TY - THES A1 - Glawion, Sebastian T1 - Spectroscopic Investigations of Doped and Undoped Transition Metal Oxyhalides T1 - Spektroskopische Untersuchungen dotierter und undotierter Übergangsmetall-Oxyhalogenide N2 - In this thesis the electronic and magnetic structure of the transition metal oxyhalides TiOCl, TiOBr and VOCl is investigated. The main experimental methods are photoemission (PES) and x-ray absorption (XAS) spectroscopy as well as resonant inelastic x-ray scattering (RIXS). The results are compared to density-functional theory, and spectral functions from dynamical mean-field theory and different kinds of model calculations. Questions addressed here are those of the dimensionality of the magnetic and electronic interactions, the suitability of the oxyhalides as prototypical strongly correlated model systems, and the possibility to induce a filling-controlled insulator-metal transition. It turns out that TiOCl is a quasi-one-dimensional system with non-negligible two-dimensional coupling, while the one-dimensional character is already quite suppressed in TiOBr. In VOCl no signatures of such one-dimensional behavior remain, and it is two-dimensional. In all cases, frustrations induced by the crystal lattice govern the magnetic and electronic properties. As it turns out, although the applied theoretical approaches display improvements compared to previous studies, the differences to the experimental data still are at least partially of qualitative instead of quantitative nature. Notably, using RIXS, it is possible for the first time in TiOCl to unambiguously identify a two-spinon excitation, and the previously assumed energy scale of magnetic excitations can be confirmed. By intercalation of alkali metal atoms (Na, K) the oxyhalides can be doped with electrons, which can be evidenced and even quantified using x-ray PES. In these experiments, also a particular vertical arrangement of dopants is observed, which can be explained, at least within experimental accuracy, using the model of a so-called "polar catastrophe". However, no transition into a metallic phase can be observed upon doping, but this can be understood qualitatively and quantitatively within an alloy Hubbard model due to the impurity potential of the dopants. Furthermore, in a canonical way a transfer of spectral weight can be observed, which is a characteristic feature of strongly correlated electron systems. Overall, it can be stated that the transition metal oxyhalides actually can be regarded as prototypical Mott insulators, yet with a rich phase diagram which is far from being fully understood. N2 - In dieser Doktorarbeit wird die elektronische und magnetische Struktur der Übergangsmetall-Oxyhalogenide TiOCl, TiOBr und VOCl untersucht. Ein Hauptaugenmerk liegt dabei auf spektroskopischen Methoden wie der Photoemissions- (PES) und Röntgenabsorptions- (XAS) Spektroskopie, sowie auf resonanter inelastischer Röntgenstreuung (RIXS). Die Resultate werden mit Dichtefunktionaltheorie, sowie Spektralfunktionen aus dynamischer Molekularfeldtheorie und verschiedenen Modellrechnungen verglichen. Die hauptsächlich zu klärenden Fragestellungen waren die der Dimensionalität magnetischer und elektronischer Wechselwirkungen, die Eignung der Oxyhalogenide als prototypische, stark korrelierte Modellsysteme, sowie die MÄoglichkeit, einen bandfüllungsinduzierten Isolator-Metall-Übergang zu erreichen. Es zeigt sich, dass TiOCl ein quasi-eindimensionales System mit nicht zu vernachlässigender zweidimensionaler Kopplung darstellt, während der eindimensionale Charakter bei TiOBr bereits stärker unterdrückt ist. In VOCl sind schließlich keine Anzeichen eindimensionalen Verhaltens mehr erkennbar, es handelt sich also um ein zweidimensionales System. In allen Fällen spielen die durch das Gitter verursachten Frustrationen eine Rolle bei der Beschreibung der elektronischen und magnetischen Eigenschaften, und es stellt sich heraus, dass die verwendeten theoretischen Ansätze zwar eine Verbesserung im Vergleich zu früheren Studien bringen, die Unterschiede zu den experimentellen Daten aber weiterhin zumindest teilweise qualitativ und nicht nur quantitativ sind. Bemerkenswert ist, dass mithilfe von RIXS erstmals in TiOCl eine Zwei-Spinon-Anregung identifiziert, und dadurch die bisher angenommene Energieskala magnetischer Anregungen in TiOCl bestätigt werden kann. Durch Interkalation von Alkaliatomen (Na, K) können die Oxyhalogenide mit Elektronen dotiert werden, was sich anhand von Röntgen-PES zeigen und sogar quantitativ auswerten lässt. Dabei zeigt sich eine bestimmte vertikale Verteilung der Dotieratome, welche im Rahmen der experimentellen Genauigkeit durch das Modell einer sog. "Polaren Katastrophe" erklärt werden kann. Allerdings kann kein Übergang in eine metallische Phase beobachtet werden, doch dies lässt sich im Rahmen eines Legierungs-Hubbard-Modells, induziert durch das Störpotential der Dotieratome, qualitativ und quantitativ verstehen. Weiterhin zeigt sich in modellhafter Art und Weise ein Transfer von spektralem Gewicht, ein charakteristisches Merkmal stark korrelierter Elektronensysteme. Letztlich kann man den Schluss ziehen, dass die Übergangsmetall-Oxyhalogenide tatsächlich als prototypische Mott-Isolatoren aufgefasst werden können, die jedoch gleichzeitig ein reiches und bei weitem nicht vollständig verstandenes Phasendiagramm aufweisen. KW - Übergangsmetall KW - Oxidhalogenide KW - Spektroskopie KW - Mott-Isolator KW - Hubbard-Modell KW - Legierungs-Hubbard-Modell KW - Elektronenkorrelation KW - Photoemission KW - Inelastische Röntgenstreuung KW - Röntgenabsorption KW - Mott insulator KW - Hubbard model KW - alloy Hubbard model Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-53169 ER - TY - THES A1 - Paul, Markus Christian T1 - Molecular beam epitaxy and properties of magnetite thin films on semiconducting substrates T1 - Molekularstrahlepitaxie und Eigenschaften dünner Magnetitfilme auf Halbleitersubstraten N2 - The present thesis is concerned with molecular beam epitaxy of magnetite (Fe3O4) thin films on semiconducting substrates and the characterization of their structural, chemical, electronic, and magnetic properties. Magnetite films could successfully be grown on ZnO substrates with high structural quality and atomically abrupt interfaces. The films are structurally almost completely relaxed exhibiting nearly the same in-plane and out-of-plane lattice constants as in the bulk material. Films are phase-pure and show only small deviations from the ideal stoichiometry at the surface and in some cases at the interface. Growth proceeds via wetting layer plus island mode and results in a domain structure of the films. Upon coalescence of growing islands twin-boundaries (rotational twinning) and anti-phase boundaries are formed. The overall magnetization is nearly bulk-like, but shows a slower approach to saturation, which can be ascribed to the reduced magnetization at anti-phase boundaries. However, the surface magnetization which was probed by x-ray magnetic circular dichroism was significantly decreased and is ascribed to a magnetically inactive layer at the surface. Such a reduced surface magnetization was also observed for films grown on InAs and GaAs. Magnetite could also be grown with nearly ideal iron-oxygen stoichiometry on InAs substrates. However, interfacial reactions of InAs with oxygen occur and result in arsenic oxides and indium enrichment. The grown films are of polycrystalline nature. For the fabrication of Fe3O4/GaAs films, a postoxidation of epitaxial Fe films on GaAs was applied. Growth proceeds by a transformation of the topmost Fe layers into magnetite. Depending on specific growth conditions, an Fe layer of different thickness remains at the interface. The structural properties are improved in comparison with films on InAs, and the resulting films are well oriented along [001] in growth direction. The magnetic properties are influenced by the presence of the Fe interface layer as well. The saturation magnetization is increased and the approach to saturation is faster than for films on the other substrates. We argue that this is connected to a decreased density of anti-phase boundaries because of the special growth method. Interface phases, viz. arsenic and gallium oxides, are quantified and different growth conditions are compared with respect to the interface composition. N2 - Die vorliegende Arbeit beschäftigt sich mit der Molekularstrahlepitaxie von dünnen Magnetitfilmen (Fe3O4) auf Halbleitersubstraten und der Charakterisierung ihrer strukturellen, chemischen, elektronischen und magnetischen Eigenschaften. Magnetitfilme konnten auf ZnO Substraten mit hoher struktureller Qualität und scharfen Grenzflächen durch Kodeposition von Eisen und Sauerstoff gewachsen werden. Die Filme sind strukturell nahezu vollständig relaxiert und weisen innerhalb und außerhalb der Wachstumsebene annähernd die Gitterkonstante von Einkristallen auf. Weiterhin sind die hergestellten Proben phasenrein und zeigen nur an der Oberfläche und in einigen Fällen an der Grenzfläche allenfalls kleine Abweichungen von der idealen Stöchiometrie. Das Wachstum erfolgt im Stranski-Krastanov-Modus und resultiert in einer Domänenstruktur der Filme. Beim Zusammenwachsen der Inseln entstehen Antiphasengrenzen und Zwillingsgrenzen. Die Volumenmagnetisierung der Filme ist annähernd gleich der eines Einkristalls, jedoch ist das Einmündungsverhalten in die Sättigung aufgrund von reduzierter Magnetisierung an Antiphasengrenzen deutlich langsamer. Dagegen ist die Oberflächenmagnetisierung, welche mit der Methode des Röntgenzirkulardichroismus untersucht wurde, erheblich reduziert, was auf eine magnetisch inaktive Schicht an der Oberfläche schließen lässt. Diese Reduzierung der Oberflächenmagnetisierung wurde auch für Filme, die auf InAs oder GaAs deponiert wurden, beobachtet. Ebenfalls konnte Magnetit mit nahezu idealem Eisen-Sauerstoff-Verhältnis auf InAs gewachsen werden. Bei diesem Substrat treten jedoch Grenzflächenreaktionen des Indiumarsenids mit Sauerstoff auf, die eine Arsenoxidphase und eine Indiumanreicherung bewirken. Die Filme wachsen hier nur polykristallin. Für die Herstellung von Fe3O4/GaAs-Filmen wurde die Methode der Nachoxidation von epitaktischen Eisenfilmen benutzt. Das Wachstum läuft dabei durch Transformation der obersten Lagen des Eisenfilms zu Magnetit ab. Abhängig von den genauen angewandten Wachstumsbedingungen bleibt dabei eine Eisenschicht unterschiedlicher Dicke an der Grenzfläche übrig. Die strukturellen Eigenschaften sind im Vergleich zu Filmen auf InAs verbessert und die Proben sind gut entlang der [001]-Richtung orientiert. Die magnetischen Eigenschaften werden ebenfalls durch die Eisen-Grenzflächenschicht beeinflusst. Die Sättigungsmagnetisierung ist erhöht und tritt bei niedrigeren Magnetfeldern auf. Dieses Verhalten ist offenbar mit einer geringeren Dichte an Antiphasengrenzen aufgrund des andersartigen Wachstumsmechanismus verknüpft. Auftretende Grenzflächenphasen wurden quantifiziert und unterschiedliche Wachstumsbedingungen im Hinblick auf die Grenzflächenzusammensetzung verglichen. KW - Molekularstrahlepitaxie KW - Dünne Schicht KW - Magnetit KW - Physikalische Eigenschaft KW - Halbleitersubstrat KW - Photoelektronenspektroskopie KW - Röntgenabsorption KW - Röntgenbeugung KW - Elektronenbeugung KW - molecular beam epitaxy KW - photoelectron spectroscopy KW - x-ray magnetic circular dichroism KW - magnetic oxide KW - thin film Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-56044 ER -