TY - THES A1 - Kreß, Sebastian T1 - Development and proof of concept of a biological vascularized cell‐based drug delivery system T1 - Entwicklung und Proof of Concept eines biologischen, vaskularisierten, zellbasierten Drug‐Delivery‐Systems N2 - A major therapeutic challenge is the increasing incidence of chronic disorders. The persistent impairment or loss of tissue function requires constitutive on‐demand drug availability optimally achieved by a drug delivery system ideally directly connected to the blood circulation of the patient. However, despite the efforts and achievements in cell‐based therapies and the generation of complex and customized cell‐specific microenvironments, the generation of functional tissue is still unaccomplished. This study demonstrates the capability to generate a vascularized platform technology to potentially overcome the supply restraints for graft development and clinical application with immediate anastomosis to the blood circulation. The ability to decellularize segments of the rat intestine while preserving the ECM for subsequent reendothelialization was proven. The reestablishment of a functional arteriovenous perfusion circuit enabled the supply of co‐cultured cells capable to replace the function of damaged tissue or to serve as a drug delivery system. During in vitro studies, the applicability of the developed miniaturized biological vascularized scaffold (mBioVaSc‐TERM®) was demonstrated. While indicating promising results in short term in vivo studies, long term implantations revealed current limitations for the translation into clinical application. The gained insights will impact further improvements of quality and performance of this promising platform technology for future regenerative therapies. N2 - Eine kontinuierlich steigende Inzidenz chronischer Krankheiten stellt eine immer größer werdende therapeutische Herausforderung dar. Der anhaltende Funktionsverlust von Geweben erfordert die bedarfsgerechte Verfügbarkeit von Wirkstoffen, deren kontinuierliche Bereitstellung und Verteilung über die Blutzirkulation von implantierbaren Pharmakotherapie‐Produkten gelöst werden kann. Trotz der Fortschritte und Erfolge mit Zelltherapien sowie der Nachbildung der Zell‐eigenen Nischen konnten bisher noch keine funktionellen Gewebe für die medizinische Anwendbarkeit hergestellt werden. Diese Studie zeigt die Möglichkeit zur Herstellung einer vaskularisierten Plattform‐ Technologie um die Beschränkung der Nährstoff‐Versorgung zu überwinden für die Entwicklung von Transplantaten für die klinische Anwendung und deren sofortige Anastomose an die Blutzirkulation. Die Möglichkeit Rattendarmsegmente zu dezellularisieren, die Extrazellulärmatrix und das interne Gefäßsystem dabei jedoch zu erhalten um diese Strukturen wiederzubesiedeln wurde bewiesen. Das Wiederherstellen des funktionellen arteriovenösen Perfusionskreislaufs ermöglichte die Versorgung von Ko‐kultivierten Zellen um damit funktionalen Gewebeersatz bzw. ‐modelle aufzubauen oder als Medizin‐ Produkt Einsatz zu finden. In vitro‐Studien zeigten eindrucksvoll Reife und Anwendbarkeit des hier entwickelten miniaturisierten, biologischen, vaskularisierten Scaffold (mBioVaSc‐TERM®). Während in in vivo‐Studien zunächst vielversprechende Ergebnisse erzielt wurden, zeigten Langzeit Implantationen die aktuellen Grenzen zur Translation in die klinische Anwendung. Die gewonnenen Erkenntnisse werden dazu dienen Qualität und Funktionalität dieser vielversprechenden Plattform‐Technologie zu verbessern um zukünftige regenerative Therapien zu ermöglichen. KW - Vaskularisation KW - Dezellularisierung KW - Tissue Engineering KW - Therapeutisches System KW - Implantat KW - Vascularized KW - drug delivery Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-178650 ER - TY - THES A1 - Ryma, Matthias T1 - Exploiting the Thermoresponsive Properties of Poly(2-oxazoline)s for Biofabrication T1 - Anwendung der Thermoresponsivität von Poly(2-oxazolin) für die Biofabrikation N2 - In this thesis, non-modified POx, namely PnPrOx and PcycloPrOx, with an LCST in the physiological range between 20 and 37°C have been utilized as materials for three different biofabrication approaches. Their thermoresponsive behavior and processability were exploited to establish an easy-to-apply coating for cell sheet engineering, a novel method to create biomimetic scaffolds based on aligned fibrils via Melt Electrowriting (MEW) and the application of melt electrowritten sacrificial scaffolds for microchannel creation for hydrogels. Chapter 3 describes the establishment of a thermoresponsive coating for tissue culture plates. Here, PnPrOx was simply dissolved in water and dried in well plates and petri dishes in an oven. PnPrOx adsorbed to the surface, and the addition of warm media generated a cell culture compatible coating. It was shown that different cell types were able to attach and proliferate. After confluency, temperature reduction led to the detachment of cell sheets. Compared to standard procedures for surface coating, the thermoresponsive polymer is not bound covalently to the surface and therefore does not require specialized equipment and chemical knowledge. However, it should be noted that the detachment of the cell layer requires the dissolution of the PnPrOx-coating, leading to possible polymer contamination. Although it is only a small amount of polymer dissolved in the media, the detached cell sheets need to be washed by media exchange for further processing if required. ... N2 - In dieser Dissertation wurden die unmodifizierten Poly(2-oxazoline) PnPrOx und PcycloProx, welche eine LCST im physiologischen Bereich zwischen 20 und 37°C aufweisen, für drei verschiedene Biofabrikationsansätze verwendet. Deren Thermoresponsivität und Prozessierbarkeit wurde genutzt, um ein simples Beschichten von Oberflächen für Cell Sheet Engineering, eine neue Methode zur Herstellung biomimetischer Gerüststrukturen basierend auf der Generierung von Fibrillenbündeln via Melt Electrowriting und die Anwendung als Opferstrukturen zur Generierung von Mikrokanälen in Hydrogelen zu etablieren. KW - Thermoresponsive Polymere KW - Dihydrooxazole KW - 3D-Druck KW - Melt Electrowriting KW - Biofabrikation KW - Poly(2-oxazoline) KW - Cell Sheet Engineering KW - Vaskularisation Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-247462 ER -