TY - JOUR A1 - Asthana, Manish Kumar A1 - Brunhuber, Bettina A1 - Mühlberger, Andreas A1 - Reif, Andreas A1 - Schneider, Simone A1 - Herrmann, Martin J. T1 - Preventing the Return of Fear Using Reconsolidation Update Mechanisms Depends on the Met-Allele of the Brain Derived Neurotrophic Factor Val66Met Polymorphism JF - International Journal of Neuropsychopharmacology N2 - Background: Memory reconsolidation is the direct effect of memory reactivation followed by stabilization of newly synthesized proteins. It has been well proven that neural encoding of both newly and reactivated memories requires synaptic plasticity. Brain derived neurotrophic factor (BDNF) has been extensively investigated regarding its role in the formation of synaptic plasticity and in the alteration of fear memories. However, its role in fear reconsolidation is still unclear; hence, the current study has been designed to investigate the role of the BDNF val66met polymorphism (rs6265) in fear memory reconsolidation in humans. Methods: An auditory fear-conditioning paradigm was conducted, which comprised of three stages (acquisition, reactivation, and spontaneous recovery). One day after fear acquisition, the experimental group underwent reactivation of fear memory followed by the extinction training (reminder group), whereas the control group (non-reminder group) underwent only extinction training. On day 3, both groups were subjected to spontaneous recovery of earlier learned fearful memories. The treat-elicited defensive response due to conditioned threat was measured by assessing the skin conductance response to the conditioned stimulus. All participants were genotyped for rs6265. Results: The results indicate a diminishing effect of reminder on the persistence of fear memory only in the Met-allele carriers, suggesting a moderating effect of the BDNF polymorphism in fear memory reconsolidation. Conclusions: Our findings suggest a new role for BDNF gene variation in fear memory reconsolidation in humans. KW - BDNF KW - brain derived neurotrophic factor KW - fear conditioning KW - genetics memory KW - reconsolidation Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-166217 VL - 19 IS - 6 ER - TY - JOUR A1 - Baader, Anna A1 - Kiani, Behnaz A1 - Brunkhorst-Kanaan, Nathalie A1 - Kittel-Schneider, Sarah A1 - Reif, Andreas A1 - Grimm, Oliver T1 - A within-sample comparison of two innovative neuropsychological tests for assessing ADHD JF - Brain Sciences N2 - New innovative neuropsychological tests in attention deficit hyperactivity disorder ADHD have been proposed as objective measures for diagnosis and therapy. The current study aims to investigate two different commercial continuous performance tests (CPT) in a head-to-head comparison regarding their comparability and their link with clinical parameters. The CPTs were evaluated in a clinical sample of 29 adult patients presenting in an ADHD outpatient clinic. Correlational analyses were performed between neuropsychological data, clinical rating scales, and a personality-based measure. Though inattention was found to positively correlate between the two tests (r = 0.49, p = 0.01), no association with clinical measures and inattention was found for both tests. While hyperactivity did not correlate between both tests, current ADHD symptoms were positively associated with Nesplora Aquarium's motor activity (r = 0.52 to 0.61, p < 0.05) and the Qb-Test's hyperactivity (r = 0.52 to 0.71, p < 0.05). Conclusively, the overall comparability of the tests was limited and correlation with clinical parameters was low. While our study shows some interesting correlation between clinical symptoms and sub-scales of these tests, usage in clinical practice is not recommended. KW - ADHD KW - neuropsychology KW - continuous performance test KW - Qb-Test KW - Nesplora Aquarium KW - attention KW - hyperactivity KW - GHQ-28 KW - UPPS KW - impulsivity Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-220089 SN - 2076-3425 VL - 11 IS - 1 ER - TY - JOUR A1 - Biehl, Stefanie C. A1 - Dresler, Thomas A1 - Reif, Andreas A1 - Scheuerpflug, Peter A1 - Deckert, Jürgen A1 - Herrmann, Martin J. T1 - Dopamine Transporter (DAT1) and Dopamine Receptor D4 (DRD4) Genotypes Differentially Impact on Electrophysiological Correlates of Error Processing JF - PLoS One N2 - Recent studies as well as theoretical models of error processing assign fundamental importance to the brain's dopaminergic system. Research about how the electrophysiological correlates of error processing—the error-related negativity (ERN) and the error positivity (Pe)—are influenced by variations of common dopaminergic genes, however, is still relatively scarce. In the present study, we therefore investigated whether polymorphisms in the DAT1 gene and in the DRD4 gene, respectively, lead to interindividual differences in these error processing correlates. One hundred sixty participants completed a version of the Eriksen Flanker Task while a 26-channel EEG was recorded. The task was slightly modified in order to increase error rates. During data analysis, participants were split into two groups depending on their DAT1 and their DRD4 genotypes, respectively. ERN and Pe amplitudes after correct responses and after errors as well as difference amplitudes between errors and correct responses were analyzed. We found a differential effect of DAT1 genotype on the Pe difference amplitude but not on the ERN difference amplitude, while the reverse was true for DRD4 genotype. These findings are in line with predictions from theoretical models of dopaminergic transmission in the brain. They furthermore tie results from clinical investigations of disorders impacting on the dopamine system to genetic variations known to be at-risk genotypes. KW - haplotypes KW - electroencephalography KW - basal ganglia KW - reaction time KW - dopaminergics KW - dopamine KW - ADHD KW - research errors Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-137930 VL - 6 IS - 12 ER - TY - JOUR A1 - Biere, Silvia A1 - Kranz, Thorsten M. A1 - Matura, Silke A1 - Petrova, Kristiyana A1 - Streit, Fabian A1 - Chiocchetti, Andreas G. A1 - Grimm, Oliver A1 - Brum, Murielle A1 - Brunkhorst-Kanaan, Natalie A1 - Oertel, Viola A1 - Malyshau, Aliaksandr A1 - Pfennig, Andrea A1 - Bauer, Michael A1 - Schulze, Thomas G. A1 - Kittel-Schneider, Sarah A1 - Reif, Andreas T1 - Risk Stratification for Bipolar Disorder Using Polygenic Risk Scores Among Young High-Risk Adults JF - Frontiers in Psychiatry N2 - Objective: Identifying high-risk groups with an increased genetic liability for bipolar disorder (BD) will provide insights into the etiology of BD and contribute to early detection of BD. We used the BD polygenic risk score (PRS) derived from BD genome-wide association studies (GWAS) to explore how such genetic risk manifests in young, high-risk adults. We postulated that BD-PRS would be associated with risk factors for BD. Methods: A final sample of 185 young, high-risk German adults (aged 18–35 years) were grouped into three risk groups and compared to a healthy control group (n = 1,100). The risk groups comprised 117 cases with attention deficit hyperactivity disorder (ADHD), 45 with major depressive disorder (MDD), and 23 help-seeking adults with early recognition symptoms [ER: positive family history for BD, (sub)threshold affective symptomatology and/or mood swings, sleeping disorder]. BD-PRS was computed for each participant. Logistic regression models (controlling for sex, age, and the first five ancestry principal components) were used to assess associations of BD-PRS and the high-risk phenotypes. Results: We observed an association between BD-PRS and combined risk group status (OR = 1.48, p < 0.001), ADHD diagnosis (OR = 1.32, p = 0.009), MDD diagnosis (OR = 1.96, p < 0.001), and ER group status (OR = 1.7, p = 0.025; not significant after correction for multiple testing) compared to healthy controls. Conclusions: In the present study, increased genetic risk for BD was a significant predictor for MDD and ADHD status, but not for ER. These findings support an underlying shared risk for both MDD and BD as well as ADHD and BD. Improving our understanding of the underlying genetic architecture of these phenotypes may aid in early identification and risk stratification. KW - polygenic risk score KW - bipolar disorder KW - genetic phenotypes KW - depression KW - ADHD KW - early recognition Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-214976 VL - 11 ER - TY - JOUR A1 - Brevik, Erlend J A1 - van Donkelaar, Marjolein M. J. A1 - Weber, Heike A1 - Sánchez-Mora, Cristina A1 - Jacob, Christian A1 - Rivero, Olga A1 - Kittel-Schneider, Sarah A1 - Garcia-martinez, Iris A1 - Aebi, Marcel A1 - van Hulzen, Kimm A1 - Cormand, Bru A1 - Ramos-Quiroga, Josep A A1 - Lesch, Klaus-Peter A1 - Reif, Andreas A1 - Ribases, Marta A1 - Franke, Barbara A1 - Posserud, Maj-Britt A1 - Johansson, Stefan A1 - Lundervold, Astri J. A1 - Haavik, Jan A1 - Zayats, Tetyana T1 - Genome-wide analyses of aggressiveness in attention-deficit hyperactivity disorder JF - American Journal of Medical Genetics Part B-Neuropsychiatric Genetics N2 - Aggressiveness is a behavioral trait that has the potential to be harmful to individuals and society. With an estimated heritability of about 40%, genetics is important in its development. We performed an exploratory genome-wide association (GWA) analysis of childhood aggressiveness in attention deficit hyperactivity disorder (ADHD) to gain insight into the underlying biological processes associated with this trait. Our primary sample consisted of 1,060 adult ADHD patients (aADHD). To further explore the genetic architecture of childhood aggressiveness, we performed enrichment analyses of suggestive genome-wide associations observed in aADHD among GWA signals of dimensions of oppositionality (defiant/vindictive and irritable dimensions) in childhood ADHD (cADHD). No single polymorphism reached genome-wide significance (P<5.00E-08). The strongest signal in aADHD was observed at rs10826548, within a long noncoding RNA gene (beta = -1.66, standard error (SE) = 0.34, P = 1.07E-06), closely followed by rs35974940 in the neurotrimin gene (beta = 3.23, SE = 0.67, P = 1.26E-06). The top GWA SNPs observed in aADHD showed significant enrichment of signals from both the defiant/vindictive dimension (Fisher's P-value = 2.28E-06) and the irritable dimension in cADHD (Fisher's P-value = 0.0061). In sum, our results identify a number of biologically interesting markers possibly underlying childhood aggressiveness and provide targets for further genetic exploration of aggressiveness across psychiatric disorders. KW - Large multicenter ADHD KW - Antisocial behavior KW - Diagnostic approach KW - Rating scale KW - Gene KW - Deficit/hyperactivity disorder KW - Susceptibility loci KW - Conduct disorder KW - Association KW - Adult KW - ADHD KW - Aggression KW - GWAS Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-188116 VL - 171B IS - 5 ER - TY - JOUR A1 - Brunkhorst-Kanaan, Nathalie A1 - Trautmann, Sandra A1 - Schreiber, Yannick A1 - Thomas, Dominique A1 - Kittel-Schneider, Sarah A1 - Gurke, Robert A1 - Geisslinger, Gerd A1 - Reif, Andreas A1 - Tegeder, Irmgard T1 - Sphingolipid and endocannabinoid profiles in adult attention deficit hyperactivity disorder JF - Biomedicines N2 - Genes encoding endocannabinoid and sphingolipid metabolism pathways were suggested to contribute to the genetic risk towards attention deficit hyperactivity disorder (ADHD). The present pilot study assessed plasma concentrations of candidate endocannabinoids, sphingolipids and ceramides in individuals with adult ADHD in comparison with healthy controls and patients with affective disorders. Targeted lipid analyses of 23 different lipid species were performed in 71 mental disorder patients and 98 healthy controls (HC). The patients were diagnosed with adult ADHD (n = 12), affective disorder (major depression, MD n = 16 or bipolar disorder, BD n = 6) or adult ADHD with comorbid affective disorders (n = 37). Canonical discriminant analysis and CHAID analyses were used to identify major components that predicted the diagnostic group. ADHD patients had increased plasma concentrations of sphingosine-1-phosphate (S1P d18:1) and sphinganine-1-phosphate (S1P d18:0). In addition, the endocannabinoids, anandamide (AEA) and arachidonoylglycerol were increased. MD/BD patients had increased long chain ceramides, most prominently Cer22:0, but low endocannabinoids in contrast to ADHD patients. Patients with ADHD and comorbid affective disorders displayed increased S1P d18:1 and increased Cer22:0, but the individual lipid levels were lower than in the non-comorbid disorders. Sphingolipid profiles differ between patients suffering from ADHD and affective disorders, with overlapping patterns in comorbid patients. The S1P d18:1 to Cer22:0 ratio may constitute a diagnostic or prognostic tool. KW - attention deficit hyperactivity disorder KW - endocannabinoids KW - ceramides KW - bipolar disorder KW - major depression KW - tandem mass spectrometry Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-246080 SN - 2227-9059 VL - 9 IS - 9 ER - TY - JOUR A1 - Chen, Yong A1 - Boettger, Michael K. A1 - Reif, Andreas A1 - Schmitt, Angelika A1 - Ueceyler, Nurcan A1 - Sommer, Claudia T1 - Nitric oxide synthase modulates CFA-induced thermal hyperalgesia through cytokine regulation in mice N2 - Background: Although it has been largely demonstrated that nitric oxide synthase (NOS), a key enzyme for nitric oxide (NO) production, modulates inflammatory pain, the molecular mechanisms underlying these effects remain to be clarified. Here we asked whether cytokines, which have well-described roles in inflammatory pain, are downstream targets of NO in inflammatory pain and which of the isoforms of NOS are involved in this process. Results: Intraperitoneal (i.p.) pretreatment with 7-nitroindazole sodium salt (7-NINA, a selective neuronal NOS inhibitor), aminoguanidine hydrochloride (AG, a selective inducible NOS inhibitor), L-N(G)-nitroarginine methyl ester (L-NAME, a non-selective NOS inhibitor), but not L-N(5)-(1-iminoethyl)-ornithine (L-NIO, a selective endothelial NOS inhibitor), significantly attenuated thermal hyperalgesia induced by intraplantar (i.pl.) injection of complete Freund’s adjuvant (CFA). Real-time reverse transcription-polymerase chain reaction (RT-PCR) revealed a significant increase of nNOS, iNOS, and eNOS gene expression, as well as tumor necrosis factor-alpha (TNF), interleukin-1 beta (IL-1b), and interleukin-10 (IL-10) gene expression in plantar skin, following CFA. Pretreatment with the NOS inhibitors prevented the CFA-induced increase of the pro-inflammatory cytokines TNF and IL-1b. The increase of the antiinflammatory cytokine IL-10 was augmented in mice pretreated with 7-NINA or L-NAME, but reduced in mice receiving AG or L-NIO. NNOS-, iNOS- or eNOS-knockout (KO) mice had lower gene expression of TNF, IL-1b, and IL-10 following CFA, overall corroborating the inhibitor data. Conclusion: These findings lead us to propose that inhibition of NOS modulates inflammatory thermal hyperalgesia by regulating cytokine expression. KW - Medizin Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-68349 ER - TY - JOUR A1 - Conzelmann, Annette A1 - Reif, Andreas A1 - Jacob, Christian A1 - Weyers, Peter A1 - Lesch, Klaus-Peter A1 - Lutz, Beat A1 - Pauli, Paul T1 - A polymorphism in the gene of the endocannabinoid-degrading enzyme FAAH (FAAH C385A) is associated with emotional-motivational reactivity JF - Psychopharmacology N2 - RATIONALE: The endocannabinoid (eCB) system is implicated in several psychiatric disorders. Investigating emotional-motivational dysfunctions as underlying mechanisms, a study in humans revealed that in the C385A polymorphism of the fatty acid amide hydrolase (FAAH), the degrading enzyme of the eCB anandamide (AEA), A carriers, who are characterized by increased signaling of AEA as compared to C/C carriers, exhibited reduced brain reactivity towards unpleasant faces and enhanced reactivity towards reward. However, the association of eCB system with emotional-motivational reactivity is complex and bidirectional due to upcoming compensatory processes. OBJECTIVES: Therefore, we further investigated the relationship of the FAAH polymorphism and emotional-motivational reactivity in humans. METHODS: We assessed the affect-modulated startle, and ratings of valence and arousal in response to higher arousing pleasant, neutral, and unpleasant pictures in 67 FAAH C385A C/C carriers and 45 A carriers. RESULTS: Contrarily to the previous functional MRI study, A carriers compared to C/C carriers exhibited an increased startle potentiation and therefore emotional responsiveness towards unpleasant picture stimuli and reduced startle inhibition indicating reduced emotional reactivity in response to pleasant pictures, while both groups did not differ in ratings of arousal and valence. CONCLUSIONS: Our findings emphasize the bidirectionality and thorough examination of the eCB system's impact on emotional reactivity as a central endophenotype underlying various psychiatric disorders. KW - startle reflex KW - endocannabinoid KW - FAAH KW - genetics KW - emotion Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-126845 VL - 224 IS - 4 ER - TY - JOUR A1 - Conzelmann, Annette A1 - Reif, Andreas A1 - Jacob, Christian A1 - Weyers, Peter A1 - Lesch, Klaus-Peter A1 - Lutz, Beat A1 - Pauli, Paul T1 - A polymorphism in the gene of the endocannabinoid-degrading enzyme FAAH (FAAH C385A) is associated with emotional–motivational reactivity JF - Psychopharmacology N2 - Rationale The endocannabinoid (eCB) system is implicated in several psychiatric disorders. Investigating emotional–motivational dysfunctions as underlying mechanisms, a study in humans revealed that in the C385A polymorphism of the fatty acid amide hydrolase (FAAH), the degrading enzyme of the eCB anandamide (AEA), A carriers, who are characterized by increased signaling of AEA as compared to C/C carriers, exhibited reduced brain reactivity towards unpleasant faces and enhanced reactivity towards reward. However, the association of eCB system with emotional–motivational reactivity is complex and bidirectional due to upcoming compensatory processes. Objectives Therefore, we further investigated the relationship of the FAAH polymorphism and emotional–motivational reactivity in humans. Methods We assessed the affect-modulated startle, and ratings of valence and arousal in response to higher arousing pleasant, neutral, and unpleasant pictures in 67 FAAH C385A C/C carriers and 45 A carriers. Results Contrarily to the previous functional MRI study, A carriers compared to C/C carriers exhibited an increased startle potentiation and therefore emotional responsiveness towards unpleasant picture stimuli and reduced startle inhibition indicating reduced emotional reactivity in response to pleasant pictures, while both groups did not differ in ratings of arousal and valence. Conclusions Our findings emphasize the bidirectionality and thorough examination of the eCB system’s impact on emotional reactivity as a central endophenotype underlying various psychiatric disorders. KW - startle reflex KW - FAAH KW - genetics KW - endocannabinoid KW - emotion Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-129936 VL - 224 IS - 4 ER - TY - JOUR A1 - Enge, Sören A1 - Fleischhauer, Monika A1 - Gärtner, Anne A1 - Reif, Andreas A1 - Lesch, Klaus-Peter A1 - Kliegel, Matthias A1 - Strobel, Alexander T1 - Brain-Derived Neurotrophic Factor (Val66Met) and Serotonin Transporter (5-HTTLPR) Polymorphisms Modulate Plasticity in Inhibitory Control Performance Over Time but Independent of Inhibitory Control Training JF - Frontiers in Human Neuroscience N2 - Several studies reported training-induced improvements in executive function tasks and also observed transfer to untrained tasks. However, the results are mixed and there is a large interindividual variability within and across studies. Given that training-related performance changes would require modification, growth or differentiation at the cellular and synaptic level in the brain, research on critical moderators of brain plasticity potentially explaining such changes is needed. In the present study, a pre-post-follow-up design (N = 122) and a 3-weeks training of two response inhibition tasks (Go/NoGo and Stop-Signal) was employed and genetic variation (Val66Met) in the brain-derived neurotrophic factor (BDNF) promoting differentiation and activity-dependent synaptic plasticity was examined. Because Serotonin (5-HT) signaling and the interplay of BDNF and 5-HT are known to critically mediate brain plasticity, genetic variation in the 5-HTT gene-linked polymorphic region (5-HTTLPR) was also addressed. The overall results show that the kind of training (i.e., adaptive vs. non-adaptive) did not evoke genotype-dependent differences. However, in the Go/NoGo task, better inhibition performance (lower commission errors) were observed for BDNF Val/Val genotype carriers compared to Met-allele ones supporting similar findings from other cognitive tasks. Additionally, a gene-gene interaction suggests a more impulsive response pattern (faster responses accompanied by higher commission error rates) in homozygous l-allele carriers relative to those with the s-allele of 5-HTTLPR. This, however, is true only in the presence of the Met-allele of BDNF, while the Val/Val genotype seems to compensate for such non-adaptive responding. Intriguingly, similar results were obtained for the Stop-Signal task. Here, differences emerged at post-testing, while no differences were observed at T1. In sum, although no genotype-dependent differences between the relevant training groups emerged suggesting no changes in the trained inhibition function, the observed genotype-dependent performance changes from pre- to post measurement may reflect rapid learning or memory effects linked to BDNF and 5-HTTLPR. In line with ample evidence on BDNF and BDNF-5-HT system interactions to induce (rapid) plasticity especially in hippocampal regions and in response to environmental demands, the findings may reflect genotype-dependent differences in the acquisition and consolidation of task-relevant information, thereby facilitating a more adaptive responding to task-specific requirements. KW - executive function training KW - response inhibition KW - neuronal plasticity KW - BDNF Val66Met KW - 5-HTTLPR Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-165176 VL - 10 IS - 370 ER -