TY - THES A1 - Witzinger, Linda T1 - Rolle der Pyridoxal 5´-Phosphat Phosphatase PDXP im Vitamin B6-Metabolismus muriner Erythrozyten und Hippocampi T1 - Role of the pyridoxal 5´-phosphate phosphatase PDXP in the vitamin B6 metabolism of murine red blood cells and hippocampi N2 - Die Phosphatase PDXP (auch bekannt als Chronophin) gehört zur Familie der HAD Phosphatasen, einer ubiquitär exprimierten Enzymklasse mit wichtigen physiologischen Funktionen. PDXP zeigt Phosphatase-Aktivität gegenüber seinem Substrat Pyridoxal 5´-Phosphat (PLP), der aktivierten Form von Vitamin B6. PDXP-defiziente Mäuse (Knockout-Mäuse) weisen im Vergleich zu Wildtypen verdoppelte PLP-Konzentrationen in Erythrozyten sowie im Gesamthirn auf. Vermutlich kommt PDXP daher eine wichtige Funktion in Erythrozyten und im Hirn zu. Ziel dieser Arbeit war es, erste Einblicke in diese Funktion(en) von PDXP zu erlangen. Hierzu wurden HPLC-basierte Analysen der erythrozytären PLP-Konzentrationen in Wildtyp- sowie PDXP-defizienten Mäusen durchgeführt. Dabei ließen sich die rund doppelt so hohen erythrozytären PLP-Level in den KO-Mäusen bestätigen. Zudem ist es gelungen, eine Methode zur Messung der endogenen Phosphatase-Aktivität von PDXP in Erythrozytenlysaten zu etablieren. So konnte im Wildtyp anhand der Verringerung der PLP-Konzentrationen pro Zeiteinheit eine erythrozytäre PDXP-Aktivität nachgewiesen werden. Dazu waren die Inkubation mit Pyridoxin, sowie die Anwendung eines Inhibitors der PDXK notwendig. Eine bis dato vermutete Funktion der PDXP, zur Mobilisation von erythrozytärem PLP während Fastenzeiten, konnte ausgeschlossen werden. So zeigte der Vergleich der erythrozytären PLP-Konzentrationen aus gefasteten mit normal gefütterten Tieren in beiden Genotypen exakt dieselbe prozentuale PLP-Verringerung. Während Nahrungszufuhr ließ sich jedoch eine Funktion der Phosphatase PDXP als „Converter“ von Pyridoxin zu Pyridoxal erkennen. Ausgehend von PN konnte im Wildtyp (über die Zwischenprodukte PNP und PLP) eine PDXP-abhängige Dephosphorylierung von PLP zu PL erfolgen. So wies der Wildtyp eine rund vierfach höhere PL-Produktion auf, verglichen mit der PDXP-defizienten Maus. Die Phosphatase PDXP erwies sich als essenziell für die erythrozytäre Konversion von Pyridoxin zu Pyridoxal. Dadurch erreicht der Organismus eine metabolische Flexibilität, die ihn bis zu einem gewissen Grad unabhängig von der Nahrungsauswahl macht. Zudem können Zellen oder Organe, denen durch das Fehlen der PNPO, die Konversion zu PLP nicht möglich ist, mit PL versorgt werden. Aus der hohen Reaktivität von PLP mit umliegenden Nucleophilen ergibt sich eine gewisse Problematik für die Zelle im Umgang mit freiem PLP. So liegt der Großteil des erythrozytären PLPs gebunden an Proteine (vor allem Hämoglobin) vor. Anhand von Filtern (MWCO, 3000) ließ sich zwischen der hier definiert als „freien“ und der „gebundenen“ Form von PLP differenzieren. So konnten erste Erkenntnisse zur Rolle von PDXP als Determinator freier PLP-Konzentrationen in Erythrozyten und insbesondere im Hippocampus erlangt werden. Im Hippocampus ergaben sich insgesamt deutlich höhere Konzentrationen an freiem PLP als in den Erythrozyten und es bestand zudem ein Unterschied zwischen den Genotypen. So wiesen die KO-Mäuse ~1/3 höhere freie PLP-Konzentrationen im Vergleich zu den Wildtypen auf. Schließlich konnte ein Effekt des Tieralters auf den PLP-Metabolismus festgestellt werden. Sowohl in den Erythrozyten als auch im Hippocampus ergaben sich alterskorrelierte Änderungen ihrer PLP-Konzentrationen. Zudem zeigten Western Blot Analysen altersbedingte Unterschiede ihrer Vitamin B6-Enzymexpressionen. So wiesen ältere Wildtypen im Hippocampus eine fünffach erhöhte PDXP-Expression verglichen mit jüngeren Tieren auf. In den Erythrozytenlysaten hingegen zeigten ältere Tiere beider Genotypen eine rund vierfach geringere PNPO-Expression gegenüber jüngeren Tieren. Die mit dem Alter eintretende physiologische Verringerung der erythrozytären PNPO-Expression würde somit für den Organismus einen Verlust seiner metabolischen Flexibilität bedeuten, die mit der Konversion von PN zu PL einhergeht. N2 - The phosphatase PDXP, also called Chronophin, is a member of the ubiquitously expressed HAD-phosphatases, which have some important physiological functions in the organism. Its substrate pyridoxal 5´-phosphate (PLP) is the active form of vita-min B6, an important cofactor of several reactions. PDXP-deficient mice (KO-mice) have PLP-concentrations in erythrocytes and in the whole brain twice as high as wildtype mice. It is assumed that PDXP therefore has an important function in erythrocytes and in the brain. The aim of the study was to gain initial insights into these functions of PDXP. For this purpose, HPLC-based analyses of the PLP-concentrations in erythrocytes from WT- and KO-mice were carried out. The doubled PLP-levels in the RBCs of KO-mice could be confirmed. In addition, a method for measuring the endogenous phosphatase activity of PDXP in red cell lysates was established. The activity of PDXP could be measured by the reduction of its substrate PLP over time. This required the incubation with pyridoxine and the inhibition of PDXK by ginkgotoxine. An assumed function of PDXP in mobilization of PL(P) from the erythrocytes in fasting conditions could be ruled out. Therefore, a comparison between the PLP-concentrations in RBCs of fasted mice with normal fed ones was done. Surprisingly the fasted KO-mice showed the same percentaged decrease of cellular PLP-level as the fasted WT-mice. During vitamin B6 intake however, a function of PDXP as being a “converter” of pyridoxine to pyridoxal was found. Starting with PN, a PDXP-mediated dephosphorylation from PLP to PL could take place in the wildtype mice (via the intermediate steps PNP and PLP). Consequently, the WT´s production of PL quadrupled compared to the KO´s. PDXP turned out to be essential for the conversion of pyridoxine to pyridoxal in erythrocytes. This conversion confers some metabolic flexibility to the organism and to a certain extent makes it independent of the choice of food. Moreover, cells and organs, that due to the absence of PNPO cannot produce PL(P) themselves, can be provided via erythrocytes. The high reactivity of PLP with surrounding nucleophiles poses a certain problem for the cell in dealing with free PLP. The majority of the PLP in RBCs is bound to proteins (primarily hemoglobin). It was distinguished between the here termed “free” PLP and the bound PLP by using filter devices with a MWCO at 3 kDa. First insights could be gained about PDXP as a determinant of free PLP-levels in erythrocytes and hippocampus. The amount of free PLP in the hippocampus was significantly higher than in the RBCs. Additionally, the hippocampus showed some differences in the con¬centration of free PLP between WT- and KO-mice. The level of free PLP in PDXP deficient mice was one third higher than in wildtype mice. Finally, some correlation between the age of the mice and their PLP-metabolism was found. The results revealed changes of the PLP-concentrations with age in the RBCs and the hippocampus. Moreover, western blot analyses showed some age-related differences in the expression of vitamin B6 enzymes. In the hippocampus older wildtype mice showed a quintupled expression of PDXP compared to younger ones. However, western blot analyses of red blood cell lysates from older animals revealed a lower expression of PNPO by a factor of four. For the organism this physiological reduction of its PNPO expression with age would mean a loss of metabolic flexibility, that is accompanied by the conversion from PN to PL. KW - Vitamin B6 KW - Vitamin-B6-Stoffwechsel KW - Pyridoxalphosphat KW - Erythrozyt KW - Phosphatasen KW - PDXP KW - PLP KW - HAD-Phosphatasen KW - Vitamin B6 Metabolismus KW - pyridoxal phosphate KW - red blood cells Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-216546 ER - TY - THES A1 - Derrer, Bianca T1 - Charakterisierung der Vitamin B6 Synthese und des Shikimatsyntheseweges im Malariaerreger Plasmodium ssp. T1 - Characterisation of vitamin B6 synthesis and shikimate pathway in the malaria causing agents Plasmodium ssp. N2 - Malaria ist eine schwerwiegende Krankheit, die jährlich über eine Million Menschen tötet. Die zunehmende Resistenzbildung gegenüber den verwendeten Medikamenten macht die Entwicklung neuer Antimalariamittel dringend notwendig. Daher sind die Vitamin B6 Synthese und der Shikimatweg von besonderem Interesse, da diese beiden Synthesewege nur im Parasiten und nicht im Menschen vorkommen. Unter der Voraussetzung, dass diese essentiell für den Parasiten sind, böten sie ideale Ansatzpunkte zur Entwicklung neuer Antimalariamittel. Voraus gegangene Studien haben gezeigt, dass Plasmodium falciparum in der Lage ist, PLP de novo mittels eines bifunktionalen Enzymkomplex, bestehend aus den Proteinen Pdx1 und Pdx2, zu synthetisieren. Pdx1 stellt dabei die eigentliche Synthase dar, während Pdx2 als Glutaminase-Partner das benötigte Ammoniumion für den heterocyclen Ring bereitstellt. Zusätzlich dazu verfügt der Parasit auch über einen salvage pathway um PLP zu „recyclen“, in dem der Pyridoxalkinase PdxK eine Schlüsselfunktion zufällt. Knockout Studien der pdx1 im Mausmalariasystem P. berghei haben gezeigt, dass PbPdx1 für eine optimale Entwicklung der Blutstadien benötigt wird, nicht jedoch für deren Überleben. Im Rahmen dieser Arbeit habe ich die Effekte eines pbpdxK(-) Knockouts in demselben System untersucht. Es konnte eine monoklonale Knockoutlinie generiert werden, was zeigte, dass PbPdxK nicht essentiell für das Überleben des Parasiten in den Blutstadien ist. Die Entwicklung während des Blutstadiums war von dem pbpdxK(-) Knockout nicht betroffen. Allerdings zeigte sich im Moskitostadium eine drastische Reduktion der Sporozoitenzahl sowohl in den Mitteldärmen als auch in den Speicheldrüsen. Dieses Ergebnis legt nahe, dass PbPdxK essentiell für das Überleben der Sporozoiten ist. Daneben wurde versucht, die Gene pfpdx1, pfpdx2 sowie pfpdxK in P. falciparum 3D7 durch Verwendung der single cross over Strategie auszuschalten. Es konnte jedoch für keines der genannten Konstrukte eine Integration in die jeweiligen Genloci anhand von PCR-Analysen nachgewiesen werden. Ebenso scheiterte der Versuch, durch Rekombination eines komplementären Genabschnitts die Funktion des Gens zu rekonstituieren. Daher bleibt es unklar, ob pfpdx1, pfpdx2 und pfpdxK durch Knockout Strategien auszuschalten sind oder nur für Genmanipulationen nicht zugänglich sind. Die Kultivierung von P. falciparum 3D7 Parasiten in Vitamin B6 depletiertem Medium hatte keinen Effekt auf deren Wachstum. Eine anschließende Analyse der Proteinextrakte zeigte eine erhöhte Expression der PfPdxK, während sich das Expressionslevel der PfPdx1 nicht veränderte. Es scheint, dass der Parasit in der Lage ist Vitamin B6 Mangel durch vermehrte Nutzung des salvage pathways vollständig zu kompensieren. Frühere Arbeiten zeigten, dass der C-Terminus der Pdx1 in die Aktivität des PLP Synthasekomplexes involviert ist. Aus diesem Grund wurden verschiedene C-terminale Deletionsmutanten der PfPdx1 konstruiert und dabei bis zu 30 Aminosäuren entfernt. Diese Analysen ergaben, dass der C-Terminus vier verschiedene Funktionen besitzt: das Assembly der Pdx1 Untereinheiten zum Dodekamer, die Bindung des Pentosesubstrats Ribose 5-Phosphat, die Bildung des Intermediats I320 und schließlich die PLP Synthese. Diese unterschiedlichen Funktionen wurden durch verschiedene Deletionsvarianten identifiziert. Darüber hinaus waren alle Deletionsvarianten in der Lage, die Glutaminase Pdx2 zu aktivieren, was zeigt, dass das Dodekamer nicht Vorraussetzung für die Glutaminaseaktivität ist. Aufgrund der geringen PLP Syntheseaktivität in vitro wurde vermutet, dass der PfPdx1/PfPdx2 Komplex durch einen zusätzlichen Faktor aktiviert wird. Daher wurde versucht, mittels Yeast 2-Hybrid, basierend auf einer PCR-amplifizierten P. falciparum 3D7 cDNA-Bibliothek als bait und PfPdx1 als prey, einen Interaktionspartner zu identifizieren. Mehrere Klone wurden gewonnen, die alle einen Bereich des Mal13P1.540, einem putativen Hsp70 Proteins, enthielten. Jedoch scheiterten alle Versuche, die Protein-Protein-Interaktion mit rekombinant exprimierten Protein zu bestätigen. Ebenso war es nicht möglich, das vollständige Mal13P1.540 rekombinant zu exprimieren sowie dessen Lokalisation in vivo zu bestimmen. Daher bleibt die Interaktion von PfPdx1 und Mal13P1.540 ungeklärt. Neben der Vitamin B6 Biosynthese konnten auch einige Gene des Shikimatweges in Plasmodium identifiziert werden. In P. berghei konnten der C-terminale Teil der 3-Dehydroquinatsynthase (2) sowie die Shikimatkinase (5) und die 5-Enoylpyruvylshikimat 3-Phosphatsynthase (6) in einem open reading frame (ORF) identifiziert werden, der dieselbe genetische Organisation aufweisen wie der Arom-Komplex der Hefen. Mit Hilfe eines Komplementationsassay wurde die Funktionalität dieses ORFs überprüft. Dazu wurden S. cerevisiae BY4741Δaro1, ein Hefestamm ohne funktionalen Arom-Komplex, mit dem Pb2_6_5_ABC Fragment transformiert. Die so transformierten Hefen waren nicht in der Lage, auf Mangelplatten ohne aromatische Aminosäuren zu wachsen, was zeigte, dass das Pb2_6_5_ABC Konstrukt den BY4741Δaro1 Phänotyp nicht komplementieren konnte. Der Versuch, mit Hilfe des Baculovirussytems rekombiant exprimiertes Protein zu erhalten, verlief erfolglos. Ebenso war es nicht möglich, Teile des Proteins für Immunisierungen zu exprimieren. Daher bleibt die Funktionalität des Pb2_6_5_ABC Konstruktes ungeklärt. N2 - Malaria is a serious burden of mankind causing over one million deaths a year. In view of the raising number of resistances to common drugs there is an urgent need for the development of new antimalarial drugs. In this respect, the vitamin B6 biosynthesis and the shikimate pathway are of particular interest, since these synthesis pathways are only present in the malarial parasites and not in their human host. Given their essentiality for the parasite, they would represent ideal targets for antimalarial drug development. Previous studies revealed that Plasmodium falciparum is able to produce PLP de novo through a bifunctional enzyme complex composed of the proteins Pdx1 and Pdx2, of which Pdx1 is the actual synthase and Pdx2 the glutaminase partner providing the nitrogen for the ring system. In addition, the parasites possess a salvage pathway for PLP, of which pyridoxal kinase, PdxK, is a key player. Knockout studies of the pdx1 in the rodent malaria system P. berghei showed, that pbpdx1 is required for the optimal development of parasite blood stages but is not essential for parasite survival. Here, I investigated the effect of a pbpdxK(-) knockout in the same system. A monoclonal knockout strain was obtained, indicating that PbPdxK is not essential for the survival of the parasite. Blood stages were not affected by the knockout. However, in the mosquito stages pbpdxK(-) showed a tremendous reduction of sporozoites numbers in the midgut and in the salivary glands, indicating that PbPdxK is essential for the survival of sporozoites. It was then also tried to knockout pfpdx1, pfpdx2 and pfpdxK in the P. falciparum 3D7 strain by using the single cross over strategy. However, no integration of the constructs in the corresponding gene locus could be detected by a PCR approach. Also an approach to complement the loss of endogenous gene function by generating a functional gene copy upon recombination failed. Thus, it remains unclear if pfpdx1, pfpdx2 and pfpdxK can be knocked out or are inaccessible for gene targeting in P. falciparum. Cultivation of P. falciparum 3D7 parasites in medium deficient of vitamin B6 showed no effect on the growth rate of the parasites. Analysis of protein extracts of these parasites revealed an upregulation of PfPdxK expression, whereas the level of PfPdx1 remained stable. Thus it seems that the parasite is fully able to compensate vitamin B6 malnutrition by the increased usage of the salvage pathway. Previous studies on the activity of the PLP synthase complex indicated that the C-terminal end of Pdx1 is involved in PLP formation. Therefore several C-terminal deletion mutants of PfPdx1 were constructed, removing up to 30 amino acids. These analyses revealed that the C-terminus has four distinct functionalities: assembly of the Pdx1 monomers, binding of the pentose substrate (ribose 5-phosphate), formation of the reaction intermediate I320, and finally PLP synthesis. Deletions of distinct C-terminal regions distinguish between these individual functions. All variants were able to activate the glutaminase PfPdx2, indicating that the dodecameric structure is not a prerequisite for Pdx2 activation. Due to the low PLP synthase activity in vitro it was assumed that the PfPdx1/PfPdx2 complex maybe activated by an additional protein. Hence a yeast 2-hybrid assay was performed, using PfPdx1 as prey and a PCR-amplified cDNA-library of P. falciparum 3D7 as bait. Several clones were detected on high stringency plates, containing all a region of Mal13P1.540, a putative Hsp70 protein. Trials to confirm protein-protein interaction with recombinantly produced proteins failed as well as protein expression of full length Mal13P1.540. It was also not possible to determine the localisation of Mal13P1.540 in vivo. Thus, an interaction of PfPdx1 with Mal13P1.540 could so far not be verified. Besides the vitamin B6 biosynthesis, some genes of the shikimate pathway were identified in Plasmodium. In P. berghei, the C-terminal part of the dehydroquinatesynthase (2) as well as the shikimate kinase (5) and 5-enoylpyruvylshikimate 3-phosphatesynthase (6) were found in a single open reading frame having the same organisation as the arom-complex of yeast. To proof the functionality of these genes a complementation assay with S. cerevisiae BY4741Δaro1 with the Pb2_6_5_ABC construct, comprising the above mentioned genes, was performed. However, transformded yeast strains were not able to grow on minimal media without aromatic amino acids, indicating that they were not able to produce chorismate. Recombinant expression of this constructs in the baculovirussystem did not yield any detectable protein. Expression of parts of this protein for immunisation was also not successful. Hence, the functionality of this protein remains to be established. KW - Plasmodium falciparum KW - Shikimisäure KW - Vitamin B6 KW - Biosynthese KW - Shikimatsynthese KW - Plasmodium falciparum KW - Malaria KW - vitamin B6 synthesis KW - shikimate pathway KW - malaria Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-51456 ER -