TY - THES A1 - Kanal, Florian T1 - Femtosecond Transient Absorption Spectroscopy – Technical Improvements and Applications to Ultrafast Molecular Phenomena T1 - Femtosekundenzeitaufgelöste Absorptionsspektroskopie – Technische Verbesserungen und Anwendungen auf ultraschnelle molekulare Phänomene N2 - Photoinduced processes are nowadays studied with a huge variety of spectroscopic methods. In the liquid phase, transient absorption spectroscopy is probably the most versatile pump–probe technique used to study light-induced molecular phenomena. Optical time-resolved spectroscopy is established in a large number of laboratories and is still further being developed with respect to many technical aspects. Nevertheless, the full potential of shortening the data-acquisition time—necessary for the investigation of rapidly photodegrading samples and observation of macroscopically fast processes—achievable with high-repetition-rate laser systems and shot-to-shot detection was not fully exploited. Especially, shot-to-shot detection is highly beneficial due to the high correlation of subsequent laser pulses. The development and implementation of 100 kHz broadband shot-to-shot data acquisition was presented in Chapter 3. For an established laser dye as a benchmark system, ultrafast excited-state dynamics were measured for the first time with broadband shot-to-shot detection at 100 kHz. An analysis of both the noise characteristics of the employed laser and the correlation of subsequent pulses quantified the advantage of shot-to-shot data acquisition. In the utilized software environment, the time for measuring a complete data set could be sped up by a factor of three or even higher compared to a laser system working at 1 kHz. So far, the limiting factor is the data processing and the movement of the mechanical delay stage. Nevertheless, the new shot-to-shot detection has the potential to shorten the measurement time up to a factor of 100. The data quality is improved by a factor of three when the hitherto conventional averaging scheme is compared to shot-to-shot acquisition for the same number of laser pulses. The expansion of shot-to-shot data acquisition for high repetition rates will allow studies on sensitive samples as exposure times can strongly be reduced to achieve the same signal-to-noise ratio. In addition, multidimensional spectroscopy can also be extended to high-repetition shot-to-shot readout allowing an efficient recording of data. Therefore, in future experiments, dynamics and couplings in sensitive samples and kinetic processes could be studied in more detail. Complex photophysical and photochemical phenomena are subject of many fields of research. Many of these multifaceted processes are not yet fully understood. Therefore, a possible approach is the elucidation of single reaction steps with the combination of transient absorption spectroscopy and a suitable, less complex model system. The systematic variation of the model system’s properties and environments, e.g., by chemical substitution or adequate choice of the solvent allows the determination of essential entities and reactivities thereof. Proper knowledge of an individual intermediate step and its determining factors can enhance the understanding of the complete photoreaction process. The application of transient absorption spectroscopy was shown for the optically-induced electron transfer in a series of donor–acceptor oligomers in Chapter 4. In general, the solvent relaxation times were isolated from the back-electron-transfer dynamics by a global lifetime analysis. For the smallest oligomeric structure where complete charge separation is possible, an ultrafast equilibration leads to charge recombination from the configuration showing the lowest barrier for recombination. The back-electron transfer strongly depends on the utilized solvent. Whereas in dichloromethane the back-electron transfer occurs with the maximum rate in the barrierless optimal region, the dynamics in toluene are governed by a Marcus inverted-region effect. The experimentally observed rates were also estimated by theoretical calculations of the respective barriers. The study did not only successfully unravel charge transfer in the oligomeric systems but also improved the understanding of the electron-transfer properties of larger polymers from an earlier study. Therefore, the combination of length variation and time-resolved spectroscopy is an important step towards the correct prediction of charge-carrier dynamics in macroscopic devices, e.g., for photovoltaics. The bond dissociation of a carbon-monoxide-releasing molecule in aqueous solution was studied in Chapter 5 as a prototype reaction for the photo-triggered breaking of a bond. It was shown that upon excitation only one carbon-monoxide ligand of the tricarbonyl complex is dissociated. A fraction of the photolyzed molecules restore the intact initial complex by geminate recombination within the temporal resolution of the experiment. However, the recombination could be detected by the hot ground-state infrared absorption of the complex. The detectable dicarbonyl formed upon CO release distributes excess energy from the absorbed photon into low-frequency modes which result in broadened absorption bands like for the recombined tricarbonyl. The free coordination site in the ligand sphere is filled with a solvent water molecule. Despite numerous studies of metal carbonyls studied in alkaneous solutions, the elucidation of the dynamics of a CORM in aqueous solution added another important detail to the photochemistry of this class of compounds. Experiments employing a second ultraviolet pump pulse did not trigger further CO dissociation and hence no formation of a monocarbonyl species; this might either be due to a different release mechanism without a further photochemical step or a strong spectral shift of the dicarbonyl’s absorption. Both reasons could explain why degenerate pump–repump–probe spectroscopy is inefficient. However, further experiments with ultraviolet probe pulses could substantiate whether the intermediate dicarbonyl reacts further photochemically or not. Apart from the model-system character of the CORM for bond dissociation, the study could determine exactly how many CO ligands are initially photolyzed off. Detailed knowledge of the release mechanism will affect the previous use and application as well as the further development of CORMs as therapeutic prodrugs to deliver high local concentrations of CO in cancerous or pathological tissue. Hence, the study of two-photon absorption properties which are important for in vivo applications of CORMs should be the main focus in further spectroscopic experiments. In Chapter 6, both abovementioned molecular phenomena—electron transfer and bond dissociation—were studied in combination. The photochemistry of a tetrazolium salt was studied in detail in a variety of different solvents. Being a relatively small molecule, the studied tetrazolium cation shows a multifaceted photochemistry and is therefore a textbook example for the combination of ultrafast molecular phenomena studied in different environments. Within femtoseconds, the tetrazolium ring is opened. The biradicalic species is then reduced via uptake of an electron from the solvent. The formation of the ring-open formazan photoproduct from this point of the reaction sequence on was excluded by experiments with acidic pH value of the solution. The ring-open radical is stabilized by ring-closure. The resulting tetrazolinyl radical was already observed in experiments with microsecond time resolution. However, its formation was observed in real time for the first time in this study. Irradiation of a tetrazoliumsalt solution yields different photoproduct distributions depending on the solvent. However, it was shown that all photoproducts have a tetrazolinyl radical as a common precursor on an ultrafast time scale. In combination with studies from the literature, the complete photochemical conversion of a tetrazolium salt was clarified in this study. Apart from the prototype character of the reaction sequence, the reaction mechanism will have impact on research associated with life science where tetrazolium assays are used on a daily basis without taking into account of photochemical conversion of the indicating tetrazolium ion and its photochemically formed reactive intermediates. On the basis of the tetrazolium-ion photochemistry, the rich photochemistry of the formazan photoproduct, including structural rearrangements and subsequent reformation of the tetrazolium ion, might be the subject of future studies. This thesis shows a method advancement and application of transient absorption spectroscopy to exemplary molecular model systems. The insights into each respective field did not only enlighten singular aspects, but have to be seen in a much larger context. Understanding complex photoinduced processes bottom-up by learning about their constituting steps—microscopically and on an ultrafast time scale—is an ideal method to approach understanding and prediction of phenomena in large molecular systems like biological or artificial architectures as for example used in photosynthetic light-harvesting and photovoltaics. N2 - Photoinduzierte Prozesse werden heutzutage mit einer Vielzahl spektroskopischer Methoden untersucht. In der flüssigen Phase ist die transiente Absorptionsspektroskopie die wohl vielfältigst verwendete Anrege-Abfrage-Technik um lichtinduzierte molekulare Phänomene zu untersuchen. In vielen Forschungsgruppen ist die zeitaufgelöste optische Spektroskopie eine etablierte Methode und wird bezüglich vieler technischer Aspekte weiterentwickelt. Dennoch ist das volle Potential der für die Untersuchung photoempfindlicher Proben und die Beobachtung schneller makroskopischer Prozesse notwendigen Verkürzung der Datenaufnahmezeit, erreichbar mit hohen Laserwiederholraten und Schuss-zu-Schuss-Detektion, noch nicht vollständig ausgeschöpft worden. Die Schuss-zu-Schuss-Detektion ist insbesondere aufgrund der hohen Korrelation aufeinanderfolgender Laserpulse vorteilhaft. Die Entwicklung und technische Umsetzung der breitbandigen Schuss-zu-Schuss-Datenaufnahme mit 100 kHz wurde in Kapitel 3 vorgestellt. An einem bekannten Laserfarbstoff als Referenzsystem wurden zum ersten Mal Dynamiken des angeregten Zustands mit breitbandiger Schuss-zu-Schuss-Detektion mit 100 kHz gemessen. Durch eine Analyse sowohl der Rauschcharakteristika des verwendeten Lasersystems als auch der Korrelation aufeinanderfolgender Pulse konnten die Vorzüge der Schuss-zu-Schuss-Datenaufnahme quantitativ bestimmt werden. In der verwendeten Softwareumgebung konnte die Messzeit, verglichen mit einem Lasersystem mit einer Wiederholrate von 1 kHz, um mindestens einen Faktor drei beschleunigt werden. Zum jetzigen Zeitpunkt sind die Datenverarbeitung und das Verfahren des mechanischen Lineartisches zur Zeitverzögerung die limitierenden Faktoren der Messzeitverkürzung. Dennoch hat die neue Schuss-zu-Schuss-Detektion das Potential die Messzeit um einen Faktor bis zu 100 zu verkürzen. Die Datenqualität wurde um einen Faktor drei verbessert, wenn das bisher verwendete konventionelle Mittelungsverfahren mit der Schuss-zu-Schuss-Aufnahme für die gleiche Anzahl an Laserpulsen verglichen wird. Die Ausweitung der Schuss-zu-Schuss-Datenaufnahme für hohe Wiederholraten wird die Untersuchung empfindlicher Proben erlauben, da die Belichtungszeit zur Erreichung desselben Signal-zu-Rausch-Verhältnisses stark reduziert werden kann. Des Weiteren kann das Schuss-zu-Schuss-Auslesen auf die multidimensionale Spektroskopie ausgeweitet werden, was auch hier eine effiziente Datenaufnahme erlaubt. Aufgrund dessen werden in künftigen Experimenten Dynamiken und Kopplungen in empfindlichen Proben und kinetischen Prozessen genauer untersucht werden können. Komplexe photophysikalische und photochemische Phänomene sind Gegenstand vieler Forschungsgebiete. Etliche dieser vielschichtigen Prozesse sind noch nicht gänzlich verstanden. Eine mögliche Herangehensweise an dieses Problem ist die Aufklärung einzelner Reaktionsschritte mittels der Kombination von transienter Absorptionsspektroskopie mit geeigneten, weniger komplexen Modellsystemen. Die systematische Änderung der Eigenschaften und Umgebungen der Modellsysteme, beispielsweise durch chemische Substitution oder die Wahl eines geeigneten Lösungsmittels, erlaubt die Bestimmung wesentlicher Bestandteile und deren Reaktivitäten. Fundierte Kenntnis einzelner Zwischenschritte und deren bestimmende Faktoren können das Verständnis des lichtinduzierten Gesamtprozesses verbessern. Die Anwendung der transienten Absorptionsspektroskopie auf den optisch-induzierten Elektronentransfer in einer Reihe von Donor-Akzeptor-Oligomeren wurde in Kapitel 4 gezeigt. Durch globale Datenanalyse wurden die Relaxationszeiten des Lösungsmittels von den Raten des Elektronenrücktransfers getrennt. In der kleinsten oligomeren Struktur welche eine vollständige Ladungstrennung erlaubt, führt eine ultraschnelle Gleichgewichtseinstellung zur Ladungsrekombination in der Konfiguration mit der kleinsten Rekombinationsbarriere. Der Elektronenrücktransfer hängt stark vom verwendeten Lösungsmittel ab. Während der Elektronenrücktransfer in Dichlormethan mit der maximalen Rate in der optimalen Region ohne Barriere stattfindet, ist die Dynamik in Toluol vom Effekt der Marcus-invertierten Region bestimmt. Die experimentell beobachteten Raten wurden durch theoretische Berechnung der jeweiligen Barrieren abgeschätzt. Diese Arbeit hat nicht nur erfolgreich den Ladungstransfer in den oligomeren System entschlüsselt, sondern auch das Verständnis der Elektronentransfereigenschaften größerer Polymere aus vorherigen Studien erweitert. Aus diesem Grund ist die Kombination der Längenvariation mit der zeitaufgelösten Spektroskopie ein wichtiger Schritt in Richtung der korrekten Vorhersage von Ladungsträgerdynamiken in makroskopischen Bauteilen, wie sie beispielsweise in der Photovoltaik verwendet werden. Die Bindungsdissoziation eines Kohlenmonoxid-freisetzenden Moleküls (CORM) in wässriger Lösung wurde in Kapitel 5 als prototypische Reaktion für die lichtinduzierte Spaltung einer Bindung untersucht. Es konnte gezeigt werden, dass nach Anregung nur ein Kohlenmonoxid-Ligand des Tricarbonyl-Komplexes abgespalten wird. Ein Teil der photolysierten Moleküle stellt den intakten Anfangskomplex durch paarweise Rekombination innerhalb der Zeitauflösung des Experiments wieder her. Dennoch konnte die paarweise Rekombination durch die Grundzustandsabsorption des schwingungsangeregten Komplexes im Infraroten detektiert werden. Das nach CO-Freisetzung beobachtete Dicarbonyl verteilt die Überschussenergie des absorbierten Photons auf Schwingungsmoden niedriger Frequenz, was zum Auftreten verbreiterter Absorptionsbanden f¨uhrt. Die freie Koordinationsstelle in der Ligandensphäre wird mit einem Wassermolekül aufgefüllt. Trotz zahlreicher Studien zu Metallcarbonylen in alkanischen Lösungsmitteln fügt die Aufklärung der Dynamiken des CORMs in wässriger Lösung ein wichtiges Detail der Photochemie dieser Verbindungsklasse hinzu. Experimente mit einem zweiten ultravioletten Anregepuls lösten keine weitere CO-Freisetzung und somit keine Bildung einer Monocarbonyl-Spezies aus. Der Grund hierfür mag entweder ein anderer Freisetzungsmechanismus ohne weiteren photochemischen Schritt oder eine große spektrale Verschiebung der Absorption des Dicarbonyls sein. Beide Gründe erklären, warum die Anrege-Wiederanrege-Abfrage-Spektroskopie keinen Effekt zeigt. Jedoch könnten weitere Experimente mit ultravioletten Abfragepulsen ergründen, ob das Dicarbonylintermediat photochemisch weiterreagiert oder nicht. Abgesehen vom Modellsystem-Charakter des CORMs für die Bindungsdissoziation konnte diese Untersuchung bestimmen, wie viele CO-Liganden ursprünglich freigesetzt werden. Die genaue Kenntnis des Freisetzungsmechanismus wird die bisherige Benutzung und Anwendung, sowie die zukünftige Entwicklung der CORMs als therapeutische Vorstufe zur Verabreichung hoher lokaler Konzentrationen an CO in karzinogenem und pathologischem Gewebe beeinflussen. Daher sollte die Untersuchung der Zweiphotonenabsorptionseigenschaften, welche für die in vivo Anwendung von CORMs eine wichtige Rolle spielen, in zukünftigen spektroskopischen Experimenten in den Vordergrund rücken. In Kapitel 6 wurde eine Kombination aus beiden oben erwähnten molekularen Phänomenen, Elektronentransfer und Bindungsspaltung, untersucht. Die Photochemie eines Tetrazoliumsalzes wurde detailliert in einer Auswahl unterschiedlicher Lösungsmittel untersucht. Als relativ kleines Molekül zeigt das untersuchte Tetrazoliumkation eine vielfältige Photochemie und ist daher ein Paradebeispiel für die Untersuchung kombinierter ultraschneller Phänomene in unterschiedlichen Umgebungen. Innerhalb von Femtosekunden wird der Tetrazoliumring geöffnet. Die biradikalische Spezies wird dann durch Elektronenaufnahme aus dem Lösungsmittel reduziert. Die Bildung des ringoffenen Formazan-Photoprodukts an dieser Stelle der Reaktionssequenz wurde durch Experimente in saurer Lösung ausgeschlossen. Das ringoffene Radikal wird durch einen Ringschluss stabilisiert. Das daraus entstehende Tetrazolinyl-Radikal wurde bereits in Experimenten mit Mikrosekundenzeitauflösung beobachtet. Die Bildung in Echtzeit wurde jedoch in dieser Arbeit zum ersten Mal beobachtet. Die Beleuchtung einer Tetrazoliumsalzlösung führt in Abhängigkeit des Lösungsmittels zu unterschiedlichen Photoproduktverteilungen. Auf einer ultraschnellen Zeitskala haben indessen alle Photoprodukte das Tetrazolinyl-Radikal als gemeinsame Vorstufe. In Verbindung mit literaturbekannten Studien wurde in dieser Arbeit die gesamte photochemische Umsetzung eines Tetrazoliumsalzes aufgeklärt. Abgesehen von dem prototypischen Charakter der Reaktionssequenz wird der entschlüsselte Reaktionsmechanismus Einfluss auf die Forschung in den Lebenswissenschaften haben, in welchen Tetrazoliumsalz-basierte Prüfverfahren täglich zur Anwendung kommen, wobei bislang die photochemische Umsetzung und die photochemisch gebildeten reaktiven Intermediate außer Acht gelassen werden. Auf Grundlage der Photochemie des Tetrazoliumions kann die vielschichtige Photochemie des Formazan-Photoprodukts, welche Umlagerungen und erneute Bildung des Tetrazoliumions beinhaltet, Gegenstand zukünftiger Untersuchungen sein. Diese Arbeit stellt die Methodenverbesserung und Anwendung der transienten Absorptionsspektroskopie auf beispielhafte Modellsysteme vor. Die Einblicke in die jeweiligen Forschungsgebiete beleuchteten nicht nur einzelne Aspekte, sondern müssen in einem wesentlich größeren Zusammenhang gesehen werden. In großen molekularen Systemen wie biologischen oder künstlichen Architekturen, welche beispielsweise in photosynthetischen Lichtsammelkomplexen und der Photovoltaik Anwendung finden, kann man sich dem grundsätzlichen Verständnis komplexer photoinduzierter Vorgänge und deren Vorhersage durch Untersuchung der zugrundeliegenden Teilschritte – mikroskopisch und auf ultraschnellen Zeitskalen – annähern. KW - Ultrakurzzeitspektroskopie KW - Pump-Probe-Technik KW - Fotochemie KW - Reaktionsmechanismus KW - Transient Absorption Spectroscopy KW - Femtosecond Spectroscopy KW - Femtochemistry KW - Molecular Phenomena KW - Transiente Absorptionsspektroskopie KW - Femtosekundenspektroskopie KW - Femtochemie KW - Molekulare Phänomene Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-118771 ER - TY - THES A1 - Krampert, Gerhard T1 - Femtosecond quantum control and adaptive polarization pulse shaping T1 - Femtosekunden Quanten Kontrolle und Adaptive Polarisations Puls Formung N2 - Adaptive Femtosekunden-Quantenkontrolle hat sich in den letzten Jahren als eine sehr erfolgreiche Methode in vielen wissenschaftlichen Gebieten wie Physik, Chemie oder Biologie erwiesen. Eine Vielzahl von Quantensystemen und insbesondere Moleküle, die eine chemische Reaktion durchlaufen, sind durch speziell geformte, Femtosekunden-Laserimpulse kontrolliert worden. Diese Methode erlaubt es, nicht nur das Quantensystem zu beobachten, sondern einen Schritt weiterzugehen und aktive Kontrolle über quantenmechanische Dynamik zu erlangen. In diesem Schema werden Interferenzphänomene im Zeit- und Frequenzraum benutzt, um Selektivität zum Beispiel in einer chemischen Reaktion zu erhalten. Die dazu benutzten, speziell geformten Femtosekunden-Laserimpulse waren bislang nur linear polarisiert. Deshalb konnten sie nur die skalaren Eigenschaften der Licht - Materie - Wechselwirkung ausnutzen und haben so den vektoriellen Charakter des elektrischen Dipolmoments $\vec{\mu}$ und des elektrischen Lichtfeldes $\vec{E}(t)$ vernachlässigt. Im besonderen in der Quantenkontrolle von chemischen Reaktionen ist das untersuchte System, die Moleküle, dreidimensional und zeigt komplexe raumzeitliche Dynamik. Mit der Hilfe von polarisations-geformten Laserimpulsen ist man jetzt in der Lage dieser Dynamik, sowohl in der Zeit als auch in der räumlichen Richtung zu folgen. Deshalb kann nun ein neues Niveau an Kontrolle in quanten-mechanischen Systemen erreicht werden. In dieser Arbeit konnte die Erzeugung von polarisations-geformten Laserimpulsen in einem optischen Aufbau verwirklicht werden. Dieser Aufbau erfordert keine interferometrische Stabilität, da beide Polarisationskomponenten demgleichen Strahlweg folgen. Zwei-Kanal spektrale Interferometrie wurde eingesetzt, um die Laserimpulse experimentell vollständig zu charakterisieren. Um den zeitabhängigen Polarisationszustand dieser Pulse exakt zu beschreiben, wurde eine mathematische Darstellung entwickelt und angewandt. Die Veränderungen des Polarisationszustandes durch optische Elemente wurde untersucht und einige Lösungen wurden aufgezeigt, um diese Veränderungen zu minimieren. Der Jones Matrix Formalismus wurde dazu benutzt, alle Verzerrungen des Polarisationszustandes zwischen dem Impulsformer und dem Ort des Experiments zu berücksichtigen. Zugleich können die Jones Matrizen zu einer vollständigen Charakterisierung der erzeugten Laserimpulse verwendet werden. Dabei wurden experimentell kalibrierte Matrizen eingesetzt. Adaptive Polarisations-Impulsformung konnte in einem rein optischen Demonstrationsexperiment gezeigt werden. Dabei wurde die computergesteuerte Polarisationsformung mit einer Lernschleife und einem experimentellen Rückkopplungssignal kombiniert. Durch diesen selbstlernenden Algorithmus konnte der benötigte, linear polarisierte Laserimpuls mit möglichst kleiner Impulsdauer gefunden werden, der für die effektive Erzeugung der zweiten Harmonischen in einem nichtlinearen optischen Kristall am besten geeignet ist. Durch diese Rückkopplungsschleife war es möglich auch noch kompliziertere Polarisationsverzerrungen, die durch eine Wellenplatte für eine falsche Wellenlänge verursacht wurden, rückgängig zu machen. Die zusätzliche Verformung der spektralen Phase durch Materialdispersion in einem 10~cm langen Glasblock konnte ebenfalls automatisch kompensiert werden. Nach diesen optischen Demonstrationsexperimenten wurde ultraschnelle Polarisationsformung angewandt, um ein Quantensystem zu kontrollieren. Die Polarisationsabhängigkeit der Multi-Photonen Ionisation von Kaliumdimeren konnte in einer Anrege-Abtast Messung nachgewiesen werden. Diese Abhängigkeit wurde dann in einem adaptiven Polarisationsformungsexperiment in einer sehr viel allgemeineren Art ausgenutzt. Statt nur einem Anrege- und Abtastlaserimpuls mit jeweils unterschiedlicher Polarisation zu benutzen, wurde der zeitabhängige Polarisationszustand eines geformtem Laserimpulses benutzt, um die Ionisation zu maximieren. Anstelle von einer nur quantitativen Verbesserung konnte eine qualitativ neue Art von Kontrolle über Quantensysteme demonstriert werden. Diese Polarisationskontrolle ist anwendbar selbst bei zufällig ausgerichteten Molekülen. Durch diese Möglichkeit, auf Ausrichtung der Moleküle zu verzichten, konnte mit einem wesentlich vereinfachten experimentellen Aufbau gearbeitet werden. Über diese Polarisationskontrollexperimente hinaus wurden auch die dreidimensionalen Aspekte der Dynamik von Molekülen erforscht und kontrolliert. Die \textit{cis-trans} Photoisomerisierungsreaktion von 3,3$'$-Diethyl-2,2$'$-Thiacyanin Iodid (NK88) wurde in der flüssigen Phase mit transienter Absorptionsspektroskopie untersucht. Die Isomerisierungsausbeute konnte sowohl erhöht als auch erniedrigt werden durch den Einsatz geformter Femtosekunden-Laserimpulse mit einer Zentralwellenlänge von 400~nm, die sowohl in spektraler Phase als auch Amplitude moduliert waren. Dieses Experiment zeigt die Möglichkeit, die kohärente Bewegung großer molekularer Gruppen durch Laserimpulse gezielt zu beeinflussen. Diese Modifikation der molekularen Geometrie kann als erster Schritt angesehen werden, kontrollierte Stereochemie zu verwirklichen. Insbesondere da im ersten Teil dieser Arbeit die Kontrolle von Molekülen mit Polarisations-geformten Impulsen gezeigt werden konnte, ist der Weg geebnet zu einer Umwandlung von einem chiralen Enantiomer in das andere, da theoretische Modelle dieser Umwandlung polarisations-geformte Laserimpulse benötigen. Außer diesen faszinierenden Anwendungen der Polarisationsformung sollte es nun möglich sein den Wellenlängenbereich der polarisations-geformten Laserimpulse auszuweiten. Sowohl Erzeugung der zweiten Harmonischen um in den ultravioletten Bereich zu kommen als auch optische Gleichrichtung von äußerst kurzen Femtosekunden-Impulsen um den mittleren infrarot Bereich abzudecken sind Möglichkeiten, den Wellenlängenbereich von polarisations-geformten Laserimpulsen zu erweitern. Mit diesen neuen Wellenlängen tut sich eine Vielzahl an neuen Möglichkeiten auf, Polarisationsformung für die Kontrolle von quantenmechanischen Systemen einzusetzen. N2 - Adaptive femtosecond quantum control has proven to be a very successful method in many different scientific fields like physics, chemistry or biology. Numerous quantum systems and in particular molecules undergoing chemical reactions have been controlled using shaped femtosecond laser pulses. This method allows to go beyond simple observation and to obtain active control over quantum--mechanical systems. It uses interference phenomena in the time and/or frequency domain to achieve selectivity. The shaped femtosecond laser pulses employed in this scheme have until recently been purely linearly polarized. Therefore, they only address the scalar properties of light--matter interaction and neglect the vectorial character of both the dipole moment $\vec{\mu}$ and the electric field $\vec{E}(t)$. Especially in the quantum control of chemical reactions the investigated systems ---the molecules--- are three dimensional and exhibit complex spatio--tempo\-ral dynamics. With the help of polarization--shaped laser pulses one is now able to follow these dynamics in both, time and spatial direction, and can therefore reach a new level of control over quantum--mechanical systems. In this work, the generation of polarization--shaped laser pulses has been implemented in an optical setup. It requires no interferometric stability as a result of the identical beam path for both polarization components. Dual--channel spectral interferometry was employed as experimental pulse characterization and a mathematical description of the time--dependent polarization state of these pulses was given. The polarization modulation of the shaped pulses by subsequent optical elements was investigated and some solutions to minimize these modulations were presented. Jones matrix calculus with experimentally calibrated matrices was implemented to account for all polarization distortions from the LCD to the position of the experiment and for full characterization of the generated pulse shapes. Adaptive polarization shaping was demonstrated in a purely optical realization of the learning--loop concept. The learning algorithm was able to find the needed linear polarization in order to maximize second harmonic generation in a nonlinear optical crystal. The closed--loop configuration has proven to be capable to clear up more complicated polarization distortion, which was introduced using a multiple order half--wave plate designed for use at a wavelength of 620~nm. The additional deformation of the spectral phase through dispersion in a 10~cm long SF10 glass rod has also been compensated automatically. After these optical demonstration experiments ultrafast polarization shaping was applied to control a quantum system. Polarization sensitivity was shown in pump--probe measurements of the multiphoton ionization of potassium dimer molecules K$_2$. This sensitivity was exploited in a more general way in a learning--loop experiment with polarization--shaped laser pulses. A qualitatively new level of control was demonstrated using the time--dependent polarization state of laser pulses as an active agent. This polarization control was applicable even in randomly aligned molecules, which is a significant simplification of the experimental setup. In addition to these polarization control experiments, the three dimensional dynamics of molecules were also investigated and controlled. The \textit{cis--trans} photoisomerization of NK88 was studied in the liquid phase by transient absorption spectroscopy. The isomerization reaction efficiency was enhanced as well as reduced using linearly polarized laser pulses at 400~nm shaped in spectral phase and amplitude. This experiment demonstrates the ability to control the large scale motion of complex molecular groups with shaped femtosecond laser pulses. The modification of the molecular geometry can be regarded as a first step towards control of chirality in photochemistry. Especially with the successful demonstration of polarization quantum control, which is required in the theoretical models for the selective conversion of one enantiomer into the other, the way is paved towards coherent control of chirality. Besides these fascinating applications of polarization shaping it should now also be possible to extend the wavelength range of these pulses. Apart from second harmonic generation in order to reach the ultraviolet region intra-pulse difference frequency generation could be an option to open the mid-infrared spectral range for polarization shaping. With these new wavelength regions numerous new perspectives arise for quantum control using polarization--shaped laser pulses. Referring once more to the novel of Edwin A. Abbott presented in the introduction one could say that shaped femtosecond pulses really have left Flatland. Or to put it into the words of the sphere, when it teaches the square about the perception of dimensions: \begin{quote} ``Look yonder [...] in Flatland thou hast lived; of Lineland thou hast received a vision; thou hast soared with me to the heights of Spaceland;'' \hfill Edwin A.~Abbott~\cite{abbott1884}, 1884 \end{quote} KW - Ultrakurzer Lichtimpuls KW - Femtosekundenbereich KW - Photochemische Reaktion KW - Regelung KW - Pulsformung KW - Quanten-Kontrolle KW - Femtosekunden Dynamik KW - Photoisomerisation KW - Femtochemie KW - Quantum Control KW - Pulse Shaping KW - Femtosecond Dynamics KW - Photoisomerization KW - Femtochemistry Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-10304 ER - TY - THES A1 - Marquetand, Philipp T1 - Vectorial properties and laser control of molecular dynamics T1 - Vektorielle Eigenschaften und Laser-Kontrolle molekularer Dynamik N2 - In this work, the laser control of molecules was investigated theoretically. In doing so, emphasis was layed on entering vectorial properties and in particular the orientation in the laboratory frame. Therefore, the rotational degree of freedom had to be included in the quantum mechanical description. The coupled vibrational and rotational dynamics was examined, which is usually not done in coherent control theory. Local control theory was applied, where the field is determined from the dynamics of a system, which reacts with an instantaneous response to the perturbation and, in turn, determines the field again. Thus, the field is entangled with the quantum mechanical motion and the presented examples document, that this leads to an intuitive interpretation of the fields in terms of the underlying molecular dynamics. The limiting case of a classical treatment was shown to give similar results and hence, eases to understand the complicated structure of the control fields. In a different approach, the phase- and amplitude shaping of laser fields was systematically studied in the context of controlling population transfer in molecules. N2 - Das Ziel dieser Arbeit war die theoretische Analyse der Laserkontrolle von Molekülen. Ein Schwerpunkt lag dabei auf vektoriellen Eigenschaften und im Besonderen auf der Orientierung eines Moleküls im Laboratorium. Hierfür wurde der Rotationsfreiheitsgrad in die quantenmechanische Beschreibung einbezogen. Die Kopplung zwischen Vibrations- und Rotationsdynamik wurde explizit berücksichtigt, während dieser Vorgang normalerweise bei theoretischen Untersuchungen zur kohärenten Kontrolle vernachlässigt wird. Als Kontrollschema wurde die lokale Kontrolltheorie (LCT) verwendet, in der das Feld aus der Dynamik eines Systems bestimmt wird, welche sofort auf diese äußere Störung antwortet und damit wiederum das Feld bestimmt. Somit ist das Feld mit der quantenmechanischen Bewegung verknüpft. Die vorgestellten Beispiele dokumentieren, dass dies zu einer intuitiven Interpretation der Felder bzgl. der zu Grunde liegenden molekularen Dynamik führt. In der vereinfachten, klassischen Darstellung der Probleme findet man vergleichbare Resultate. Die klassische Sichtweise ermöglicht ein anschauliches Verständnis der komplizierten Strukturen der Kontrollfelder. Zusätzlich wurde mit einem anderen Ansatz die Phasen- und Amplitudenformung von Laserfeldern systematisch untersucht, wobei der Populationstransfer in Molekülen kontrolliert werden sollte. KW - Laserchemie KW - Molekularbewegung KW - Vektor KW - Orientierung KW - Orientiertes Molekül KW - Photochemie KW - Zweiatomiges Molekül KW - Nichtstarres Molekül KW - Molekülzu KW - Kohärente Kontrolle KW - Femtochemie KW - Pulsformung KW - Laser-Kontrolle KW - Femtosekunden-Spektroskopie KW - Coherent control KW - Femto-chemistry KW - pulse shaping KW - laser control KW - femtosecond spectroscopy Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-24697 ER -