TY - JOUR A1 - Budiman, Yudha P. A1 - Friedrich, Alexandra A1 - Radius, Udo A1 - Marder, Todd B. T1 - Copper-catalysed Suzuki-Miyaura cross-coupling of highly fluorinated aryl boronate esters with aryl iodides and bromides and fluoroarene-arene π-stacking interactions in the products JF - ChemCatChem N2 - A combination of copper iodide and phenanthroline as the ligand is an efficient catalyst for Suzuki‐Miyaura cross‐coupling of highly fluorinated boronate esters (aryl−Bpin) with aryl iodides and bromides to generate fluorinated biaryls in good to excellent yields. This method represents a nice alternative to traditional cross‐coupling methods which require palladium catalysts and stoichiometric amounts of silver oxide. We note that π⋅⋅⋅π stacking interactions dominate the molecular packing in the partly fluorinated biaryl crystals investigated herein. They are present either between the arene and perfluoroarene, or solely between arenes or perfluoroarenes, respectively. KW - homogeneous catalysis KW - boron KW - boronate KW - fluorine KW - fluoroarene Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-204839 VL - 11 IS - 21 ER - TY - JOUR A1 - Budiman, Yudha P. A1 - Lorenzen, Sabine A1 - Liu, Zhiqiang A1 - Radius, Udo A1 - Marder, Todd B. T1 - Base‐Free Pd‐Catalyzed C−Cl Borylation of Fluorinated Aryl Chlorides JF - Chemistry – A European Journal N2 - Catalytic C−X borylation of aryl halides containing two ortho‐fluorines has been found to be challenging, as most previous methods require stoichiometric amounts of base and the polyfluorinated aryl boronates suffer from protodeboronation, which is accelerated by ortho‐fluorine substituents. Herein, we report that a combination of Pd(dba)2 (dba=dibenzylideneacetone) with SPhos (2‐dicyclohexylphosphino‐2’,6’‐dimethoxybiphenyl) as a ligand is efficient to catalyze the C‐Cl borylation of aryl chlorides containing two ortho‐fluorine substituents. This method, conducted under base‐free conditions, is compatible with the resulting di‐ortho‐fluorinated aryl boronate products which are sensitive to base. KW - boronate ester KW - borylation KW - cross-coupling KW - fluoroarene KW - palladium-catalyzed Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-225687 VL - 27 IS - 11 SP - 3869 EP - 3874 ER - TY - JOUR A1 - Budiman, Yudha P. A1 - Westcott, Stephen A. A1 - Radius, Udo A1 - Marder, Todd B. T1 - Fluorinated Aryl Boronates as Building Blocks in Organic Synthesis JF - Advanced Synthesis & Catalysis N2 - Organoboron compounds are well known building blocks for many organic reactions. However, under basic conditions, polyfluorinated aryl boronic acid derivatives suffer from instability issues that are accelerated in compounds containing an ortho‐fluorine group, which result in the formation of the corresponding protodeboronation products. Therefore, a considerable amount of research has focused on novel methodologies to synthesize these valuable compounds while avoiding the protodeboronation issue. This review summarizes the latest developments in the synthesis of fluorinated aryl boronic acid derivatives and their applications in cross‐coupling reactions and other transformations. image KW - homogeneous catalysis KW - boron reagents KW - boronates KW - fluorine KW - fluoroarene Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-225908 VL - 363 IS - 9 SP - 2224 EP - 2255 ER - TY - JOUR A1 - Föhrenbacher, Steffen A. A1 - Krahfuss, Mirjam J. A1 - Zapf, Ludwig A1 - Friedrich, Alexandra A1 - Ignat'ev, Nikolai V. A1 - Finze, Maik A1 - Radius, Udo T1 - Tris(pentafluoroethyl)difluorophosphorane: a versatile fluoride acceptor for transition metal chemistry JF - Chemistry Europe N2 - Fluoride abstraction from different types of transition metal fluoride complexes [L\(_n\)MF] (M=Ti, Ni, Cu) by the Lewis acid tris(pentafluoroethyl)difluorophosphorane (C\(_2\)F\(_5\))\(_3\)PF\(_2\) to yield cationic transition metal complexes with the tris(pentafluoroethyl)trifluorophosphate counterion (FAP anion, [(C\(_2\)F\(_5\))\(_3\)PF\(_3\)]\(^-\)) is reported. (C\(_2\)F\(_5\))\(_3\)PF\(_2\) reacted with trans-[Ni(iPr\(_2\)Im)\(_2\)(Ar\(^F\))F] (iPr2Im=1,3-diisopropylimidazolin-2-ylidene; Ar\(^F\)=C\(_6\)F\(_5\), 1 a; 4-CF\(_3\)-C\(_6\)F\(_4\), 1 b; 4-C\(_6\)F\(_5\)-C\(_6\)F\(_4\), 1 c) through fluoride transfer to form the complex salts trans-[Ni(iPr\(_2\)Im)\(_2\)(solv)(Ar\(^F\))]FAP (2 a-c[solv]; solv=Et\(_2\)O, CH\(_2\)Cl\(_2\), THF) depending on the reaction medium. In the presence of stronger Lewis bases such as carbenes or PPh\(_3\), solvent coordination was suppressed and the complexes trans-[Ni(iPr\(_2\)Im)\(_2\)(PPh\(_3\))(C\(_6\)F\(_5\))]FAP (trans-2 a[PPh\(_3\)]) and cis-[Ni(iPr\(_2\)Im)\(_2\)(Dipp\(_2\)Im)(C\(_6\)F\(_5\))]FAP (cis-2 a[Dipp\(_2\)Im]) (Dipp\(_2\)Im=1,3-bis(2,6-diisopropylphenyl)imidazolin-2-ylidene) were isolated. Fluoride abstraction from [(Dipp\(_2\)Im)CuF] (3) in CH\(_2\)Cl\(_2\) or 1,2-difluorobenzene led to the isolation of [{(Dipp\(_2\)Im)Cu}\(_2\)]\(^2\)\(^+\)2 FAP\(^-\) (4). Subsequent reaction of 4 with PPh\(_3\) and different carbenes resulted in the complexes [(Dipp\(_2\)Im)Cu(LB)]FAP (5 a–e, LB=Lewis base). In the presence of C6Me6, fluoride transfer afforded [(Dipp\(_2\)Im)Cu(C\(_6\)Me\(_6\))]FAP (5 f), which serves as a source of [(Dipp\(_2\)Im)Cu)]\(^+\). Fluoride abstraction of [Cp\(_2\)TiF\(_2\)] (7) resulted in the formation of dinuclear [FCp\(_2\)Ti(μ-F)TiCp\(_2\)F]FAP (8) (Cp=η\(^5\)-C\(_5\)H\(_5\)) with one terminal fluoride ligand at each titanium atom and an additional bridging fluoride ligand. KW - inorganic chemistry KW - copper KW - nickel KW - phosphoranes KW - titanium KW - weakly coordinating anions Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-256665 VL - 27 IS - 10 ER - TY - JOUR A1 - Föhrenbacher, Steffen A. A1 - Zeh, Vivien A1 - Krahfuss, Mirjam J. A1 - Ignat'ev, Nikolai V. A1 - Finze, Maik A1 - Radius, Udo T1 - Tris(pentafluoroethyl)difluorophosphorane and N‐Heterocyclic Carbenes: Adduct Formation and Frustrated Lewis Pair Reactivity JF - European Journal of Inorganic Chemistry N2 - The synthesis and characterization of Lewis acid/base adducts between tris(pentafluoroethyl)difluorophosphorane PF\(_{2}\)(C\(_{2}\)F\(_{5}\))\(_{3}\) and selected N-heterocyclic carbenes (NHCs) R\(_{2}\)Im (1,3-di-organyl-imidazolin-2-ylidene) and phosphines are reported. For NHCs with small alkyl substituents at nitrogen (R=Me, nPr, iPr) the adducts NHC ⋅ PF\(_{2}\)(C\(_{2}\)F\(_{5}\))\(_{3}\) (2 a–h) were isolated. The reaction with the sterically more demanding NHCs Dipp\(_{2}\)Im (1,3-bis-(2,6-di-iso-propylphenyl)-imidazolin-2-ylidene) (1 i) and tBu\(_{2}\)Im (1,3-di-tert-butyl-imidazolin-2-ylidene) (1 j) afforded the aNHC adducts 3 i and 3 j (a denotes “abnormal” NHC coordination via a backbone carbon atom). The use of tBuMeIm (1-tert-butyl-3-methyl-imidazolin-2-ylidene) (1 m) led to partial decomposition of the NHC and formation of the salt [tBuMeIm−H][MeIm ⋅ PF\(_{2}\)(C\(_{2}\)F\(_{5}\))\(_{3}\)] (4 m). The phosphorane PF\(_{2}\)(C\(_{2}\)F\(_{5}\))\(_{3}\) forms adducts with PMe\(_{3}\) but does not react with PPh\(_{3}\) or PCy\(_{3}\). The mer-cis isomer of literature-known Me\(_{3}\)P ⋅ PF\(_{2}\)(C\(_{2}\)F\(_{5}\))\(_{3}\) (5 a) was structurally characterized. Mixtures of the phosphorane PF\(_{2}\)(C\(_{2}\)F\(_{5}\))\(_{3}\) and the sterically encumbered NHCs tBu\(_{2}\)Im, Dipp\(_{2}\)Im, and Dipp\(_{2}\)Im\(^{H2}\) (1,3-bis-(2,6-di-iso-propylphenyl)-imidazolidin-2-ylidene) (1 k) showed properties of FLPs (Frustrated Lewis Pairs) as these mixtures were able to open the ring of THF (tetrahydrofuran) to yield NHC−(CH\(_{2}\))\(_{4}\)O−PF\(_{2}\)(C\(_{2}\)F\(_{5}\))\(_{3}\) 6 i–k. Furthermore, the deprotonation of the weak C−H acids CH\(_{3}\)CN, acetone, and ethyl acetate was achieved, which led to the formation of the corresponding imidazolium salts and the phosphates [PF\(_{2}\)(C\(_{2}\)F\(_{5}\))\(_{3}\)(CH\(_{2}\)CN)]\(^{-}\) (7), [PF\(_{2}\)(C\(_{2}\)F\(_{5}\))\(_{3}\)(OC(=CH\(_{2}\))CH\(_{3}\))]\(^{-}\) (8) and [PF\(_{2}\)(C\(_{2}\)F\(_{5}\))\(_{3}\)(CH\(_{2}\)CO\(_{2}\)Et)]\(^{-}\) (9). KW - C-H activation KW - N-Heterocyclic Carbene Adducts KW - N-Heterocyclic Carbenes KW - Frustrated Lewis Pairs KW - Fluoro(perfluoroalkyl) phosphoranes Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-257386 VL - 2021 IS - 20 ER - TY - JOUR A1 - Hock, Andreas A1 - Werner, Luis A1 - Riethmann, Melanie A1 - Radius, Udo T1 - Bis‐NHC Aluminium and Gallium Dihydride Cations [(NHC)\(_{2}\)EH\(_{2}\)]\(^{+}\) (E = Al, Ga) JF - European Journal of Inorganic Chemistry N2 - The NHC alane and gallane adducts (NHC)·AlH\(_{2}\)I (NHC = Me\(_{2}\)Im\(^{Me}\) 7, iPr\(_{2}\)Im 8, iPr\(_{2}\)Im\(^{Me}\) 9) and (NHC)·GaH\(_{2}\)I (NHC = Me\(_{2}\)Im\(^{Me}\) 10, iPr\(_{2}\)Im\(^{Me}\) 11, Dipp\(_{2}\)Im 12; R\(_{2}\)Im = 1,3‐di‐organyl‐imidazolin‐2‐ylidene; Dipp = 2,6‐diisopropylphenyl; iPr = isopropyl; Me\(_{2}\)Im\(^{Me}\) = 1,3,4,5‐tetra‐methyl‐imidazolin‐2‐ylidene) were prepared either by the simple yet efficient reaction of the NHC adduct (NHC)·AlH\(_{3}\) with elemental iodine or by the treatment of (NHC)·GaH\(_{3}\) with an excess of methyl iodide at room temperature. The reaction of one equivalent of the group 13 NHC complexes with an additional equivalent of the corresponding NHC afforded cationic aluminium and gallium hydrides [(NHC)\(_{2}\)·AlH\(_{2}\)]\(^{+}\)I− (NHC = Me\(_{2}\)Im\(^{Me}\) 13, iPr\(_{2}\)Im 14, iPr\(_{2}\)Im\(^{Me}\) 15) and [(NHC)\(_{2}\)·GaH\(_{2}\)]\(^{+}\)I− (NHC = Me\(_{2}\)Im\(^{Me}\) 16, iPr\(_{2}\)Im\(^{Me}\) 17) and the normal and abnormal NHC coordinated compound [(Dipp\(_{2}\)Im)·GaH\(_{2}\)(aDipp\(_{2}\)Im)]+I− 18. Compounds 7–18 were isolated and characterized by means of elemental analysis, IR and multinuclear NMR spectroscopy and by X‐ray diffraction of the compounds 7, 9, 10, 15, 16 and 18. KW - aluminium KW - cations KW - Gallium KW - main group elements KW - heterocyclic carbenes Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-217928 VL - 2020 IS - 42 SP - 4015 EP - 4023 ER - TY - JOUR A1 - Horrer, Günther A1 - Krahfuß, Mirjam J. A1 - Lubitz, Katharina A1 - Krummenacher, Ivo A1 - Braunschweig, Holger A1 - Radius, Udo T1 - N-Heterocyclic Carbene and Cyclic (Alkyl)(amino)carbene Complexes of Titanium(IV) and Titanium(III) JF - European Journal of Inorganic Chemistry N2 - The reaction of one and two equivalents of the N ‐heterocyclic carbene IMes [IMes = 1,3‐bis(2,4,6‐trimethyl‐phenyl)imidazolin‐2‐ylidene] or the cyclic (alkyl)(amino)carbene cAAC\(^{Me}\) [cAAC\(^{Me}\) = 1‐(2,6‐diisopropyl‐phenyl)‐3,3,5,5‐tetra‐methylpyrrolidin‐2‐ylidene] with [TiCl\(_{4}\)] in n ‐hexane results in the formation of mono‐ and bis‐carbene complexes [TiCl\(_{4}\)(IMes)] 1 , [TiCl\(_{4}\)(IMes)2] 2 , [TiCl\(_{4}\)(cAAC\(^{Me}\))] 3 , and [TiCl\(_{4}\)(cAAC\(^{Me}\))\(_{2}\)] 4 , respectively. For comparison, the titanium(IV) NHC complex [TiCl\(_{4}\)(Ii Pr\(^{Me}\))] 5 (Ii Pr\(^{Me}\) = 1,3‐diisopropyl‐4,5‐dimethyl‐imidazolin‐2‐ylidene) has been synthesized and structurally characterized. The reaction of [TiCl\(_{4}\)(IMes)] 1 with PMe\(_{3}\) affords the mixed substituted complex [TiCl\(_{4}\)(IMes)(PMe\(_{3}\))] 6 . The reactions of [TiCl\(_{3}\)(THF)\(_{3}\)] with two equivalents of the carbenes IMes and cAAC\(^{Me}\) in n ‐hexane lead to the clean formation of the titanium(III) complexes [TiCl\(_{3}\)(IMes)\(_{2}\)] 7 and [TiCl\(_{3}\)(cAAC\(^{Me}\))\(_{2}\)] 8 . Compounds 1 –8 have been completely characterized by elemental analysis, IR and multinuclear NMR spectroscopy and for 2 –5 , 7 and 8 by X‐ray diffraction. Magnetometry in solution, EPR and UV/Vis spectroscopy and DFT calculations performed on 7 and 8 are indicative of a predominantly metal‐centered d\(^{1}\)‐radical in both cases. KW - N-heterocyclic carbenes KW - carbene ligands KW - Titanium KW - structure elucidation Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-208725 VL - 2020 IS - 3 ER - TY - JOUR A1 - Huang, Mingming A1 - Hu, Jiefeng A1 - Krummenacher, Ivo A1 - Friedrich, Alexandra A1 - Braunschweig, Holger A1 - Westcott, Stephen A. A1 - Radius, Udo A1 - Marder, Todd B. T1 - Base-Mediated Radical Borylation of Alkyl Sulfones JF - Chemistry—A European Journal N2 - A practical and direct method was developed for the production of versatile alkyl boronate esters via transition metal-free borylation of primary and secondary alkyl sulfones. The key to the success of the strategy is the use of bis(neopentyl glycolato) diboron (B\(_{2}\)neop\(_{2}\)), with a stoichiometric amount of base as a promoter. The practicality and industrial potential of this protocol are highlighted by its wide functional group tolerance, the late-stage modification of complex compounds, no need for further transesterification, and operational simplicity. Radical clock, radical trap experiments, and EPR studies were conducted which show that the borylation process involves radical intermediates. KW - boron KW - boronate KW - boronic acid KW - metal-free KW - radical Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-257281 VL - 28 IS - 3 ER - TY - JOUR A1 - Huang, Mingming A1 - Hu, Jiefeng A1 - Shi, Shasha A1 - Friedrich, Alexandra A1 - Krebs, Johannes A1 - Westcott, Stephen A. A1 - Radius, Udo A1 - Marder, Todd B. T1 - Selective, Transition Metal-free 1,2-Diboration of Alkyl Halides, Tosylates, and Alcohols JF - Chemistry-A European Journal N2 - Defunctionalization of readily available feedstocks to provide alkenes for the synthesis of multifunctional molecules represents an extremely useful process in organic synthesis. Herein, we describe a transition metal-free, simple and efficient strategy to access alkyl 1,2-bis(boronate esters) via regio- and diastereoselective diboration of secondary and tertiary alkyl halides (Br, Cl, I), tosylates, and alcohols. Control experiments demonstrated that the key to this high reactivity and selectivity is the addition of a combination of potassium iodide and N,N-dimethylacetamide (DMA). The practicality and industrial potential of this transformation are demonstrated by its operational simplicity, wide functional group tolerance, and the late-stage modification of complex molecules. From a drug discovery perspective, this synthetic method offers control of the position of diversification and diastereoselectivity in complex ring scaffolds, which would be especially useful in a lead optimization program. KW - organic synthesis KW - boronate esters KW - alkyl halides Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-318262 VL - 28 IS - 24 ER - TY - JOUR A1 - Huang, Mingming A1 - Wu, Zhu A1 - Krebs, Johannes A1 - Friedrich, Alexandra A1 - Luo, Xiaoling A1 - Westcott, Stephen A. A1 - Radius, Udo A1 - Marder, Todd B. T1 - Ni-Catalyzed Borylation of Aryl Sulfoxides JF - Chemistry—A European Journal N2 - A nickel/N-heterocyclic carbene (NHC) catalytic system has been developed for the borylation of aryl sulfoxides with B\(_{2}\)(neop)\(_{2}\) (neop=neopentyl glycolato). A wide range of aryl sulfoxides with different electronic and steric properties were converted into the corresponding arylboronic esters in good yields. The regioselective borylation of unsymmetric diaryl sulfoxides was also feasible leading to borylation of the sterically less encumbered aryl substituent. Competition experiments demonstrated that an electron-deficient aryl moiety reacts preferentially. The origin of the selectivity in the Ni-catalyzed borylation of electronically biased unsymmetrical diaryl sulfoxide lies in the oxidative addition step of the catalytic cycle, as oxidative addition of methoxyphenyl 4-(trifluoromethyl)phenyl sulfoxide to the Ni(0) complex occurs selectively to give the structurally characterized complex trans-[Ni(ICy)\(_{2}\)(4-CF\(_{3}\)-C\(_{6}\)H\(_{4}\)){(SO)-4-MeO-C\(_{6}\)H\(_{4}\)}] 4. For complex 5, the isomer trans-[Ni(ICy)\(_{2}\)(C\(_{6}\)H\(_{5}\))(OSC\(_{6}\)H\(_{5}\))] 5-I was structurally characterized in which the phenyl sulfinyl ligand is bound via the oxygen atom to nickel. In solution, the complex trans-[Ni(ICy)\(_{2}\)(C\(_{6}\)H\(_{5}\))(OSC\(_{6}\)H\(_{5}\))] 5-I is in equilibrium with the S-bonded isomer trans-[Ni(ICy)\(_{2}\)(C\(_{6}\)H\(_{5}\))(SOC\(_{6}\)H\(_{5}\))] 5, as shown by NMR spectroscopy. DFT calculations reveal that these isomers are separated by a mere 0.3 kJ/mol (M06/def2-TZVP-level of theory) and connected via a transition state trans-[Ni(ICy)\(_{2}\)(C\(_{6}\)H\(_{5}\))(η\(^{2}\)-{SO}-C\(_{6}\)H\(_{5}\))], which lies only 10.8 kcal/mol above 5. KW - Boron KW - cross-coupling KW - N-heterocyclic carbenes KW - nickel KW - borylation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-256778 VL - 27 IS - 31 ER -