TY - JOUR A1 - Aboagye, B. A1 - Weber, T. A1 - Merdian, H. L. A1 - Bartsch, D. A1 - Lesch, K. P. A1 - Waider, J. T1 - Serotonin deficiency induced after brain maturation rescues consequences of early life adversity JF - Scientific Reports N2 - Brain serotonin (5-HT) system dysfunction is implicated in depressive disorders and acute depletion of 5-HT precursor tryptophan has frequently been used to model the influence of 5-HT deficiency on emotion regulation. Tamoxifen (TAM)-induced Cre/loxP-mediated inactivation of the tryptophan hydroxylase-2 gene (Tph2) was used to investigate the effects of provoked 5-HT deficiency in adult mice (Tph2 icKO) previously subjected to maternal separation (MS). The efficiency of Tph2 inactivation was validated by immunohistochemistry and HPLC. The impact of Tph2 icKO in interaction with MS stress (Tph2 icKOxMS) on physiological parameters, emotional behavior and expression of 5-HT system-related marker genes were assessed. Tph2 icKO mice displayed a significant reduction in 5-HT immunoreactive cells and 5-HT concentrations in the rostral raphe region within four weeks following TAM treatment. Tph2 icKO and MS differentially affected food and water intake, locomotor activity as well as panic-like escape behavior. Tph2 icKO prevented the adverse effects of MS stress and altered the expression of the genes previously linked to stress and emotionality. In conclusion, an experimental model was established to study the behavioral and neurobiological consequences of 5-HT deficiency in adulthood in interaction with early-life adversity potentially affecting brain development and the pathogenesis of depressive disorders. KW - emotion KW - molecular medicine KW - neuroscience Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-258626 SN - 2045-2322 VL - 11 IS - 1 ER - TY - JOUR A1 - Beetz, M. Jerome A1 - Kraus, Christian A1 - el Jundi, Basil T1 - Neural representation of goal direction in the monarch butterfly brain JF - Nature Communications N2 - Neural processing of a desired moving direction requires the continuous comparison between the current heading and the goal direction. While the neural basis underlying the current heading is well-studied, the coding of the goal direction remains unclear in insects. Here, we used tetrode recordings in tethered flying monarch butterflies to unravel how a goal direction is represented in the insect brain. While recording, the butterflies maintained robust goal directions relative to a virtual sun. By resetting their goal directions, we found neurons whose spatial tuning was tightly linked to the goal directions. Importantly, their tuning was unaffected when the butterflies changed their heading after compass perturbations, showing that these neurons specifically encode the goal direction. Overall, we here discovered invertebrate goal-direction neurons that share functional similarities to goal-direction cells reported in mammals. Our results give insights into the evolutionarily conserved principles of goal-directed spatial orientation in animals. KW - animal behaviour KW - navigation KW - neuroscience Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-358073 VL - 14 ER - TY - THES A1 - Blanco Redondo, Beatriz T1 - Studies of synapsin phosphorylation and characterization of monoclonal antibodies from the Würzburg Hybridoma Library in Drosophila melanogaster T1 - Untersuchungen der Phosphorylierung von Synapsin und Charakterisierung monoklonaler Antikörper der Würzburg Hybridoma Library in Drosophila melanogaster N2 - Synapsins are conserved synapse-associated hosphoproteins involved in the fine regulation of neurotransmitter release. The aim of the present project is to study the phosphorylation of synapsins and the distribution of phospho-synapsin in the brain of Drosophila melanogaster. Three antibodies served as important tools in this work, a monoclonal antibody (3C11/α-Syn) that recognizes all known synapsin isoforms and two antisera against phosphorylated synapsin peptides (antiserum PSyn(S6) against phospho-serine 6 and antiserum PSyn(S464) against phospho-serine 464). These antisera were recently generated in collaboration with Bertram Gerber and Eurogentec. ... N2 - Synapsine sind konservierte, Synapsen-assoziierte Phosphoproteine, die an der Feinregulation der Neurotransmitterfreisetzung beteiligt sind. Das Ziel des Projektes ist, die Phosphorylierung der Synapsine und die Verteilung des Phospho-Synapsins im Gehirn von Drosophila melanogaster zu untersuchen. Aus diesem Grunde wurden drei bestimmte Antikörper in dieser Arbeit verwendet: Ein monoklonaler Antikörper (3C11/α-Syn), der alle bekannten Isoformen von Synapsin erkennt, und zwei Antiseren gegen phosphorylierte Synapsinpeptide (das Antiserum PSyn(S6) gegen Phosphoserin 6 und das Antiserum PSyn(S464) gegen Phosphoserin 464). Diese Antiseren wurden unlängst in Zusammenarbeit mit Bertram Gerber und Eurogentec hergestellt. KW - Synapsine KW - neuroscience KW - Taufliege KW - Monoklonaler Antikörper KW - Neurowissenschaften Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-93766 ER - TY - JOUR A1 - Burek, Malgorzata A1 - Salvador, Ellaine A1 - Förster, Carola Y. T1 - Generation of an Immortalized Murine Brain Microvascular Endothelial Cell Line as an In Vitro Blood Brain Barrier Model JF - Journal of Visualized Experiments N2 - Epithelial and endothelial cells (EC) are building paracellular barriers which protect the tissue from the external and internal environment. The blood-brain barrier (BBB) consisting of EC, astrocyte end-feet, pericytes and the basal membrane is responsible for the protection and homeostasis of the brain parenchyma. In vitro BBB models are common tools to study the structure and function of the BBB at the cellular level. A considerable number of different in vitro BBB models have been established for research in different laboratories to date. Usually, the cells are obtained from bovine, porcine, rat or mouse brain tissue (discussed in detail in the review by Wilhelm et al. 1). Human tissue samples are available only in a restricted number of laboratories or companies 2,3. While primary cell preparations are time consuming and the EC cultures can differ from batch to batch, the establishment of immortalized EC lines is the focus of scientific interest. Here, we present a method for establishing an immortalized brain microvascular EC line from neonatal mouse brain. We describe the procedure step-by-step listing the reagents and solutions used. The method established by our lab allows the isolation of a homogenous immortalized endothelial cell line within four to five weeks. The brain microvascular endothelial cell lines termed cEND 4 (from cerebral cortex) and cerebEND 5 (from cerebellar cortex), were isolated according to this procedure in the Förster laboratory and have been effectively used for explanation of different physiological and pathological processes at the BBB. Using cEND and cerebEND we have demonstrated that these cells respond to glucocorticoid- 4,6-9 and estrogen-treatment 10 as well as to pro-infammatory mediators, such as TNFalpha 5,8. Moreover, we have studied the pathology of multiple sclerosis 11 and hypoxia 12,13 on the EC-level. The cEND and cerebEND lines can be considered as a good tool for studying the structure and function of the BBB, cellular responses of ECs to different stimuli or interaction of the EC with lymphocytes or cancer cells. KW - in vitro cell culture models KW - blood-brain barrier KW - neuroscience KW - immunology KW - brain KW - microvascular endothelial cells KW - immortalization KW - cEND Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-126702 VL - 66 IS - e4022 ER - TY - JOUR A1 - Hurd, Paul J. A1 - Grübel, Kornelia A1 - Wojciechowski, Marek A1 - Maleszka, Ryszard A1 - Rössler, Wolfgang T1 - Novel structure in the nuclei of honey bee brain neurons revealed by immunostaining JF - Scientific Reports N2 - In the course of a screen designed to produce antibodies (ABs) with affinity to proteins in the honey bee brain we found an interesting AB that detects a highly specific epitope predominantly in the nuclei of Kenyon cells (KCs). The observed staining pattern is unique, and its unfamiliarity indicates a novel previously unseen nuclear structure that does not colocalize with the cytoskeletal protein f-actin. A single rod-like assembly, 3.7-4.1 mu m long, is present in each nucleus of KCs in adult brains of worker bees and drones with the strongest immuno-labelling found in foraging bees. In brains of young queens, the labelling is more sporadic, and the rod-like structure appears to be shorter (similar to 2.1 mu m). No immunostaining is detectable in worker larvae. In pupal stage 5 during a peak of brain development only some occasional staining was identified. Although the cellular function of this unexpected structure has not been determined, the unusual distinctiveness of the revealed pattern suggests an unknown and potentially important protein assembly. One possibility is that this nuclear assembly is part of the KCs plasticity underlying the brain maturation in adult honey bees. Because no labelling with this AB is detectable in brains of the fly Drosophila melanogaster and the ant Camponotus floridanus, we tentatively named this antibody AmBNSab (Apis mellifera Brain Neurons Specific antibody). Here we report our results to make them accessible to a broader community and invite further research to unravel the biological role of this curious nuclear structure in the honey bee central brain. KW - mushroom body calyx KW - synaptic complexes KW - bodies KW - insect KW - plasticity KW - insights KW - genome KW - model KW - proteins KW - methylation KW - biological techniques KW - cell biology KW - developmental biology KW - molecular biology KW - neuroscience Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-260059 VL - 11 ER - TY - JOUR A1 - Kirsch, Wladimir A1 - Kunde, Wilfried T1 - Human perception of spatial frequency varies with stimulus orientation and location in the visual field JF - Scientific Reports N2 - Neuroanatomical variations across the visual field of human observers go along with corresponding variations of the perceived coarseness of visual stimuli. Here we show that horizontal gratings are perceived as having lower spatial frequency than vertical gratings when occurring along the horizontal meridian of the visual field, whereas gratings occurring along the vertical meridian show the exact opposite effect. This finding indicates a new peculiarity of processes operating along the cardinal axes of the visual field. KW - neuroscience KW - psychology Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-357888 VL - 13 ER - TY - JOUR A1 - Lozovaya, N. A1 - Gataullina, S. A1 - Tsintsadze, T. A1 - Tsintsadze, V. A1 - Pallesi-Pocachard, E. A1 - Minlebaev, M. A1 - Goriounova, N. A. A1 - Buhler, E. A1 - Watrin, F. A1 - Shityakov, S. A1 - Becker, A. J. A1 - Bordey, A. A1 - Milh, M. A1 - Scavarda, D. A1 - Bulteau, C. A1 - Dorfmuller, G. A1 - Delalande, O. A1 - Represa, A. A1 - Cardoso, C. A1 - Dulac, O. A1 - Ben-Ari, Y. A1 - Burnashev, N. T1 - Selective suppression of excessive GluN2C expression rescues early epilepsy in a tuberous sclerosis murine model JF - Nature Communications N2 - Tuberous sclerosis complex (TSC), caused by dominant mutations in either TSC1 or TSC2 tumour suppressor genes is characterized by the presence of brain malformations, the cortical tubers that are thought to contribute to the generation of pharmacoresistant epilepsy. Here we report that tuberless heterozygote \(Tsc1^{+/-}\) mice show functional upregulation of cortical GluN2C-containing N-methyl-D-aspartate receptors (NMDARs) in an mTOR-dependent manner and exhibit recurrent, unprovoked seizures during early postnatal life (