TY - JOUR A1 - Bahník, Štěpán A1 - Stuchlík, Aleš T1 - Temporal and spatial strategies in an active place avoidance task on Carousel: a study of effects of stability of arena rotation speed in rats JF - PeerJ N2 - The active place avoidance task is a dry-arena task used to assess spatial navigation and memory in rodents. In this task, a subject is put on a rotating circular arena and avoids an invisible sector that is stable in relation to the room. Rotation of the arena means that the subject's avoidancemust be active, otherwise the subject will be moved in the to-be-avoided sector by the rotation of the arena and a slight electric shock will be administered. The present experiment explored the effect of variable arena rotation speed on the ability to avoid the to-be-avoided sector. Subjects in a group with variable arena rotation speed learned to avoid the sector with the same speed and attained the same avoidance ability as rats in a group with a stable arena rotation speed. Only a slight difference in preferred position within the room was found between the two groups. No difference was found between the two groups in the dark phase, where subjects could not use orientation cues in the room. Only one rat was able to learn the avoidance of the to-be-avoided sector in this phase. The results of the experiment suggest that idiothetic orientation and interval timing are not crucial for learning avoidance of the to-be-avoided sector. However, idiothetic orientation might be sufficient for avoiding the sector in the dark. KW - navigation KW - interval timing KW - rats KW - morris water maze KW - hippocampal-neurons KW - D2 receptors KW - animal model KW - acute MK-801 KW - memory KW - behavior KW - dissociation KW - flexibility KW - spatial navigation KW - substratal idiothetic navigation KW - inertial idiothetic navigation Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-141931 VL - 3 IS - e1257 ER - TY - JOUR A1 - Gulberti, A. A1 - Moll, C.K.E. A1 - Hamel, W. A1 - Buhmann, C. A1 - Koeppen, J.A. A1 - Boelmans, K. A1 - Zittel, S. A1 - Gerloff, C. A1 - Westphal, M. A1 - Schneider, T.R. A1 - Engel, A.K. T1 - Predictive timing functions of cortical beta oscillations are impaired in Parkinson's disease and influenced by L-DOPA and deep brain stimulation of the subthalamic nucleus Impaired beta-band timing functions in PD JF - NeuroImage: Clinical N2 - Cortex-basal ganglia circuits participate in motor timing and temporal perception, and are important for the dynamic configuration of sensorimotor networks in response to exogenous demands. In Parkinson's disease (PD) patients, rhythmic auditory stimulation (RAS) induces motor performance benefits. Hitherto, little is known concerning contributions of the basal ganglia to sensory facilitation and cortical responses to RAS in PD. Therefore, we conducted an EEG study in 12 PD patients before and after surgery for subthalamic nucleus deep brain stimulation (STN-DBS) and in 12 age-matched controls. Here we investigated the effects of levodopa and STN-DBS on resting-state EEG and on the cortical-response profile to slow and fast RAS in a passive-listening paradigm focusing on beta-band oscillations, which are important for auditory–motor coupling. The beta-modulation profile to RAS in healthy participants was characterized by local peaks preceding and following auditory stimuli. In PD patients RAS failed to induce pre-stimulus beta increases. The absence of pre-stimulus beta-band modulation may contribute to impaired rhythm perception in PD. Moreover, post-stimulus beta-band responses were highly abnormal during fast RAS in PD patients. Treatment with levodopa and STN-DBS reinstated a post-stimulus beta-modulation profile similar to controls, while STN-DBS reduced beta-band power in the resting-state. The treatment-sensitivity of beta oscillations suggests that STN-DBS may specifically improve timekeeping functions of cortical beta oscillations during fast auditory pacing. KW - Parkinson's disease KW - interval timing KW - beta oscillations KW - subthalamic nucleus KW - deep brain stimulation Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-150049 VL - 9 ER -