten HIV-1-mRNA-Export und dem TFIIIA-vermittelten 5S rRNA-Export, wurde der Export von TFIIIA im Hinblick auf eine Beteiligung von eIF5A als Kofaktor analysiert. In Xenopus-Oozyten wurde TFIIIA an den nukleoplasmatischen Filamenten der Kernporenkomplexe detektiert. Weiterhin konnte durch den Einsatz des spezifischen CRM1-Inhibitors Leptomycin B bestätigt werden, dass TFIIIA, welches ein leucinreiches Kernexportsignal enthält, mittels CRM1 exportiert wird. Im Overlay-Blot-Assay konnte gezeigt werden, dass eIF5A mit TFIIIA interagiert. Außerdem deuten Mikroinjektionsexperimente darauf hin, dass eIF5A, wie beim HIV-1-Rev-vermittelten Export, auch beim TFIIIA-Export als essentieller Kofaktor involviert ist. Ein weiterer bekannter Bindungspartner von eIF5A ist Aktin, das im Zellkern an verschiedenen Exportprozessen sowie der RNA-Polymerase I-, II- und III-abhängigen Transkription beteiligt ist. Im Gegensatz zu Aktin wurde die Existenz des Aktinpartners Myosin im Zellkern erst vor kurzem realisiert. In dieser Arbeit konnten durch bioinformatische Analysen gezeigt werden, dass Kernmyosin IC bei Vertebraten weit verbreitet ist. Es wurde auch bei Xenopus laevis identifiziert. Im Vergleich zu Myosin IC fand sich ein zusätzlicher Aminoterminus aus 16 Aminosäuren, welcher als Kernlokalisationssignal fungiert. In Oozyten von Xenopus laevis konnte Kernmyosin IC, ähnlich wie RNA-Polymerase II, an den lateralen Schleifen der Lampenbürstenchromosomen dargestellt werden. Inhibierende Kernmyosinantikörper führten nach Mikroinjektion in den Zellkern von Xenopus-Oozyten zu einer kompletten Retraktion der meisten lateralen transkriptionsaktiven Schleifen sowie zu einer Verkürzung der Chromosomenachsen. konnte Kernmyosin IC vor allem im Nukleoluskern detektiert werden, wo es partiell mit RNA-Polymerase I und Fibrillarin kolokalisierte. In amplifizierten Nukleolen führte eine Transkriptionsinhibition mit Aktinomycin D zu einer Umverteilung des Kernmyosin IC zusammen mit der RNA-Polymerase I und der rDNA. Nach Injektion inhibierender Kernmyosinantikörper kam es zu einem massiven architektonischen Umbau der Nukleolen. Im Gegensatz zu den Nukleolen von somatischen Xenopus-Zellen war ein BrUTP-Einbau in amplifizierte Nukleolen jedoch noch möglich. Wie für Kernaktin bereits beschrieben, konnte auch Kernmyosin IC an den nukleoplasmatischen Filamenten der Kernporenkomplexe von Xenopus laevis-Ooyzten dargestellt werden. Da Aktin als essentieller Kofaktor an Exportprozessen beteiligt ist, sollte in Mikroinjektionsexperimenten auch eine Beteiligung von Kernmyosin IC beim Kernexport überprüft werden. Antikörper gegen ein Epitop in der Myosinkopfdomäne des Kernmyosin IC (XNMIC #42) waren im Gegensatz zu Antikörpern, die den charakteristischen Aminoterminus aus 16 Aminosäuren erkennen (XNMIC #54), in der Lage, einen CRM1-vermittelten Proteinexport zu inhibieren. N2 - Eucaryotic initiation factor 5A (eIF5A), an evolutionary highly conserved protein, is the only protein known to contain the unique amino acid modification hypusine. Even if eIF5A is ubiquitous expressed, cellular functions of eIF5A remain widely obscure. Hypusine inhibitors are able to enrich CD83 transcripts in the cell nucleus of dendritic cells and subsequently prevent surface expression of CD83. Therefore, a role of eIF5A in nucleocytoplasmic export of CD83 mRNA was supposed. Furthermore, HuR, a member of the ELAV family, binds CD83 transcripts on a specific cis-active RNA element, which forms a characteristic secondary structure. Whereas binding of HuR on AU-rich elements in the 3-UTR of certain transcripts leads to their stability, binding of HuR on CD83 transcripts in the coding region does not. In this thesis, microinjection experiments were performed in Xenopus laevis oocytes to elucidate the nucleocytoplasmic export of CD83 mRNA. The characteristic secondary structure of the HuR response element could be demonstrated as crucial for the nucleocytoplasmic export of CD83 transcripts. Furthermore, HuR could be identified as a binding partner of eIF5A. Inhibitory antibodies against both HuR and eIF5A were able to inhibit nuclear export of CD83 mRNA. While the bulk of cellular mRNAs leaves the nucleus with the aid of TAP/NXT1, CD83 mRNA is exported via the CRM1-mediated pathway, as could be demonstrated by export inhibition using specific CRM1 inhibitor leptomycin B. Oocyte type TFIIIA, another interaction partner of eIF5A, promotes RNA-Polymerase III-dependent transcription, nucleocytoplasmic translocation as well as storage of 5S rRNA in immature Xenopus oocytes. Due to a parallel of HIV-1 Rev mediated HIV-1 mRNA export and TFIIIA mediated 5S rRNA export, nuclear export of TFIIIA was examined with respect to a possible role of eIF5A as a cofactor. In Xenopus oocytes, TFIIIA could be detected on nucleoplasmic filaments of the nuclear pore complexes. Moreover, treatment with specific CRM1 inhibitor Leptomycin B comfirmed nucleocytoplasmic export of leucin-rich nuclear export signal containing TFIIIA via CRM1. Interaction of eIF5A with TFIIIA could be demonstrated using overlay blot assay. In microinjection experiments, eIF5A also seems to be an essential cofactor in TFIIIA export, parallel to HIV-1-Rev mediated export. Actin, a further known binding partner of eIF5A, is involved in diverse nuclear export pathways and RNA-Polymerase I, II and III dependent transcription. In contrast to actin, its partner myosin was only recently discovered undeniable in the cell nucleus. Nuclear myosin IC is a member of the Myosin I family of non filamentous, unconventional myosins. In this thesis, bioinformatical analysis displayed a wide distribution in vertebrates. Nuclear myosin IC is also present in Xenopus laevis. Compared to myosin IC, it contains a specific 16 amino acid aminoterminus, which acts as a nuclear localization signal. In Xenopus laevis oocytes, nuclear myosin IC, as well as RNA-polymerase II, localized on the lateral transcriptional active loops of lampbrush chromosomes. Inhibitory antibodies against nuclear myosin lead to complete retraction of most of the lateral transcriptional active loops and to a shortening of the chromosome axes. After inhibition of transcription in amplified nucleoli, using actinomycin D, nuclear myosin IC was relocated together with RNA-polymerase I and rDNA. Injection of inhibitory antibodies against nuclear myosin resulted in a massive architectural alteration of the amplified nucleoli. In contrast to nucleoli of somatic Xenopus cells, BrUTP-incorporation in amplified nucleoli was still possible. As already published for nuclear actin, nuclear myosin IC could also be detected on nucleoplasmic filaments of nuclear pore complexes in Xenopus laevis oocytes. As actin is an essential cofactor in export pathways, a possible role for nuclear myosin IC in nuclear export was examined by microinjection experiments. Antibodies against an epitop in the nuclear myosin head domain (XNMIC #42) were able to inhibit a CRM1 mediated protein export, whereas antibodies against the specific 16 amino acid terminus (XNMIC #54) failed. KW - RNS KW - Kernhülle KW - Stofftransport KW - Glatter Krallenfrosch KW - eIF5A KW - TFIIIA KW - CD83mRNS KW - Kernmyosin KW - eIF5A KW - TFIIIA KW - CD83mRNA KW - nuclear myosin Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-37474 ER - TY - THES A1 - Hartmann, Klaus Dieter T1 - Struktur, Funktion und chemische Zusammensetzung superinisierter Transportbarrieren im Apoplasten höherer Pflanzen T1 - Structur, Function and Chemical Composition of Suberized Transport Barriers in the Apoplast of Higher Plants N2 - In der vorliegenden Arbeit wurden die für den radialen Stofftransport durch die Wurzel Höherer Pflanzen wichtigen apoplastischen Barrieren der Wurzeln von sieben Pflanzenarten (Vicia faba L.; Typha glauca Godr.; Ricinus communis L.; Quercus petraea (Matt.) Liebl.; Fagus sylvatica L.; Picea abies (L.) Karst.; Zea mays L.) mikroskopisch charakterisiert und chemisch analysiert. Nach enyzmatischer Isolation der Gewebe wurde die Biopolymerzusammensetzung von Suberin und Lignin der isolierten Zellwände nach Depolymerisierung durch Umesterungsreaktion (Abbau von Suberin) oder Thioacidolyse (Abbau von Lignin) mittels Gaschromatographie und Massenspektroskopie aufgeklärt. Außerdem wurde Sprossknollenperiderm der Kartoffel (Solanum tuberosum L.) verschiedener post harvest Luftfeuchtebedingungen, sowie neugeformtes Wundperiderm chemisch-analytisch und auf die Permeabilität für Wasser hin untersucht. Zusätzlich zu den mikroskopischen und chemischen Analysen wurden die hydraulischen Leitfähigkeiten von Maiswurzeln verschiedener Kulturbedingungen und die Aufnahme von Rubidium-Ionen über die Maiswurzeln untersucht. Dabei wurde die Auswirkung von Salzstress (100mM NaCl), und eine Applikation des Phytohormons Abscisinsäure (10µM ABA) bei der Aufzucht der Pflanzen auf apoplastische Barrieren untersucht. Auch die Rubidiumaufnahme von bei Nitratmangel (0.00 M NO3-) aufgewachsenen Rizinuspflanzen wurde ermittelt und mit der chemischen Zusammensetzung der apoplastischen Barrieren korreliert. Die Ergebnisse dieser Arbeit zeigen, dass: -monocotyle Pflanzen wesentlich höhere Aromatenanteile im Suberin apoplastischer Barrieren besitzen als dicotyle Pflanzen; -bei der Bewertung des Suberingehaltes apoplastischer Barrieren histochemische Methoden unzureichend sind; -die Flächenbelegung mit Suberin auch innerhalb gleicher Entwicklungsstadien bei verschiedenen Pflanzen stark unterschiedlich sein kann; -der Verknüpfungsgrad der Monomeren im Suberin stark unterschiedlich sein kann; -Suberin keine 100%ige Barriere für Wasser und Ionen darstellt; -Suberin auch eine Barriere gegen unkontrollierte Gasdiffusion darstellen kann; -der Stofftransport (z.B. Rb-Ionen) durch zusätzliche Suberinmengen verlangsamt werden kann, geringere Suberinmengen den Stofffluss aber nicht signifikant erhöhen wie bei Nitratmangelpflanzen gezeigt wurde; -eine direkte Ableitung der Funktion für den Wasser und Stofftransport aus dem Suberingehalt nicht ohne eine Extraktanalyse der Gewebe möglich ist, und in jedem Fall die Notwendigkeit besteht eine Flächenbelegung mit Suberin oder Wachsen zu ermitteln; -die Variabilität von Pflanzen verschiedenen Genotyps und die Entwicklung vieler verschiedener Anpassungsstrategien zum Schutz vor Stress eine Abschätzung funktioneller Aspekte aus monokausaler Sichtweise (z.B.: Suberingehalt) unmöglich macht. Um der Vielfältigkeit pflanzlicher Strategien gerecht zu werden, ist daher die Integration vieler unterschiedlicher Untersuchungsmethoden in interdisziplinärer Arbeitsweise notwendig. N2 - The aim of this thesis was to examine the chemical composition of suberised apoplastic barriers in roots of higher plants and to relate the obtained results to the function of these barrier tissues for the diffusive transport of ions and water. For the analysis of the chemical composition (mainly suberin and also lignin), the roots were digested enzymatically, and the remaining material was separated in two fractions: one fraction consisting of rhizodermal and hypodermal cell walls (RHCW) and the second one of endodermal cell walls (ECW). Xylem vessels were not analised. Suberin content of the isolated cell walls was determined after transesterification and GC/FID and GC/MS analysis of the monomers. Prior to the chemical analysis, the anatomical structures of the roots were thoroughly examined with light microscopy using histochemical dyes and UV-light as well as scanning electron microscopy. Analysis were performed on the roots of several species: Vicia faba L., Typha glauca Godr., Quercus petraea (Matt.) Liebl., Fagus sylvatica L., Picea abies (L.) Karst., Rhicinus communis L. and Zea mays L. To reveal functional aspects for the transport of water through suberised barriers, potato tuber (Solanum tuberosum L.) skin was used as a model system because it is easy to obtain and consists to more than 20% of suberin. Additionally it is impregnated with aliphatic wax like materials. Experiments with freshly harvested potatoes showed, that suberin and wax content increased in the first days after cutting the tubers from the stele, but no additional cell layers were build. As the content of aliphatic components increased in the peridermal cell walls, the water permeability decreased. Removal of the waxes increased the water permeability of potato periderm to more than a 100 fold from 5.4∙10-11 m s-1 to 8.0∙10-9 m s-1 for the extracted ones. Surprisingly, there was no significant difference in the water permeability of periderms with different suberin content. 28 day old periderms had approx. twice as much as the suberin from freshly harvested ones, but the difference in permeability was smaller than 0.4 units. These results are showing, that suberin is not a water tight barrier as it is discussed in common text books, but to a certain extend it controls the water flux. Suberin amounts and permeabilities where used to estimate hypothetical transport data for root tissues, but the calculated values were only roughly in the range of measured root hydraulic permeabilities obtained from pressure probe experiments. Pressure probe experiments with roots of 8 day old maize seedlings showed, that a higher suberin content in the exodermis significantly reduces the radial water flow through the roots. Even the ion flux in maize roots is reduced, when barrier tissues contained more suberin. These results were obtained in experiments with rubidium-ions as a tracer for potassium-ions in maize seedlings. Apoplastic root barrier tissues, especially the endodermis were strongly enhanced, when the plants were grown under 100 mM NaCl or with 10 µM of the stress-hormone abscisic acid in the hydroponic growth-solution. On the other hand, it was shown that plants of the same species but with different genotypes responded each in a different way to stress situations. For example, whilest maize genotype Pioneer 3906 was able to cope with high salt concentrations, without altering apoplastic barriers, the genotype Across 8023 showed strong enhancement with high suberin amounts of the endodermal cell walls at the same salt concentrations. Lack of nutrients (e.g.: nitrate) in castor bean hydroponic culture leads to low suberin content in the endodermis but the uptake ability for rubidium-ions was not affected at all. Analysis of broad bean root nodules showed the relevance of high suberin amounts as a barrier for water and solutes as well as for gases. Suberin content in nodules were much higher than in the root apoplastic barriers, for that it would concluded, that the uncontrolled diffusion of oxygen into the infected zone of the nodule was inhibited by large amounts of suberin in the nodule endodermis. Another hint to this idea was the analysis of Typha glauca roots and rhizomes, which had more suberin in the exodermis than in the endodermis (in maize it was vice versa), because the submerged tissues are full of air-filled intercellular spaces and the function of higher suberin amounts in the exodermis may be to prevent oxygen loss. The results of this thesis are showing that suberin is a variable material with several functions, not only as a transport barrier for water, ions and gases which controls to a certain extend the fluxes in and out of the apoplast, but also as a barrier against pathogens with high contents of aromatic materials. KW - Samenpflanzen KW - Wurzel KW - Stofftransport KW - Apoplast KW - Lignin KW - WURZEL KW - APOPLAST KW - SUBERIN KW - LIGNIN KW - ENDODERMIS KW - CASPARY-STREIFEN KW - Root KW - Apoplast KW - Suberin KW - Lignin KW - Endodermis KW - Casparian strip Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-4999 ER - TY - THES A1 - Hofmann, Wilma T1 - Die Rolle von eIF-5A und Kernaktin bei Kernexportprozessen N2 - Die retrovirale Replikation in der eukaryotischen Zelle erfordert den Export Intron-enthaltender Transkripte aus dem Kern ins Cytoplasma. Bei HIV-1 wird dieser nucleocytoplasmatische Transport durch den viralen Transaktivator Rev vermittelt. Rev ist ein Shuttle-Protein, das sowohl ein Kernimportsignal (NLS) als auch ein Leucin-reiches Kernexportsignal (NES) besitzt. Nach der Bindung von Rev an eine spezifische RNA Sekundärstruktur, das sogenannte Rev Response Element (RRE) interagieren zelluläre Faktoren mit dem NES von Rev, wodurch der Kernexport vermittelt wird. Neben dem generellen Exportrezeptor CRM1 konnte auch der eukaryotische Initiationsfaktore 5A (eIF-5A) als ein Bindungspartner von Rev identifiziert werden. In dieser Arbeit konnte nun gezeigt werden, daß eIF-5A ein essentieller Faktor für den Rev-vermittelten RNA Export ist. Mikroinjektionen von eIF-5A-Antikörpern und der eIF-5A-M14 Mutante in Kerne von Xenopus Oocyten, sowie Bindungsstudien in Lösung haben gezeigt, daß eIF-5A als ein Adapterprotein fungiert, das upstream des generellen Exportrezeptors CRM1 wirkt. eIF-5A bindet dabei an das Rev-NES und vermittelt dadurch eine effiziente Bindung dieses NES an CRM1, wodurch der effiziente Export des Rev/RNA-Komplexes stattfinden kann. Da die zelluläre Funktion von eIF-5A noch unbekannt war, wurden Overlay Blot Assays auf Xenopus Oocytenkernhüllen durchgeführt, um Kernproteine zu finden, die mit eIF-5A interagieren. Dies führte zur Identifikation des Transkriptionsfaktors IIIA als einen Bindungspartner von eIF-5A. TFIIIA ist ein Exportfaktor für die Oocyten-Typ 5S rRNA in Amphibien Oocyten und besitzt wie Rev ein Leucin-reiches NES. Aufgrund einer Analyse dieses RNA Exportweges konnte nun gezeigt werden, daß eIF-5A auch in diesem spezifischen Exportweg als Adapter wirkt, der das NES des TFIIIA mit dem Exportrezeptor CRM1 verbindet und dadurch den Export des TFIIIA/5S rRNA-Komplexes vermittelt. Eine weitere zelluläre Funktion von eIF-5A konnte beim Export der CD83 mRNA in Dendritischen Zellen gefunden werden. Es konnte gezeigt werden, daß der Export der CD83 mRNA durch das RNA-bindende Protein HuR und durch den generellen Exportrezeptor CRM1 vermittelt wird. Durch den HuR Lignaden APRIL, der ein Rev-ähnliches, Leucin-reiches NES besitzt, wird dabei die Bindung an CRM1 vermittelt. Des weiteren konnte gezeigt werden, daß eIF-5A an diesem RNA Export beteiligt ist. Wie auch beim Rev-vermittelten RRE RNA Export und dem TFIIIA-vermittelten 5S rRNA Export wirkt eIF-5A als ein Adapter, der das NES des HuR-Liganden APRIL mit CRM1 verbindet, wodurch der Export des CD83 mRNA/HuR/APRIL Komplexes stattfinden kann. Neben TFIIIA und verschiedenen Nucleoporinen, konnte Kernaktin als ein weiterer Bindungspartner von eIF-5A identifiziert werden. In dieser Arbeit durchgeführte Mikroinjektionsexperimente mit Antikörpern gegen Aktin sowie verschiedenen Aktin-bindende Drogen konnten zeigen, daß Kernaktin scheinbar generell in Exportprozesse involviert ist. Mit Hilfe verschiedener Aktin-bindender Proteine (Latrunculin B und Swinholide A) konnte gezeigt werden, daß eine lösliche oder oligomere Form, nicht jedoch Aktinfilamente, funktionell an Kernexportprozessen beteiligt sind. Durch die Analyse Kernaktin-bindender Proteine konnten bereits die beiden Nucleoporine CAN/Nup214 und p62, die beide an Exportprozessen beteiligt sind, als Bindungspartner identifiziert werden. Außerdem ergaben sich höchst interessante Hinweise auf die Beteiligung eines, bis jetzt noch nicht identifizierten, Kernproteins auf eine Beteiligung am Aktin-vermittelten Kernexport. KW - Kernhülle KW - RNS KW - Stofftransport KW - Actin KW - eIF-5A KW - Rev-NES KW - TFIIIA KW - CD83mRNA KW - Kernaktin Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-2987 ER - TY - THES A1 - Hose, Eleonore T1 - Untersuchungen zum radialen Abscisinsäure- und Wassertransport in Wurzeln von Helianthus annuus L. und Zea mays L. N2 - Mit den Experimenten dieser Arbeit konnte erstmals gezeigt werden, dass ein Phytohormon wie Abscisinsäure mit dem "Solvent-drag" des Wasserflusses apoplastisch durch den Wurzelzellwandbereich in die Xylemgefäße transportiert werden kann. Es konnte ein Bypass-Fluss für ABA durch den gesamten Zellwandapoplasten, auch durch lipophile Barrieren wie Exo- und Endodermis nachgewiesen werden. Dies ist durch die speziellen Moleküleigenschaften von Abscisinsäure möglich: (i) der geringe Durchmesser des Moleküls (8 - 11 nm) und (ii) die hohe Lipophilie von ABA bei schwach sauren pH-Werte. Mit einer Penetration apoplastischer Barrieren ist demnach zu rechnen. Weiterhin wurde gezeigt, dass die Ausbildung solcher lipophilen Zellwandnetze einen signifikanten Einfluss auf den apoplastischen ABA-Transport besitzt. Die Ausbildung einer Exodermis in Mais, wie sie unter natürlichen Bedingungen zu beobachten ist, konnte den ABA-Fluss in das Xylem um die Faktoren 2 bis 4 reduzieren. Da gleichzeitig eine Verminderung der hydraulischen Wurzelleitfähigkeit um denselben Betrag auftrat, blieb das Wurzel-Spross-ABA-Signal, die Phytohormonkonzentration, im Xylem gleich. Die zu den Stomata geleitete Information über den Wasserzustand der Wurzel änderte sich also nicht. Im natürlichen System ist sogar eine Verstärkung des Signals zu erwarten, da eine Exodermis nicht als Aufnahme-Barriere für gewebeproduzierte ABA wirkt. Gleichzeitig verringert sie den Verlust von apoplastischer ABA an die Rhizosphäre. Außerdem wird der Wasserverlust aus dem Gewebe durch eine Exodermis signifikant reduziert wird. Somit sind solche Wurzeln gut an die Bedingungen eines eintrocknenden Bodens angepasst. Apoplastische Barrieren sind demnach, neben membran-lokalisierten Tranportern, wichtige Parameter für die Beurteilung von Wurzeltransporteigenschaften für Wasser und darin gelöste Substanzen. Der Beitrag der apoplastischen Komponente zum Gesamt-ABA-Transport ist abhängig von der untersuchten Pflanzenart, der aktuellen Transpirations- oder Wasserflussrate und von Umwelteinflüssen wie erhöhter ABA-Konzentration im Wurzelgewebe (z.B. durch Trockenstress), pH-Wert der Rhizosphäre und den Ernährungsbedingungen der Pflanze. Erhöhter radialer Wasserfluss, erhöhte ABA-Wurzelgewebegehalte und niedriger pH-Wert der Rhizosphäre verstärken den apoplastischen Bypass-Fluss unter physiologischen Bedingungen. Geringe Wassertransportraten, niedrige ABA-Konzentrationen im Gewebe, alkalische pH-Werte der Rhizosphäre und Ammoniumernährung verstärken dagegen den symplastischen Beitrag zum ABA-Transport. In der vorliegenden Arbeit konnten die sich widersprechenden Theorien bezüglich des ABA-Effektes auf die hydraulische Leitfähigkeit von Wurzeln erklärt werden. ABA erhöht über einen Zeitraum von 2 Stunden die Zellleitfähigkeit (Lp) mit einem Maximum 1 Stunde nach ABA-Inkubation. Dies wirkt sich in einem verstärktem Lpr von intakten Wurzelsystemen aus, das einem ähnlichen Zeitmuster folgt. Pflanzen sind demnach in der Lage, mittels ABA den zellulären Wassertransportweg reversibel zu optimieren, um so unter mildem Trockenstress, wie er in einem gerade eintrocknenden Boden auftritt, die Pflanze mit ausreichend Wasser zu versorgen. Tritt ein länger andauernder Wassermangel ein, versperrt die Pflanze diesen Weg wieder. Dieser transiente Effekt erklärt auch die aus der Literatur bekannten stimulierenden und inhibierenden ABA-Wirkungen. Durch den verstärkten Wasserfluss zu Beginn der Stresssituation erzeugt ABA auf diese Weise ein sich selbst verstärkendes, wurzelbürtiges Hormonsignal in den Spross. Das Blatt erreicht in effektiver Weise eine ABA-Menge, die ausreichend ist, um die Stomata zu schließen. Es folgt eine Reduktion der Transpiration. Eine weiter andauernde Erhöhung des symplastischen Wassertransportweges wäre ohne physiologische Bedeutung. Regulierende Membranstrukturen für diesen Vorgang könnten ABA-sensitive Wasserkanäle (Aquaporine) der Plasmamembran sein. Es wurde gezeigt, dass der Rezeptor für diesen Vorgang innerhalb von corticalen Maiswurzelzellen lokalisiert und hochspezifisch für (+)-cis-trans-ABA ist. Die Signaltransduktion für diesen Kurzzeiteffekt erfolgt nicht mittels verstärkter Aquaporintranskription, könnte aber über ABA-induzierte Aktivierung (Phosphorylierung), oder Einbau von Aquaporinen in die Zellmembran ablaufen. Der Abscisinsäure-Transport ist ein komplexer Vorgang. Er wird beeinflusst durch Umwelteinflüsse, Wurzelanatomie, ist gekoppelt mit dem Wasserfluss und durch sich selbst variierbar. Herkömmliche Vorstellungen einer simplen Hormondiffusion können diesen regulierbaren Vorgang nicht mehr beschreiben. Pflanzen besitzen ein ABA-Transportsystem, das schnell, effektiv und an sich verändernde Umweltbedingungen adaptierbar ist. N2 - The experimental work of the presented study has been able to show, for the first time, that a phytohormone like ABA can be transported apoplastically into xylem vessels by solvent-drag of the water flow. For ABA, a bypass-flow throughout the whole cell wall apoplast, including lipophilic barriers like exo-and endodermis, could be demonstrated. This may be due to the particular properties of the 264 Da ABA-molecule: (i) the small diameter of the molecule (8 to 11 nm) and (ii) the high lipophily of the uncharged ABA under physiological conditions. Conclusively, a penetration of apoplastic barriers is supposed to be possible. Furthermore, this study shows the development of such lipophilic cell wall-nets should have significant influence on apoplastic ABA-transport-properties. The formation of an exodermis in maize, as it occurs under natural conditions, was able to reduce the ABA-flow into the xylem by factors of 2 up to 4. As, simultaneously, the root-hydraulic conductivity was decreased by the same rate, the root-to-shoot ABA-signal, the phytohormone concentration in the xylem, remained constant. The information about the root-water-status addressed to the guard cells has not changed, therefore. In the natural environment even an increase of this signal is to be expected, as exodermal layers are no uptake-barriers for the tissue-produced ABA. On the contrary, an exodermis will retard the leakage of ABA to the rhizosphere. At the same time, roots are more effectively adapted to drought because water loss from exodermal roots is also reduced significantly. Apoplastic barriers are, therefore, beside membrane-located transport-proteins, the important parameters for determining root-transport-properties for water and solutes. The contribution of the apoplastic component to the entire ABA-transport depends on the plant species investigated, the actual transpiration- or water-flow rate and on external conditions like high ABA-concentrations in the root tissue (e.g. after drought), pH of the rhizosphere, and the nutrient status of the plant. Increased radial water-flow, raised ABA-contents of the root tissue, and a low pH of the rhizosphere intensified the apoplastic bypass-flow under physiological conditions. Low water-transport rates, low ABA tissue-contents, alkaline pH-values in the rhizosphere and ammonium as the only N-source, on the other hand, increased the symplastic contribution to the ABA-transport. In the presented study, the controversal dispute concerning the ABA-effect on root hydraulic conductivity could be settled. ABA raises cell hydraulic conductivity (Lp) for 2 h with a maximum after 1 h of ABA-application. This results in an increased Lpr (hydraulic conductivity of intact root systems), directed by a similar time-pattern. So, by ABA plants are able to reversibly optimise the cellular transport path of water to support the plant under mild drought stress with sufficient water. However, if water deficiency continues, plants again close this additional symplastic pathway. This transient ABA-effect explains both stimulating and inhibiting ABA-actions, as known from literature. At the beginning of a stress situation ABA induces by an increased water flow a self-intensifying root-to-shoot-signal. Thus, in an effective way the leaf achieves a sufficient amount of ABA in order to close the stomata. A reduction in transpiration follows. Further continuous stimulation of the symplastic water transport path would be without any physiological meaning. Membrane structures, responsible for regulating this mechanism may be ABA-responsive water channels (aquaporins) in the plasma membrane. It has been shown that the receptor for regulating these channels is localised inside the cortical cells of maize roots and highly specific for (+)-cis-trans-ABA. Signal transduction for this short-time effect is not mediated by intensified aquaporin-transcription, but there may be evidence of ABA-induced regulation by channel activation (phosphorylation) or by incorporation of aquaporins into cell membranes. The transport of abscisic acid is a complex process modified by environmental conditions, root anatomy, coupled with the water flow, and variable by itself. Customary ideas about a simple hormone diffusion are not apt to describe this complex process anymore. Plants possess an ABA-transport system, which is fast, effective, and adaptable to changing environmental conditions. KW - Sonnenblume KW - Wurzel KW - Wassertransport KW - Abscisinsäure KW - Stofftransport KW - Mais KW - Abscisinsäure KW - ABA KW - Aquaporin KW - Exodermis KW - Hydraulische Leitfähigkeit KW - Wassertransport KW - Wurzel KW - Helianthus annuus KW - Zea mays KW - Abscisic acid KW - ABA KW - aquaporin KW - exodermis KW - hydraulic conductivity KW - water transport root KW - Helianthus annuus KW - Zea mays KW - Nicotiana tabacum Y1 - 2000 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-1421 ER - TY - THES A1 - Arndt, Petra T1 - Klonierung und funktionelle Charakterisierung von organischen Kationentransportern aus der Rattenniere T1 - Cloning and functional characterization of organic cation transporters from rat kidney N2 - Der organische Kationentransport im proximalen Tubulus der Niere spielt eine wichtige Rolle bei der Aufrechterhaltung der Homöostase der Körperflüssigkeiten und der Ausschleusung von toxischen organischen Kationen. Der Transport von organischen Kationen wird an der Bürstensaummembran durch den H+/organische Kationen-Austauscher vermittelt, während bei dem Transport von organischen Kationen an der basolateralen Membran das nach innen gerichtete negative Membranpotential eine treibende Kraft darstellt. Durch Expressionsklonierung wurde der erste organische Kationentransporter, rOCT1, aus der Rattenniere isoliert. Kurz darauf wurde im Rahmen dieser Arbeit ein zweiter organischer Kationentransporter ebenfalls aus der Ratenniere kloniert. rOCT2 besteht aus 593 Aminosäuren und besitzt 12 putative Transmembrandomänen. Zum funktionellen Vergleich zwischen rOCT1 und rOCT2 wurde das Oozytenexpressionssystem verwendet. In der vorliegenden Arbeit wurde ein pharmakologisches Profil von rOCT2 erstellt. Das Substratsprektrum von rOCT2 ist dem von rOCT1 sehr ähnlich. Die Affinitäten von rOCT2 gegenüber verschiedenen Substanzen wurden direkt mit denen von rOCT1 verglichen. Einerseits fanden wir bei einigen Substraten Unterschiede in den Km- und Vmax-Werten, aber andererseits auch viele Ähnlichkeiten zwischen beiden Transportern. Anionen (z. B. p-Aminohippurat) wurden als neue Gruppe von Inhibitoren für den durch rOCT1- und rOCT2-vermittelten Transport identifiziert. Die Potentialdifferenz ist die treibende Kraft des rOCT1- und rOCT2-vermittelten Transportes. Wir konnten potentialabhängige Veränderungen der Km-Werte von Cholin-induzierten Einwärtsströmen zeigen. Bei dem Austausch von Na+-Ionen gegen K+-Ionen im Reaktionspuffer wurde die Aufnahme von Cholin und MPP durch rOCT2 erniedrigt. Der bidirektionale Transport von MPP wurde gezeigt und trans-Stimulationsexperimente für MPP-Influx und MPP-Efflux durchgeführt, um die Asymmetrie des Transporters zu studieren. Darüberhinaus wurde in der vorliegenden Arbeit die Interaktion von verschiedenen Substraten mit rOCT1 und rOCT2 untersucht und ein kompetitver und nicht-kompetitiver Hemmtyp bei der TEA-Aufnahme gefunden. N2 - Organic cation transport in the renal tubule is an important physiological function for the maintenance of body fluid homeostasis and detoxification of harmful organic cations. In general, transport of organic cations in brush-border membranes is mediated by the H+/organic cation antiporter, whereas transport of organic cations in basolateral membranes is stimulated by the inside-negative membrane potential. By the expression cloning method, the organic cation transporter rOCT1, which is expressed in rat liver and kidney, was isolated. In 1996 another organic cation transporter from rat kidney, rOCT2, was isolated by homology cloning. rOCT2 was deduced to be a glycoprotein comprised of 593 amino acid residues with 12 putative transmembrane domains. To analyse the functional characteristics of rOCT2 in comparison with rOCT1 we utilized the Xenopus expression system. During this dissertation a pharmacological profile was made for rOCT2. The apparent substrate spectrum of rOCT2 was similar to that of rOCT1. Affinities of rOCT2 against several compounds were directly compared with those of rOCT1. We found differences in Km- and IC50-values for distinct substrates but also a lot of similarities between both transporters. Anions like p-aminohippuric acid were identified as a new group of inhibitors for rOCT1- and rOCT2-mediated transport. The potential difference is the driving force of transport mediated by rOCT1 and rOCT2. We showed the potential-dependent changes of Km-values of choline induced inward currents. Further when extracellular Na+ ions were replaced with K+ ions, the uptake of MPP and choline by rOCT2 was decreased. The bidirectional transport of MPP was shown and trans-sitmulation experiments for MPP influx and efflux were performed to study asymmetry of the transporter. The mechanism of interaction of several substrates with rOCT1 and rOCT2 were investigated and we found competitive and non-competitive inhibition of TEA uptake. KW - Ratte KW - Niere KW - Kation KW - Stofftransport KW - Molekularbiologie KW - rOCT1 KW - rOCT2 KW - proximaler Tubulus KW - Niere KW - Sekretion KW - Xenopus laevis KW - Oozyte KW - Transport KW - Inhibition KW - Homologieklonierung KW - rOCT1 KW - rOCT2 KW - proximal tubule KW - kidney KW - secretion KW - Xenopus laevis KW - oocyte KW - transport KW - inhibition KW - homology cloning Y1 - 2000 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-793 ER -