TY - THES A1 - Bathon, Thomas T1 - Gezielte Manipulation Topologischer Isolatoren T1 - Deliberate manipulation of topological insulators N2 - Neue physikalische Erkenntnisse vervollständigen die Sicht auf die Welt und erschließen gleichzeitig Wege für Folgeexperimente und technische Anwendungen. Das letzte Jahrzehnt der Festkörperforschung war vom zunehmenden Fokus der theoretischen und experimentellen Erkundung topologischer Materialien geprägt. Eine fundamentale Eigenschaft ist ihre Resistenz gegenüber solchen Störungen, welche spezielle physikalische Symmetrien nicht verletzen. Insbesondere die Topologischen Isolatoren - Halbleiter mit isolierenden Volumen- sowie gleichzeitig leitenden und spinpolarisierten Oberflächenzuständen - sind vielversprechende Kandidaten zur Realisierung breitgefächerter spintronischer Einsatzgebiete. Bis zur Verwirklichung von Quantencomputern und anderer, heute noch exotisch anmutender Konzepte bedarf es allerdings ein umfassenderes Verständnis der grundlegenden, physikalischen Zusammenhänge. Diese kommen vor allem an Grenzflächen zum Tragen, weshalb oberflächensensitive Methoden bei der Entdeckung der Topologischen Isolatoren eine wichtige Rolle spielten. Im Rahmen dieser Arbeit werden daher strukturelle, elektronische und magnetische Eigenschaften Topologischer Isolatoren mittels Tieftemperatur-Rastertunnelmikroskopie und -spektroskopie sowie begleitenden Methoden untersucht. Die Veränderung der Element-Ausgangskonzentration während dem Wachstum des prototypischen Topologischen Isolators Bi2Te3 führt zur Realisierung eines topologischen p-n Übergangs innerhalb des Kristalls. Bei einem spezifischen Verhältnis von Bi zu Te in der Schmelze kommt es aufgrund unterschiedlicher Erstarrungstemperaturen der Komponenten zu einer Ansammlung von Bi- und Te-reichen Gegenden an den gegenüberliegenden Enden des Kristalls. In diesen bildet sich infolge des jeweiligen Elementüberschusses durch Kristallersetzungen und -fehlstellen eine Dotierung des Materials aus. Daraus resultiert die Existenz eines Übergangsbereiches, welcher durch Transportmessungen verifiziert werden kann. Mit der räumlich auflösenden Rastertunnelmikroskopie wird diese Gegend lokalisiert und strukturell sowie elektronisch untersucht. Innerhalb des Übergangsbereiches treten charakteristische Kristalldefekte beider Arten auf - eine Defektunterdrückung bleibt folglich aus. Dennoch ist dort der Beitrag der Defekte zum Stromtransport aufgrund ihres gegensätzlichen Dotiercharakters vernachlässigbar, sodass der topologische Oberflächenzustand die maßgeblichen physikalischen Eigenschaften bestimmt. Darüber hinaus tritt der Übergangsbereich in energetischen und räumlichen Größenordnungen auf, die Anwendungen bei Raumtemperatur denkbar machen. Neben der Veränderung Topologischer Isolatoren durch den gezielten Einsatz intrinsischer Kristalldefekte bieten magnetische Störungen die Möglichkeit zur Prüfung des topologischen Oberflächenzustandes auf dessen Widerstandsfähigkeit sowie der gegenseitigen Wechselwirkungen. Die Zeitumkehrinvarianz ist ursächlich für den topologischen Schutz des Oberflächenzustandes, weshalb magnetische Oberflächen- und Volumendotierung diese Symmetrie brechen und zu neuartigem Verhalten führen kann. Die Oberflächendotierung Topologischer Isolatoren kann zu einer starken Bandverbiegung und einer energetischen Verschiebung des Fermi-Niveaus führen. Bei einer wohldosierten Menge der Adatome auf p-dotiertem Bi2Te3 kommt die Fermi-Energie innerhalb der Volumenzustands-Bandlücke zum Liegen. Folglich wird bei Energien rund um das Fermi-Niveau lediglich der topologische Oberflächenzustand bevölkert, welcher eine Wechselwirkung zwischen den Adatomen vermitteln kann. Für Mn-Adatome kann Rückstreuung beobachtet werden, die aufgrund der Zeitumkehrinvarianz in undotierten Topologischen Isolatoren verboten ist. Die überraschenderweise starken und fokussierten Streuintensitäten über mesoskopische Distanzen hinweg resultieren aus der ferromagnetischen Kopplung nahegelegener Adsorbate, was durch theoretische Berechnungen und Röntgendichroismus-Untersuchungen bestätigt wird. Gleichwohl wird für die Proben ein superparamagnetisches Verhalten beobachtet. Im Gegensatz dazu führt die ausreichende Volumendotierung von Sb2Te3 mit V-Atomen zu einem weitreichend ferromagnetischen Verhalten. Erstaunlicherweise kann trotz der weitläufig verbreiteten Theorie Zeitumkehrinvarianz-gebrochener Dirac-Zustände und der experimentellen Entdeckung des Anormalen Quanten-Hall-Effektes in ähnlichen Probensystemen keinerlei Anzeichen einer spektroskopischen Bandlücke beobachtet werden. Dies ist eine direkte Auswirkung der dualen Natur der magnetischen Adatome: Während sie einerseits eine magnetisch induzierte Bandlücke öffnen, besetzen sie diese durch Störstellenresonanzen wieder. Ihr stark lokaler Charakter kann durch die Aufnahme ihrer räumlichen Verteilung aufgezeichnet werden und führt zu einer Mobilitäts-Bandlücke, deren Indizien durch vergleichende Untersuchungen an undotiertem und dotiertem Sb2Te3 bestätigt werden. N2 - New physical insights make up for a more complete vision onto the world and allow for subsequent experiments and technical implementations. The last decade in solid state physics was increasingly focusing on the theoretical and experimental discovery and investigation of topological materials. A very basic property is their robustness against perturbations not violating certain physical symmetries. Especially Topological Insulators - semiconductors with insulating bulk but conducting and spin-polarized surface states - are promising candidates for the attainment of a wide spectrum of spintronics applications. Till realization of quantum computing and up to now futuristically sounding concepts a deeper understanding of the fundamental physics is required. Since topological properties usually manifest at boundaries, surface sensitive techniques played a substantial role in the exploration of Topological Insulators. Within this thesis structural, electronic and magnetic properties of Topological Insulators are investigated by means of scanning tunneling microscopy and spectrocopy and supporting methods. Variation of the initial elemental concentration in the crystal growth process of the prototypical Topological Insulator Bi2Te3 leads to the realization of a topological p-n junction within the crystal. At a certain elemental ratio in the melt excess of Bi and Te will be obtained at the opposing ends of the crystal due to the different solidification temperatures. In these areas vacancies and substitutions give rise to p- and n-type doping, respectively. This implies the very existence of an intrinsic transition area, which can by verified by transport experiments. The junction area can be localized and structurally as well as spectroscopically examined by means of scanning tunneling microscopy. It can be shown that in the vicinity of this transition region both types of characteristic defects are present. This indicates that defects are not suppressed but compensated in this region. Nevertheless their contribution to bulk transport is minimal because of their opposite doping character, letting the topological surface state dominate the relevant physical properties. Furthermore the transition region meets the energetic and spatial dimensions that are promising for applications at room temperature. Besides the manipulation of Topological Insulators by using intrinsic crystallographic defects, magnetic perturbations are a powerful method to test the robustness of and the interaction with the topological surface state. Since Topological Insulators are initially protected by the time-reversal symmetry, magnetic surface and bulk doping can lift this protection and give rise to novel phenomena. Surface magnetic doping of Topological Insulators with Co- and Mn-adatoms can yield for a rigid band bending and a shift of the Fermi level. At a well defined amount of dopants in the p-type Bi2Te3 the Fermi energy lies in the bulk bandgap. Therefore, at energies close to the Fermi level only the topological surface state is occupied and can mediate inter-adsorbate interactions. In the case of Mn-doping backscattering is observed that is forbidden on undoped Topological Insulators due to the time-reversal symmetry. As evidenced by theory and x-ray magnetic circular dichroism ferromagnetic coupling between adsorbates gives rise to surprisingly strong and focused scattering intensities. However, long-ranging ferromagnetic order is absent but superparamagnetic characteristics can be detected. In contrast to surface doping sufficient bulk doping of Sb2Te3 with V-atoms can give rise to long-range ferromagnetic order. Surprisingly, a spectral bandgap is absent despite the general assumed theoretical framework of time-reversal symmetry gapped Dirac states and the discovery of the quantum anomalous hall effect in similar sample systems. This is figured out to be a direct consequence of the dual nature of the magnetic dopants: while on the one hand opening up a magnetization induced gap, they fill it by creating intragap states. Their local character, visualized by mapping of their spatial distribution, leads to a mobility gap that is confirmed by direct comparison of the undoped and V-doped Topological Insulator by means of Landau level spectroscopy. KW - Rastertunnelmikroskopie KW - Topologischer Isolator KW - Dotierung KW - Magnetismus KW - Röntgendichroismus Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-239204 ER - TY - THES A1 - Brehm, Sascha T1 - Two-Particle Excitations in the Hubbard Model for High-Temperature Superconductors: A Quantum Cluster Study T1 - Zwei-Teilchen Anregungen im Hubbard Modell für Hochtemperatur-Supraleiter: Eine Quanten-Cluster Untersuchung N2 - Two-particle excitations, such as spin and charge excitations, play a key role in high-Tc cuprate superconductors (HTSC). Due to the antiferromagnetism of the parent compound the magnetic excitations are supposed to be directly related to the mechanism of superconductivity. In particular, the so-called resonance mode is a promising candidate for the pairing glue, a bosonic excitation mediating the electronic pairing. In addition, its interactions with itinerant electrons may be responsible for some of the observed properties of HTSC. Hence, getting to the bottom of the resonance mode is crucial for a deeper understanding of the cuprate materials . To analyze the corresponding two-particle correlation functions we develop in the present thesis a new, non-perturbative and parameter-free technique for T=0 which is based on the Variational Cluster Approach (VCA, an embedded cluster method for one-particle Green's functions). Guided by the spirit of the VCA we extract an effective electron-hole vertex from an isolated cluster and use a fully renormalized bubble susceptibility chi0 including the VCA one-particle propagators.Within our new approach, the magnetic excitations of HTSC are shown to be reproduced for the Hubbard model within the relevant strong-coupling regime. Exceptionally, the famous resonance mode occurring in the underdoped regime within the superconductivity-induced gap of spin-flip electron-hole excitations is obtained. Its intensity and hourglass dispersion are in good overall agreement with experiments. Furthermore, characteristic features such as the position in energy of the resonance mode and the difference of the imaginary part of the susceptibility in the superconducting and the normal states are in accord with Inelastic Neutron Scattering (INS) experiments. For the first time, a strongly-correlated parameter-free calculation revealed these salient magnetic properties supporting the S=1 magnetic exciton scenario for the resonance mode. Besides the INS data on magnetic properties further important new insights were gained recently via ARPES (Angle-Resolved Photoemission-Spectroscopy) and Raman experiments which disclosed a quite different doping dependence of the antinodal compared to the near-nodal gap. This thesis provides an approach to the Raman response similar to the magnetic case for inspecting this gap dichotomy. In agreement with experiments and one-particle data obtained in the VCA, we recover the antinodal gap decreasing and the near-nodal gap increasing as a function of doping. Hence, our results prove the Hubbard model to account for these salient gap features. In summary, we develop a two-particle cluster approach which is appropriate for the strongly-correlated regime and contains no free parameter. Our results obtained with this new approach combined with the phase diagram and the one-particle excitations obtained in the VCA strongly constitute a Hubbard model description of HTSC cuprate materials. N2 - Zwei-Teilchen Anregungen, darunter Spin und Ladungs Anregungen, sind von besonderer Bedeutung in Hoch-Tc Kuprat Supraleitern (HTSL). Aufgrund der antiferromagnetischen Phase bei niedrigen Dotierungen werden magnetische Anregungen direkt mit dem Mechanismus der Supraleitung in Verbindung gebracht. Gerade die sogenannte Resonanzmode ist ein vielversprechender Kandidat für den pairing glue, eine bosonische Anregung, welche die Paarung von Elektronen induziert. Weiterhin wird deren Wechselwirkung mit itineranten Elektronen verantwortlich gemacht für einige der beobachteten Eigenschaften der HTSL. Für ein tieferes Verständnis der Kuprate ist es daher unerlässlich, der Resonanzmode auf den Grund zu gehen. Um die entsprechenden Zwei-Teilchen Korrelationsfunktionen zu analysieren, entwickeln wir auf Basis des Variational Cluster Approach (VCA, eine Cluster Methode, um Ein-Teilchen Green Funktionen zu berechnen) in der vorliegenden Dissertation eine neue, nicht-perturbative und parameterfreie Technik für T=0. Im Sinne der VCA berechnen wir einen effektiven Elektron-Loch Vertex auf einem einzelnen Cluster und verwenden eine vollkommen renormierte Bubble Suszeptibilität chi0, welche die VCA Ein-Teilchen-Propagatoren beinhaltet. Mit Hilfe unserer neuen Technik können wir die magnetischen Anregungen der HTSL im Rahmen des Hubbard Modells in der stark korrellierten Phase reproduzieren. Als herausragendes Ergebnis erhalten wir die berühmte Resonanzmode im underdotierten Bereich innerhalb des von der Supraleitung induzierten Gaps der Spin-Flip Elektron-Loch Anregungen. Deren Intensität und Sanduhren-förmige Dispersion zeigen eine sehr gute Übereinstimmung mit den Experimenten. Weiterhin sind charakteristische Eigenschaften, wie die Energie der Resonanzmode oder die Differenz des Imaginärteils der Suszeptibilität in der supraleitenden und normalen Phase im Einklang mit Inelastischen Neutronenstreu (INS) Experimenten. Zum ersten Mal bringt eine stark-korrellierte und parameterfreie theoretische Rechnung diese besonderen magnetischen Eigenschaften hervor und bekräftigt damit die Erklärung der Resonanzmode als S=1 magnetisches Exziton. Neben den INS Resultaten zu magnetischen Eigenschaften wurden kürzlich weitere wichtige neue Erkenntnisse mittels ARPES (Winkelaufgelöste Photoemissionen Spektroskopie) und Raman Experimenten erhalten. Beide legten eine deutlich unterschiedliche Dotierungsabhängigkeit des anti-nodalen Gaps verglichen mit dem Gap nahe des nodalen Punktes offen. Im Rahmen dieser Dissertation wird eine der magnetischen Berechnung ähnliche Technik für den Raman Response benutzt, um dieses unterschiedliche Verhalten des Gaps zu untersuchen. Übereinstimmend mit den Experimenten und Ein-Teilchen Ergebnissen aus VCA Rechnungen bekommen wir ein Abfallen des anti-nodalen Gaps und Ansteigen des Gaps nahe dem nodalen Punkt als Funktion der Dotierung. Folglich zeigen unsere Ergebnisse, dass das Hubbard Modell diese besonderen Eigenschaften des Gaps beinhaltet. Zusammenfassend entwickeln wir eine Zwei-Teilchen Cluster Technik, welche für stark korrellierte Systeme geeignet ist und keine freien Parameter enthält. Unsere Ergebnisse mit dieser neuen Technik in Verbindung mit dem Phasendiagramm und Ein-Teilchen Anregungen der VCA Rechnungen bekräftigen mit Nachdruck eine Beschreibung der HTSL Kuprate auf Basis des Hubbard Modells. KW - Hochtemperatursupraleiter KW - Hubbard-Modell KW - Magnetismus KW - Starke Kopplung KW - High-temperature superconductivity KW - Hubbard model KW - magnetism KW - strong correlated electrons Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-38719 ER - TY - THES A1 - Geißler, Jochen T1 - Magnetische Streuung an Grenz- und Viellagenschichten T1 - Magnetic scattering at interfaces and multilayer N2 - Im Rahmen dieser Arbeit wurde eine neuartige Methode entwickelt, mit der es möglich ist, Magnetisierungsverläufe ausgewählter Schichten und Grenzflächen in dünnen Schichtsystemen zu bestimmen. Diese Resonante Magnetische Röntgenreflektometrie (XRMR: X-ray Resonant Magnetic Reflectometry) kombiniert die Methode der konventionellen Röntgenreflektometrie mit resonanten magnetischen Effekten, die an Absorptionskanten magnetischer Atome auftreten. Analog zur herkömmlichen Reflektometrie, die Aussagen über Schichtdicken und vertikale Grenzflächenrauhigkeiten zulässt, liefert die XRMR das tiefenabhängige magneto-optische Profil der untersuchten magnetischen Schicht. Durch die Aufnahme zweier Reflexionsspektren bei invertierter Helizität des einfallenden Röntgenstrahls oder Umkehr der Magnetisierungsrichtung der Probe in der Nähe der Absorptionskante eines magnetischen Elements erhält man als Messsignal das Asymmetrieverhältnis, das die Information über das tiefenabhängige Magnetisierungsprofil der untersuchten Schicht enthält. Zur Anpassung an die gemessene Asymmetrie über ein optisches Näherungsverfahren ist die Modellierung der optischen Konstanten der magnetischen Schicht oder Grenzfläche notwendig, die hierzu in viele dünne Einzelschichten künstlich aufgeteilt wird. Wichtig hierbei ist die korrekte Bestimmung der dispersiven und absorptiven Ladungsanteilen des komplexen Brechungsindex durch vorherige Messung des Absorptionskoeffizienten und der Berechnung der Dispersion über die Kramers-Kronig-Relation. XRMR-Experimente wurden an Pt/Co-Schichtsystemen an den Synchrotronstrahlungsquellen HASYLAB/Hamburg und BESSYII/Berlin durchgeführt, um die Anwendbarkeit der Messmethodik im harten und weichen Röntgenbereich zu demonstrieren. Durch die intrinsische Elementselektivität resonanter Streuung und die Verstärkung magnetischer Effekte durch Interferenzerscheinungen ist es möglich, Informationen über sehr kleine induzierte magnetische Momente an der Grenzfläche zu einer ferromagnetischen Schicht zu erhalten. Dies konnte bei der Untersuchung einer einzelnen Pt/Co-Bilage gezeigt werden, bei der das Magnetisierungsprofil der Pt-Schicht an der Pt/Co-Grenzfläche bestimmt wurde. Im Weiteren konnte durch XRMR-Messungen an einer Serie von einzelnen Pt/Co-Grenzübergängen das Zusammenspiel von chemischer Grenzflächenrauhigkeit und induziertem Pt-Magnetisierungsprofil untersucht werden. Wichtig war es, die Einsetzbarkeit der Methode im weichen Röntgenbereich zu zeigen, in dem die L2,3 Kanten der 3d-Übergangsmetalle liegen, die für den Magnetismus eine herausragende Rolle spielen. Hierbei konnte durch Messung an der Co-L3 Kante das Magnetisierungsprofil einer einzelnen Co-Schicht in einer Pt/Co/Cu-Trilage extrahiert werden. Des Weiteren erlaubt die Methode die Aufnahme elementspezifischer Hysteresekurven vergrabener dünner Schichten in Schichtsystemen mit hoher Qualität. Das Verfahren ist daher prädestiniert zur quantitativen Untersuchung von modernen neuen magnetoelektronischen Komponenten wie GMR- und TMR-Sensoren, MRAM’s oder Halbleiterstrukturen der viel versprechenden „Spintronic“. Es können bei derartigen Systemen Grenzflächenphänomene vergrabener Schichten zerstörungsfrei untersucht werden und im Weiteren auch Themen, die eher der Grundlagenforschung zuzuordnen sind, wie induzierter Grenzflächenmagnetismus oder auch oszillatorische Austauschkopplung in Zukunft quantitativ und elementselektiv behandelt werden. N2 - In this work a new method was developed to determine the magnetization depth profiles of defined layers or interfaces in thin magnetic multilayer systems. This called X-ray Magnetic Resonant Reflectometry (XRMR) combines the method of conventional X-ray reflectometry with magnetic resonant effects at absorption edges of magnetic atoms. Similar to conventional reflectivity experiments, which yield to well known analysis of layer thickness and interface roughness, specular magnetic measurements provide detailed information about the magnetization profile of a specific component in the multilayer system. The information of the depth magnetization profile is provided by the asymmetry ratio, which is obtained by measuring the reflectivity spectra near an absorption edge of a magnetic element and by flipping the helicity of the incoming photon beam or the magnetization direction of the sample. Simulations of the asymmetry ratio are based on an optical approach and replication of the measured curve could be achieved by modelling the optical constant of the magnetic layer or interface which is therefore separated into thin layered. As a result one gets the magneto optical profile of the modelled layer or interface. Care has to be taken for a correct determination of both dispersive and absorptive parts of the scattering amplitude which can be deduced by measuring the absorption coefficient and calculating the dispersion using Kramers-Kronig-relation. XRMR experiments were performed with Pt/Co layer systems at synchrotron sources HASYLAB/Hamburg and BESSYII/Berlin to demonstrate the applicability of the method both in the hard and soft X-ray region. Using the intrinsic site selectivity of resonant magnetic scattering and the enhancement of magnetic effects due to interference phenomena it is possible to get information about very small magnetic moments at the interface induced by the presence of a near-by ferromagnetic layer. This could be demonstrated by the investigation of a single Pt/Co bilayer where the depth magnetization profile of the Pt layer at the Pt/Co interface was determined. The interplay between chemical roughness and induced Pt magnetization profile could be deduced by performing measurements on a series of Pt/Co bilayer. An important item in this work was to demonstrate the applicability of the method in the soft X-ray region where the L2,3 edges of the 3d transition metals can be found which play a dominant role in the field of magnetism. By performing an XRMR experiment at the Co L3 edge the magnetization profile of a single Cobalt layer of a Pt/Co/Cu trilayer was determined. In addition method allows the measurement of site selective hysteresis loops of buried thin layers in multiplayer systems with high quality. XRMR is therefore predestined for non-destructive quantitative investigations of interface phenomena in modern magneto electronic devices like GMR and TMR systems, MRAMS`s and even for semiconductor structures of the promising spintronic devices. Further the method gives the possibility to get even more insight in topics of fundamental research like induced interface magnetism or oscillatory exchange coupling by using XRMR as an quantitative and site selective tool for magnetic investigations. KW - Dünne Schicht KW - Grenzschicht KW - Magnetisierung KW - Röntgenspektroskopie KW - Mehrschichtsystem KW - Magnetismus KW - Röntgenstrahlung KW - resonante Streuung KW - Schichtsysteme KW - magnetism KW - x-rays KW - resonant scattering KW - multilayer Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-8024 ER - TY - THES A1 - Gold, Stefan T1 - Winkel- und Temperaturabhängigkeit der magnetokristallinen Anisotropieenergie und der mikroskopischen magnetischen Momente des ferromagnetischen Halbmetalls CrO2 T1 - Angle- and temperature dependence of the magnetocrystalline anisotropy energy and the microscopic magnetic moments of the ferromagnetic half metal CrO2 N2 - Im Rahmen dieser Arbeit wurden die magnetischen Eigenschaften des Halbmetalls CrO2 untersucht. CrO2 hat in den letzten Jahren erneut ein sehr starkes Interesse erfahren. Der Grund hierfür liegt darin, dass dieses Material, aufgrund seiner theoretisch vorhergesagten und inzwischen nachgewiesenen Spinpolarisation von nahezu 100 % an der Fermikante und seiner metastabilen Eigenschaften, ein stark diskutierter Kandidat für Spintronic-Anwendungen wie den Quantencomputer ist. Die Möglichkeit der Spininjektion ist für CrO2 gegeben und in der Zwischenzeit auch erfolgreich umgesetzt worden. Die Untersuchungen zielten auf eine Erklärung für die intrinsischen Eigenschaften wie magnetokristalline Anisotropie, magnetischer Dipolterm und dem eigentlich gequenchten Bahnmoment. Die Untersuchungen fanden an den Cr L2,3 und an der O K Kante statt. Insbesondere für die Auswertung an den Cr L2,3-Kanten war es notwendig, mit einer neuartigen Auswertemethodik sämtliche aufgenommenen Daten zu analysieren, da eine herkömmliche Summenregelauswertung leider nicht durchgeführt werden konnte. Der Grund hierfür lag in der zu geringen L2,3-Aufspaltung des leichten 3d-Übergangmetalls Cr. Mit Hilfe der so genannten Momentenanalyse war es nun möglich, die überlappenden Strukturen voneinander zu separieren, und darüber hinaus auch verschiedene Anteile der Bandstruktur verschiedenen spektralen Beiträgen zuzuordnen. Die Ergebnisse an CrO2 zeigten eine sehr starke Abhängigkeit des magnetischen Bahnmomentes, der Summe von Spin und magnetischem Dipolterm sowie der magnetokristallinen Anisotropieenergie vom Winkel zwischen den rutilen a- und c-Achsen. Noch mehr als das Gesamtbahnmoment zeigen zwei, mit Hilfe der Momentenanalyse separierbare, spektrale Beiträge starke Änderungen der einzelnen Bahnmomente. Dieses unerwartete und ausgeprägte Verhalten konnte mittels eines Vergleichs mit den Sauerstoff K-Kanten XMCD-Daten bestätigt werden, was auf eine sehr starke Hybridisierung der beiden Zustände schließen lässt. Die Trennung der stark anisotropen Summe von Spin-Moment und TZ-Term über die Summenregel für den magnetischen Dipolterm liefert eine Größenordnung des TZ-Terms, wie er bis zu diesem Zeitpunkt nicht vorgefunden wurde. Ein Vergleich der magnetokristallinen Anisotropieenergie, gewonnen durch die Messung von elementspezifischen Hysteresekurven mit Hilfe des XMCD-Effektes, mit dem Brunomodell, das eine magnetisch leichte Richtung für die Achse mit dem größten Bahnmoment vorhersagt, kommt zu keinem positiven Ergebnis. Erst die von G. van der Laan aufgezeigte Erweiterung, in der auch der TZ-Term mit aufgenommen ist, liefert für das System CrO2 ein quantitativ übereinstimmendes Ergebnis der MAE mit den gemessenen experimentellen Momenten. Erwähnenswert in diesem Zusammenhang ist die Tatsache, dass das Bahnmoment und der magnetische Dipolterm unterschiedliche leichte Richtungen bevorzugen und beide Anteile fast gleich groß sind, wobei der magnetische Dipolterm die Überhand hat. In einem zweiten Teil der Arbeit wurde nun auch eine Temperaturabhängigkeit untersucht. Ziel war es, Aussagen über die Entstehung von Bahnmomenten, Dipolterm und MAE in Abhängigkeit des vorliegenden Spinmomentes zu gewinnen und diese mit vorhandenen theoretischen Modellen zu vergleichen. Das gemessene Spinmoment wurde mit SQUID-Daten verglichen und zeigte eine qualitative Übereinstimmung. Die extrahierten Bahnmomente zeigten wie der magnetische Dipolterm ein identisches Temperaturverhalten wie das Spinmoment. Dies ist ein Beweis, dass beide Momente in einem solchen System nur durch eine Kopplung mit dem Spinmoment entstehen und durch dieses verursacht sind. Im Weiteren konnte auch eine quadratische Abhängigkeit der MAE vom Spinmoment nachgewiesen werden. Dieses von G. van der Laan und in Vorarbeiten von P. Bruno vorhergesagte Verhalten konnte erstmalig in dieser Arbeit verifiziert werden. Zusammenfassend lässt sich sagen, dass in dieser Arbeit das ungewöhnliche magnetische Verhalten, insbesondere die Winkelabhängigkeit der magnetischen Momente, durch die Kombination von XAS- und XMCD-Spektroskopie, mit der Verwendung der Momentenanalyse sowie der Untersuchung durch elementspezifische Hystereskurven, ein geschlossenes Bild des Probensystems CrO2 aufgezeigt werden konnte. Das Gesamtbild, das sich ergeben hat, zeigt ganz deutlich auf, dass eine Bandstrukturbeschreibung das gefundene Verhalten erklären kann. Die allgemein vorherrschende, und sicherlich im ersten Moment deutlich intuitivere Vorstellung, dass man im Falle von CrO2 eine Art ionische Bindung hätte, mit einer d2-Konfiguration und erwarteten 2 µB magnetischem Moment am Cr-Platz kann insbesondere die Temperaturabhängigkeit der Anisotropieenergie nicht erklären. Auch in diesem Zusammenhang liefert das Bandmodell eine sehr gute Beschreibung. N2 - In this work, the magnetic properties of the half metal CrO2 were analyzed. CrO2 has attracted a very strong interest due to its theoretical predicted and meantime proven spin polarization of near 100 % at the Fermi-edge, which makes it a strong candidate for a spintronic device or quantum computing. Even a spin injection is possible for CrO2 and has been shown in literature. The aim of this work was to examine, by use of XMCD-effect and additional measurements with SQUID-magnetometer, spin moments and hysteresis loops, but also to clarify the intrinsic properties like magnetocrystalline anisotropy, magnetic dipole term, and the nearly quenched orbital moment. The XMCD-measurements were done at the Cr L2,3- and the O K-edge. Especially for the analysis at the Cr L2,3-edges it was necessary to work with a completely new analysis method, because a “normal” sum rule analysis was not possible. The reason for that is the very small L2,3-exchange energy for the light 3d-transition metal CrO2. By the use of the so called moment analysis it is possible to separate the two transitions from each other and even more to address different features of the XMCD-spectra to different parts of the CrO2-band structure. The idea of this new analysis method for XMCD-spectra is the opportunity to fit spectral forms and analyze these with the use of the ground state moments. With this method, one can draw conclusions, even if there is a spectral overlap between L2 and L3 edges like for CrO2. The results for CrO2 show a strong dependence of the orbital, the sum of spin moment and magnetic dipole term, and the magnetocrystalline anisotropy energy from the angle between rutile a- and c-axis. Even more than the complete orbital moment, two separable and different spectral features show strong alterations of the different orbital moments. This unexpected and pronounced behaviour was approved by a comparison with the O K-edge XMCD spectra, indicating a strong hybridisation of both states. The strong anisotropy of the O K-edge XAS spectra give comparable results to literature. The quantitative analysis of the strong anisotropic sum of spin moment and TZ-term by the use of the magnetic dipole sum rule results in an order of magnitude, which was not found up to now. The comparison of the magnetocrystalline anisotropy energy with the Bruno model, has a negative result. Taking into account the TZ.term, the extension discussed by G. van der Laan, CrO2 shows a good and qualitative agreement between MAE and the measured magnetic moments. Mentionable in this context is the fact, that orbital moment and TZ-term prefer different easy axis. They nearly cancel out each other, but TZ-term is a bit stronger. This might be the reason why CrO2 changes its magnetic easy axis for thin films, because due to the reduction of nearest neighbours and the therefore enhanced orbital moment in thin films, this unstable disequilibrium is distorted. In a second part of this work the temperature dependence was investigated. The aim was to clarify the origin of the orbital moment, dipole term, and MAE in dependence of the spin moment and compare the results to different theoretical models. The measured spin moment was first of all compared with SQUID data. It shows a qualitative agreement, but it shows not the quantitative same behaviour. This was attributed to two reasons, the element specifity of the XMCD effect and its surface sensitivity. The extracted orbital moments and the magnetic dipole term show the same temperature dependence as the spin moment. This is a clear proof, that both, orbital moment and TZ-term, are generated by a coupling to the spin moment. In the following a dependence of the squared measured spin moment could be found for the MAE. This was predicted by Bruno and van der Laan and could be proven for the first time. Recapitulating one can say, that in this work the unusual magnetic behaviour, especially the angle dependence of the magnetic moments, was shown a conclusive description of CrO2 by the combination of XAS and XMCD together with the new moment analysis and the use of element specific hysteresis loops. For the first time the magnetic dipole term could be identified as the reason of the magnetocrystalline anisotropy energy. This proves the model of G. van der Laan, even verified by the temperature dependence for a wide temperature range. A strong Cr – O hybridisation was found, which shows in a similar structure and temperature dependence of the orbital moments for Cr L2,3 and the XMCD effect at O – K edge. The general view shows clearly, that a band structure description can explain the measured dependencies. The intuitional and widely common belief of an ionic binding for CrO2, two electrons at the Cr with a magnetic moment of 2 µB, cannot elucidate especially the temperature dependence of the MAE, which is again good represented by a band structure description. KW - Chromoxid KW - Magnetische Eigenschaft KW - Magnetismus KW - XMCD KW - CrO2 KW - Anisotropieenergie KW - Halbmetall KW - magnetism KW - XMCD KW - CrO2 KW - anisotropy energy KW - half metal Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-20141 ER - TY - THES A1 - Heßler, Markus T1 - Elektronenspektroskopie an Übergangsmetallclustern T1 - Electron spectroscopy on transition metal clusters N2 - Im Rahmen der vorliegenden Arbeit wurden Untersuchungen zum Magnetismus und der elektronischen Struktur deponierter Cluster der 3d-Übergangsmetalle Fe, Co und Ni durchgeführt. Dabei zeigte sich, dass die Deposition der Cluster in Argon-Dünnfilme nicht nur zur fragmentationsfreien Probenpräparation genutzt werden kann, sondern auch die Untersuchung der Cluster in einer Umgebung mit geringer Wechselwirkung erlaubt. Die Beobachtung des atomaren Co-Multipletts sowie die Übereinstimmung der, mittels XMCD bestimmten, magnetischen Gesamtmomente von Fe- und Co-Clustern mit Gasphasenexperimenten zeigen auf, dass unter stabil gewählten Bedingungen die intrinsischen magnetischen Clustereigenschaften tatsächlich experimentell zugänglich sind. Die synchrotroninduzierte Mobilität von Clustern und Argon manifestiert sich in der Veränderung der Form der Absorptions- und Photoemissionslinien sowie in der zunehmenden Verminderung der gemessenen Magnetisierung. Neben den geeigneten Experimentierbedingungen ist zur Bestimmung der magnetischen Momente die Anwendbarkeit der XMCD-Summenregeln auf die Spektroskopie an Clustern notwendig. Besondere Beachtung verdient dabei auf Grund der reduzierten Symmetrie in Clustern der "magnetische Dipolterm" zur Spin-Summenregel. Der Vergleich des spektroskopisch ermittelten Gesamtmoments mit demjenigen, welches aus superparamagnetischen Magnetisierungskurven bestimmt wurde, erlaubt es, für seinen Beitrag bei Co-Clustern eine obere Schranke von 10% anzugeben. Erwartungsgemäß weisen die Spinmomente von Fe- und Co-Clustern gemessen am Festkörper deutlich erhöhte Werte auf, allerdings reichen sie nicht an die mittels Stern-Gerlach-Ablenkung bestimmten magnetischen Gesamtmomente der Cluster heran. Die elektronische Struktur von Nickelclustern erweist sich als sehr empfindlich gegen Wechselwirkungen mit Fremdatomen, so dass die magnetischen Resultate aus der Gasphase nicht nachvollzogen werden können. Allen Clustern in der Argonumgebung ist jedoch eine starke Erhöhung des bahnartigen Anteils am Gesamtmoment, generell auf mehr als 20% gemein. Damit kann nachgewiesen werden, dass die bestehende Diskrepanz zwischen berechneten Spinmomenten und experimentell bestimmten Gesamtmomenten in der Tat auf große Bahnmomente zurückzuführen ist. Dies gilt um so mehr, als die in dieser Arbeit bestimmten magnetischen Gesamtmomente an Fe- und Co-Clustern in guter Übereinstimmung mit Stern-Gerlach-Experimenten stehen. Die Wechselwirkung der Cluster mit der Oberfläche des Graphits führt bereits in den XAS-Absorptionsprofilen der L-Kanten zu sichtbaren Veränderungen in Form und energetischer Position der Absorptionsresonanzen. Alle untersuchten Cluster erfahren gleichzeitig eine starke Reduktion ihrer magnetischen Momente, häufig bis unter die Nachweisgrenze. Unter diesen Umständen ist es durchaus angebracht, von einer starken Cluster-Substrat-Wechselwirkung auszugehen. Dieser Befund wird durch die mittels Photoelektronenspektroskopie erzielten Ergebnisse untermauert. Veränderungen durch das "Einschalten" der Substratwechselwirkung sind sowohl in den Rumpfniveau- als auch den Valenzbandspektren zu erkennen. Charakteristisch für die ausführlicher untersuchten Ni-Cluster ist die Ausbildung einer, mit dem Graphitsubstrat hybridisierten, Elektronenstruktur mit reduzierter Zustandsdichte in der Umgebung des Ferminiveaus. Eine solche Konfiguration begünstigt die Ausbildung von "low-spin" - Zuständen, wie sie in den XMCD-Experimenten bei vorhandener Wechselwirkung mit dem Graphit gefunden werden. Die starke Kopplung der elektronischen Zustände von Cluster und Substrat äußert sich ebenfalls in dem Verlust des Fano-Resonanzverhaltens in der resonanten Photoemission an der 3p-Absorptionsschwelle. Das Fehlen der analogen Beobachtung an der 2p-Schwelle, muss einer starken Lokalisierung des 2p-rumpflochangeregten Zwischenzustandes zugeschrieben werden. Die genaue Analyse der Veränderung des resonant-Raman-Verhaltens in der 2p-RESPES könnte wertvolle komplementäre Informationen liefern, wird aber durch die Gegenwart der Argon-Valenzemission zu stark behindert, um konkrete Aussagen zuzulassen. Die Analyse der RESPES-Daten lässt den Schluss zu, dass die tatsächliche Besetzung der 3d-Zustände durch die Substratwechselwirkung nicht nennenswert verändert wird. Neben der Charakterisierung der großen magnetischen Clustermomente nach Spin- und Bahnanteilen vermitteln die Experimente dieser Arbeit einen guten Einblick in die Veränderungen der elektronischen Eigenschaften durch die Wechselwirkung mit dem Graphit. Der Einfluss des Substrates führt zu einer starken Verkleinerung der magnetischen Momente. Offensichtlich wird die elektronische Gesamtenergie an der Grenzfläche durch die Ausbildung von hybridisierten Zuständen minimiert, welche nahe der Fermienergie eine geringe Zustandsdichte besitzen. N2 - The present thesis presents investigations on the magnetism and the electronic structure of deposited 3d transition metal clusters. Clusters are being deposited into thin argon layers in order to avoid fragmentation. At the same time the argon is used as a matrix providing an environment of weak interaction. Under suitably chosen stable experimental conditions the atomic absorption multiplet is observed and the magnetic moments of Fe and Co clusters determined by XMCD compare well to those observed in gas phase experiments. Thus intrinsic magnetic cluster properties can be probed from rare gas matrix isolated clusters. At elevated x-ray photon flux densities mobility of both, rare gas atoms and clusters, is generated by the synchrotron beam and leads to noticeable changes in spectroscopic line shapes and the reduction of the magnetic moments. Besides suitable experimental conditions it is important to ascertain the applicability of the XMCD sum rules in the case of the clusters. Due to the reduced symmetry in the clusters the magnetic dipole contribution to the spin sum rule deserves particular attention. From the comparison of the total magnetic moment determined by XMCD to the one following from superparamagnetic magnetisation curves an upper limit of 10% for this contribution can be determined. As expected the spin magnetic moments in Fe and Co clusters exceed those of the corresponding bulk materials. They do not, however, reach the values of the total magnetic moments determined from Stern-Gerlach deflection experiments. The electronic structure of Ni clusters proves to be particulary sensitive with respect to the interaction with foreign atoms. Therefore the gas phase magnetic moments cannot be reproduced in the present experiments. Common to all clusters within the argon film is a strong enhancement of the orbital contribution to the total magnetic moment, generally above 20%. This observation of strong orbital moments bridges the gap between calculated spin magnetic moments an experimental total moments. In particular we find good agreement of the total magnetic moments determined in the present work compared to those of Stern-Gerlach experiments. When the clusters interact with the graphite surface noticeable changes occur in both, the spectral shape and the energy positions of the L edge resonance profiles, respectively. All clusters investigated undergo a strong reduction of their magnetic moments under these conditions. It is therefore appropriate to consider the cluster substrate interaction to be considerable. This finding is further substantiated by the experimental results obtained by photoelectron spectroscopy. The substrate interaction leads to visible changes in the core level as well as the valence band spectra. For Ni clusters the latter reveal the formation of a hybridised electronic structure with a reduced density of states in the vicinity of the Fermi level. Such an electronic configuration favors the formation of low spin states which are indeed observed for the clusters interacting with graphite. The strong coupling of cluster an substrate electronic states is also reflected by the loss of the fano line shape in the 3p resonant photoemission signal. This observation does not hold for the RESPES at the 2p-threshold, however. This apparent discrepancy is attributed to a strongly localised core excited intermediate state at the 2p edge. While the detailed analysis of the resonant raman regime could yield useful complementary information it is prevented by the strong emission from the argon valence states. Nevertheless it can be inferred from the RESPES data that the 3d occupation number in Ni clusters is not substantially altered by the substrate interaction. The experiments of this work does provide the characterisation of the cluster magnetic moments in terms of their spin and orbital contributions. In addition they provide an inside into the modifications of the electronic properties emanating from the cluster substrate interaction. The hybridisation with graphite electronic structure leads to a strong reduction of the magnetic moments. Obviously, the interfacial total energy is minimised by adopting an electronic level structure with little density of states near the Fermi level. KW - Übergangsmetall KW - Metallcluster KW - Elektronenspektroskopie KW - Cluster KW - Magnetismus KW - XMCD KW - Übergangsmetall KW - cluster KW - magnetism KW - XMCD KW - transition metal Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-18689 ER - TY - THES A1 - Hochkeppel, Stephan T1 - One- and Two-Particle Correlation Functions in the Dynamical Quantum Cluster Approach T1 - Ein- und Zwei-Teilchen Korrelationsfunktionen in der Dynamischen Quanten Cluster Näherung N2 - This thesis is dedicated to a theoretical study of the 1-band Hubbard model in the strong coupling limit. The investigation is based on the Dynamical Cluster Approximation (DCA) which systematically restores non-local corrections to the Dynamical Mean Field approximation (DMFA). The DCA is formulated in momentum space and is characterised by a patching of the Brillouin zone where momentum conservation is only recovered between two patches. The approximation works well if k-space correlation functions show a weak momentum dependence. In order to study the temperature and doping dependence of the spin- and charge excitation spectra, we explicitly extend the Dynamical Cluster Approximation to two-particle response functions. The full irreducible two-particle vertex with three momenta and frequencies is approximated by an effective vertex dependent on the momentum and frequency of the spin and/or charge excitations. The effective vertex is calculated by using the Quantum Monte Carlo method on the finite cluster whereas the analytical continuation of dynamical quantities is performed by a stochastic version of the maximum entropy method. A comparison with high temperature auxiliary field quantum Monte Carlo data serves as a benchmark for our approach to two-particle correlation functions. Our method can reproduce basic characteristics of the spin- and charge excitation spectrum. Near and beyond optimal doping, our results provide a consistent overall picture of the interplay between charge, spin and single-particle excitations: a collective spin mode emerges at optimal doping and sufficiently low temperatures in the spin response spectrum and exhibits the energy scale of the magnetic exchange interaction J. Simultaneously, the low energy single-particle excitations are characterised by a coherent quasiparticle with bandwidth J. The origin of the quasiparticle can be quite well understood in a picture of a more or less antiferromagnetic ordered background in which holes are dressed by spin-excitations to allow for a coherent motion. By increasing doping, all features which are linked to the spin-polaron vanish in the single-particle as well as two-particle spin response spectrum. In the second part of the thesis an analysis of superconductivity in the Hubbard model is presented. The superconducting instability is implemented within the Dynamical Cluster Approximation by essentially allowing U(1) symmetry breaking baths in the QMC calculations for the cluster. The superconducting transition temperature T_c is derived from the d-wave order parameter which is directly estimated on the Monte Carlo cluster. The critical temperature T_c is in astonishing agreement with the temperature scale estimated by the divergence of the pair-field susceptibility in the paramagnetic phase. A detailed study of the pseudo and superconducting gap is continued by the investigation of the local and angle-resolved spectral function. N2 - In der vorliegenden Arbeit wird das zwei-dimensionale Hubbard Modell im Bereich stark wechselwirkender Elektronen mit Hilfe der Dynamischen Cluster Approximation (DCA) untersucht. Im Rahmen der DCA wird das gegebene Gitter-Problem auf einen Cluster, der selbst-konsistent in einem effektiven Medium eingebettet ist, abgebildet. Somit stellt die DCA eine Erweiterung zur Dynamischen Molekularfeld-Theorie dar, indem nicht-lokale Korrelationen berücksichtigt werden. Ein Ziel dieser Arbeit stellt die Untersuchung von dynamischen Korrelationsfunktionen für das Hubbard Modell dar. Dazu wird die Dynamische Cluster Approximation auf die Untersuchung von Zwei-Teilchen Korrelationsfunktionen erweitert. Der volle irreduzible Zweiteilchen-Vertex mit drei Impulsen und Frequenzen wird durch einen effektiven Vertex, dessen Impuls und Frequenzabhängigkeit durch das Spin- bzw. Ladungs-Anregungsspektrum gegeben ist, approximiert. Der effektive Vertex wird mit Hilfe der Quanten Monte Carlo Technik auf einem endlichen Cluster bestimmt, wobei die dynamischen Grössen durch eine stochastische Version der Maximum Entropie Methode auf die reelle Frequenz-Achse analytisch fortgesetzt werden. Ein Vergleich mit dem gewöhnlichen BSS Quanten Monte Carlo Verfahren dient als Maßstab für unsere Näherung der Zwei-Teilchen Korrelationsfunktionen. Der Vergleich zeigt auf, dass unsere Methode grundlegende Eigenschaften des Spin- und Ladungs-Anregungsspektrums reproduzieren kann. Für optimale bzw. höhere Dotierungen erhalten wir ein übereinstimmendes Gesamtbild zwischen Ladungs-, Spin-, und Ein-Teilchen-Anregungsspektrum: bei optimaler Dotierung und hinreichend niedriger Temperatur tritt eine kollektive Spin-Mode im Spin-Anregungsspektrum auf und zeigt einen Energiezweig mit der Energieskala J, wobei J die magnetische Austauschenergie beschreibt. Gleichzeitig werden die Niederenergie-Anregungen im Ein-Teilchen-Spektrum durch ein Quasiteilchenband mit Bandbreite J beschrieben. Der Ursprung des Quasiteilchens lässt sich durch das Bild eines mehr oder weniger geordneten antiferromagnetischen Hintergrundes erklären, in dem sich Löcher umgeben von einer Wolke von Spin-Anregungen kohärent durch das Gitter bewegen. Bei zunehmender Dotierung verschwinden sowohl im Ein-Teilchen, als auch im Zwei-Teilchen Spin-Spektrum alle Anzeichen, die im Zusammenhang mit der Niederenergie-Skala J und dem oben beschriebenen Spin-Polaron stehen. Die Änderung der Dotierung führt des weiteren zu einem Transfer von spektralem Gewicht im Ein-Teilchen Spektrum, der sich ebenfalls im Ladungs-Anregungsspektrum bemerkbar macht. Im zweiten Teil der Arbeit wird eine Analyse über die supraleitenden Eigenschaften des Hubbard Modells präsentiert. Die supraleitende Instabilität wird im Rahmen der Dynamischen Cluster Approximation durch die Implementierung eines U(1)-Symmetrie brechenden Mediums in der Monte Carlo Rechnung für den Cluster berücksichtigt. Die supraleitende Übergangstemperatur T_c wird von dem Wert des auf dem Cluster bestimmten d-Wellen Ordnungsparameters abgeleitet. Die kritische Temperatur T_c ist in überraschend guter Übereinstimmung mit der Energieskala, die durch eine Divergenz der Paarfeld-Suszeptibilität in der paramagnetischen Phase bestimmt worden ist. Die Temperaturabhängigkeit der Pseudo- und supraleitenden Lücke wird mit der Bestimmung der Zustandsdichte und der Impuls-aufgelösten Spektralfunktion untersucht. Im Gegensatz zur der Herausbildung einer supraleitenden Lücke unterhalb der Sprungtemperatur, kann die Bildung einer Pseudo-Lücke in der Impuls-abhängigen Spektraldichte nicht aufgelöst werden. KW - Festkörpertheorie KW - Hubbard-Modell KW - Magnetismus KW - Cuprate KW - Hochtemperatursupraleiter KW - Dynamische Cluster Approximation KW - Maximum Entropie Methode KW - Korrelationsfunktionen KW - Dynamical Cluster Approximation KW - Maximum Entropy Method KW - Correlation Functions Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-28705 ER - TY - THES A1 - Mandel, Karl T1 - Synthesis and Characterisation of Superparamagnetic Nanocomposite Particles for Water Purification and Resources Recovery T1 - Synthese und Charakterisierung von superparamagnetischen Nanokompositpartikeln zur Wasserreinigung und Wertstoffrückgewinnung N2 - Superparamagnetic nanocomposite microparticles, compromised of magnetite nanoparticles in a silica matrix, have been synthesised and surface-modified to act as adsorbers for substances (e.g. toxic heavy metals or valuable resources) dissolved in fluids like water. The particles can be used for a magnetic-extraction-assisted separation process of these target substances which thereby can be recovered from the fluid. N2 - In der vorliegenden Arbeit wurden superparamagnetische Nanokomposit-Mikropartikel, bestehend aus Magnetitnanopartikeln in einer Silica-Matrix, hergestellt. Die Oberfläche der Partikel wurde modifiziert, so dass die Partikel als Adsorber für gelöste Substanzen (z.B. giftige Schwermetalle oder Wertstoffe) in Fluiden wie z.B. Wasser eingesetzt werden können. Mit Hilfe der Partikel kann eine Abtrennung und damit Rückgewinnung der Zielstoffe auf Basis eines Magnetseparationsprozesses durchgeführt werden. KW - Magnetisches Trennverfahren KW - Superparamagnetismus KW - Recycling KW - Wasserreinigung KW - Eisenoxide KW - Siliciumdioxid KW - Superparamagnetismus KW - Nano KW - Wertstoffrückgewinnung KW - Magnetseparation KW - superparamagnetism KW - nano KW - water purification KW - resources recovery KW - magnetic separation KW - Nanotechnologie KW - Synthese KW - Magnetismus Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-81208 ER - TY - THES A1 - Müller, Tobias Leo Christian T1 - Quantum magnetism in three dimensions: Exploring phase diagrams and real materials using Functional Renormalization T1 - Quantenmagnetismus in drei Dimensionen: Erforschung von Phasendigrammen und realen Materialien mittels funktionaler Renormierung N2 - Magnetism is a phenomenon ubiquitously found in everyday life. Yet, together with superconductivity and superfluidity, it is among the few macroscopically realized quantum states. Although well-understood on a quasi-classical level, its microscopic description is still far from being solved. The interplay of strong interactions present in magnetic condensed-matter systems and the non-trivial commutator structure governing the underlying spin algebra prevents most conventional approaches in solid-state theory to be applied. On the other hand, the quantum limit of magnetic systems is fertile land for the development of exotic phases of matter called spin-liquids. In these states, quantum fluctuations inhibit the formation of magnetic long-range order down to the lowest temperatures. From a theoretical point of view, spin-liquids open up the possibility to study their exotic properties, such as fractionalized excitations and emergent gauge fields. However, despite huge theoretical and experimental efforts, no material realizing spin-liquid properties has been unambiguously identified with a three-dimensional crystal structure. The search for such a realization is hindered by the inherent difficulty even for model calculations. As most numerical techniques are not applicable due to the interaction structure and dimensionality of these systems, a methodological gap has to be filled. In this thesis, to fill this void, we employ the pseudo-fermion functional renormalization group (PFFRG), which provides a scheme to investigate ground state properties of quantum magnetic systems even in three spatial dimensions. We report the status quo of this established method and extend it by alleviating some of its inherent approximations. To this end, we develop a multi-loop formulation of PFFRG, including hitherto neglected terms in the underlying flow equations consistently, rendering the outcome equivalent to a parquet approximation. As a necessary prerequisite, we also significantly improve the numerical accuracy of our implementation of the method by switching to a formulation respecting the asymptotic behavior of the vertex functions as well as employing state-of-the-art numerical algorithms tailored towards PFFRG. The resulting codebase was made publicly accessible in the open-source code PFFRGSolver.jl. We subsequently apply the technique to both model systems and real materials. Augmented by a classical analysis of the respective models, we scan the phase diagram of the three-dimensional body-centered cubic lattice up to third-nearest neighbor coupling and the Pyrochlore lattice up to second-nearest neighbor. In both systems, we uncover in addition to the classically ordered phases, an extended parameter regime, where a quantum paramagnetic phase appears, giving rise to the possibility of a quantum spin liquid. Additionally, we also use the nearest-neighbor antiferromagnet on the Pyrochlore lattice as well as the simple cubic lattice with first- and third-nearest neighbor couplings as a testbed for multi-loop PFFRG, demonstrating, that the inclusion of higher loop orders has quantitative effects in paramagnetic regimes and that the onset of order can be signaled by a lack of loop convergence. Turning towards material realizations, we investigate the diamond lattice compound MnSc\(_2\)S\(_4\), explaining on grounds of ab initio couplings the emergence of a spiral spin liquid at low temperatures, but above the ordering transition. In the Pyrochlore compound Lu\(_2\)Mo\(_2\)O\(_5\)N\(_2\), which is known to not magnetically order down to lowest temperatures, we predict a spin liquid state displaying a characteristic gearwheel pattern in the spin structure factor. N2 - Das Phänomen des Magnetismus ist allgegenwärtig im täglichen Leben und doch ist es, zusammen mit der Supraleitung und -fluidität, eines der wenigen makroskopisch realisierten Quantenphänomene. Auf quasi-klassischer Ebene ist Magnetismus gut verstanden, doch seine mikroskopische Beschreibung ist noch weit davon entfernt, als gelöst bezeichnet zu werden. Das Zusammenspiel von starken Wechselwirkungen, die in magnetischer kondensierte Materie am Werke sind, und der nicht-trivialen Kommutatorstruktur, die die zugrunde liegende Spin-Algebra bestimmt, verhindert, dass konventionelle Herangehensweisen der Festkörpertheorie angewendet werden können. Andererseits ist der quantenmechanische Grenzfall magnetischer Systeme ein fruchtbarer Boden für die Herausbildung exotischer Phasen der Materie, die als Spin-Flüssigkeiten bezeichnet werden. In diesen Zuständen verhindern Quantenfluktuationen die Ausbildung einer langreichweitigen magnetischen Ordnung auch bei niedrigsten Temperaturen. Aus theoretischer Sicht eröffnen Spinflüssigkeiten die Möglichkeit, exotische Eigenschaften, wie fraktionalisierte Anregungen und emergente Eichfelder, zu studieren. Großen theoretischen und experimentellen Anstrengungen zum Trotz wurde jedoch bisher kein Material mit dreidimensionaler Kristallstruktur identifiziert, das unzweifelhaft die Eigenschaften von Spinflüssigkeiten aufweist. Die Suche nach einer solchen Realisierung wird von der Komplexität behindert, die sogar einfachen Modellrechnungen inhärent ist. Da die meisten numerischen Verfahren aufgrund der Wechselwirkungsstruktur und Dimensionalität der Systeme nicht anwendbar sind, bleibt eine methodische Lücke bestehen. In dieser Arbeit benutzen wir die pseudo-fermionische funktionale Renormierungsgruppe (PFFRG), um diese zu füllen. Mit ihr realisieren wir ein Verfahren, um die Grundzustandseigenschaften von quantenmagnetischen Systemen in drei Raumdimensionen zu studieren, Wir fassen den Status quo dieser bereits etablierten Methode zusammen und erweitern sie, indem wir einige ihrer inhärenten Näherungen abmildern. Dafür entwickeln wir eine Mehrschleifen-Formulierung der PFFRG, die bisher vernachlässigte Terme der zugrunde liegenden Flussgleichungen konsistent berücksichtigt und damit die PFFRG äquivalent zur Parquet-Näherung macht. Um dies zu erreichen, verbessern wir außerdem die numerische Genauigkeit der Methode signifikant, indem wir einerseits zu einer Formulierung wechseln, welche die Asymptotiken der Vertex-Funktionen explizit berücksichtigt und andererseits moderne Algorithmen, maßgeschneidert für die PFFRG, nutzt. Der daraus resultierenden Computercode wurde im Open-Source Paket PFFRGSolver.jl öffentlich zugänglich gemacht. Im Anschluss wenden wir die Methode sowohl auf Modellsysteme, als auch echte Materialien an. Vor dem Hintergrund klassischer Analysen scannen wir die Phasendiagramme des dreidimensionalen raumzentrierten kubischen und des Pyrochlorgitters, wobei wir Wechselwirkungen bis zu drittnächsten beziehungsweise übernächsten Nachbarn berücksichtigen. In beiden Systemen finden wir, neben den klassisch geordneten Phasen, einen ausgedehnten Parameterraum, in dem eine quantenparamagnetische Phase im Phasendiagramm erscheint, welche die Möglichkeit einer Quantenspinflüssigkeitsphase eröffnet. Wir nutzen außerdem den Nächstnachbarantiferromagnet auf dem Pyrochlorgitter und das kubische Gitter mit Nächst- und Drittnächstnachbarwechselwirkung als einen Prüfstand für die Vielschleifen-PFFRG, indem wir zeigen, dass die Berücksichtigung höherer Schleifenordnungen quantitative Auswirkungen in den paramagnetischen Regimen hat und außerdem magnetische Ordnung durch ein Fehlen der Schleifenkonvergenz signalisiert werden kann. Abschließend wenden wir uns den echten Materialien zu und untersuchen MnSc\(_2\)S\(_4\), welches eine Diamantgitterstruktur aufweist. Basierend auf ab intio Kopplungsstärken erklären wir das Auftreten einer Spiralspinflüssigkeit bei niedrigen Temperaturen, aber oberhalb des Ordnungsübergangs. Zudem sagen wir im Pyrochlormaterial Lu\(_2\)Mo\(_2\)O\(_5\)N\(_2\), welches in Experimenten auch bei niedrigsten Temperaturen nicht magnetisch ordnet, einen Spinflüssigkeitszustand voraus, der sich durch ein charakteristisches Zahnradmuster im Spinstrukturfaktor auszeichnet. KW - Heisenberg-Modell KW - Spinflüssigkeit KW - Quantenspinsystem KW - Renormierungsgruppe KW - Magnetismus KW - Pseudo-Fermions KW - Multi-Loop KW - Pyrochlore KW - Quantum Magnetism KW - Phase diagrams Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-313948 ER - TY - THES A1 - Trabel, Mirko T1 - Growth and Characterization of Epitaxial Manganese Silicide Thin Films T1 - Wachstum und Charakterisierung dünner epitaktischer MnSi Schichten N2 - This thesis describes the growth and characterization of epitaxial MnSi thin films on Si substrates. The interest in this material system stems from the rich magnetic phase diagram resulting from the noncentrosymmetric B20 crystal structure. Here neighboring spins prefer a tilted relative arrangement in contrast to ferro- and antiferromagnets, which leads to a helical ground state where crystal and spin helix chirality are linked [IEM+85]. This link makes the characterization and control of the crystal chirality the main goal of this thesis. After a brief description of the material properties and applied methods, the thesis itself is divided into four main parts. In the first part the advancement of the MBE growth process of MnSi on Si\((111)\) substrate as well as the fundamental structural characterization are described. Here the improvement of the substrate interface by an adjusted substrate preparation process is demonstrated, which is the basis for well ordered flat MnSi layers. On this foundation the influence of Mn/Si flux ratio and substrate temperature on the MnSi layer growth is investigated via XRD and clear boundaries to identify the optimal growth conditions are determined. The nonstoichiometric phases outside of this optimal growth window are identified as HMS and Mn\(_5\)Si\(_3\). Additionally, a regime at high substrate temperatures and low Mn flux is discovered, where MnSi islands are growing incorporated in a Si layer, which could be interesting for further investigations as a size confinement can change the magnetic phase diagram [DBS+18]. XRD measurements demonstrate the homogeneity of the grown MnSi layers over most of the 3 inch wafer diameter and a small \(\omega\)-FWHM of about 0.02° demonstrates the high quality of the layers. XRD and TEM measurements also show that relaxation of the layers happens via misfit dislocations at the interface to the substrate. The second part of the thesis is concerned with the crystal chirality. Here azimuthal \(\phi\)-scans of asymmetric XRD reflections reveal twin domains with a \(\pm\)30° rotation to the substrate. These twin domains seem to consist of left and right-handed MnSi, which are connected by a mirror operation at the \((\bar{1}10)\) plane. For some of the asymmetric XRD reflections this results in different intensities for the different twin domains, which reveals that one of the domains is rotated +30° and the other is rotated -30°. From XRD and TEM measurements an equal volume fraction of both domains is deduced. Different mechanisms to suppress these twin domains are investigated and successfully achieved with the growth on chiral Si surfaces, namely Si\((321)\) and Si\((531)\). Azimuthal \(\phi\)-scans of asymmetric XRD reflections demonstrate a suppression of up to 92%. The successful twin suppression is an important step in the use of MnSi for the proposed spintronics applications with skyrmions as information carriers, as discussed in the introduction. Because of this achievement, the third part of the thesis on the magnetic properties of the MnSi thin films is not only concerned with the principal behavior, but also with the difference between twinned and twin suppressed layers. Magnetometry measurements are used to demonstrate, that the MnSi layers behave principally as expected from the literature. The analysis of saturation and residual magnetization hints to the twin suppression on Si\((321)\) and Si\((531)\) substrates and further investigations with more samples can complete this picture. For comparable layers on Si\((111)\), Si\((321)\) and Si\((531)\) the Curie-Weiss temperature is identical within 1 K and the critical field within 0.1 T. Temperature dependent magnetoresistivity measurements also demonstrate the expected \(T^2\) behavior not only on Si\((111)\) but also on Si\((321)\) substrates. This demonstrates the successful growth of MnSi on Si\((321)\) and Si\((531)\) substrates. The latter measurements also reveal a residual resistivity of less then half for MnSi on Si\((321)\) in comparison to Si\((111)\). This can be explained with the reduced number of domain boundaries demonstrating the successful suppression of one of the twin domains. The homogeneity of the residual resistivity as well as the charge carrier density over a wide area of the Si\((111)\) wafer is also demonstrated with these measurements as well as Hall effect measurements. The fourth part shows the AMR and PHE of MnSi depending on the angle between in plane current and magnetic field direction with respect to the crystal direction. This was proposed as a tool to identify skyrmions [YKT+15]. The influence of the higher C\(_{3\mathrm{v}}\) symmetry of the twinned system instead of the C\(_3\) symmetry of a B20 single crystal is demonstrated. The difference could serve as a useful additional tool to prove the twin suppression on the chiral substrates. But this is only possible for rotations with specific symmetry surfaces and not for the studied unsymmetrical Si\((321)\) surface. Measurements for MnSi layers on Si\((111)\) above the critical magnetic field demonstrate the attenuation of AMR and PHE parameters for increasing resistivity, as expected from literature [WC67]. Even if a direct comparison to the parameters on Si\((321)\) is not possible, the higher values of the parameters on Si\((321)\) can be explained considering the reduced charge carrier scattering from domain boundaries. Below the critical magnetic field, which would be the region where a skyrmion lattice could be expected, magnetic hysteresis complicates the analysis. Only one phase transition at the critical magnetic field can be clearly observed, which leaves the existence of a skyrmion lattice in thin epitaxial MnSi layers open. The best method to solve this question seems to be a more direct approach in the form of Lorentz-TEM, which was also successfully used to visualize the skyrmion lattice for thin plates of bulk MnSi [TYY+12]. For the detection of in plane skyrmions, lamellas would have to be prepared for a side view, which seems in principle possible. The demonstrated successful twin suppression for MnSi on Si\((321)\) and Si\((531)\) substrates may also be applied to other material systems. Suppressing the twinning in FeGe on Si\((111)\) would lead to a single chirality skyrmion lattice near room temperature [HC12]. This could bring the application of skyrmions as information carriers in spintronics within reach. Glossary: MBE Molecular Beam Epitaxy XRD X-Ray Diffraction HMS Higher Manganese Silicide FWHM Full Width Half Maximum TEM Tunneling Electron Microscopy AMR Anisotropic MagnetoResistance PHE Planar Hall Effect Bibliography: [IEM+85] M. Ishida, Y. Endoh, S. Mitsuda, Y. Ishikawa, and M. Tanaka. Crystal Chirality and Helicity of the Helical Spin Density Wave in MnSi. II. Polarized Neutron Diffraction. Journal of the Physical Society of Japan, 54(8):2975, 1985. [DBS+18] B. Das, B. Balasubramanian, R. Skomski, P. Mukherjee, S. R. Valloppilly, G. C. Hadjipanayis, and D. J. Sellmyer. Effect of size confinement on skyrmionic properties of MnSi nanomagnets. Nanoscale, 10(20):9504, 2018. [YKT+15] T. Yokouchi, N. Kanazawa, A. Tsukazaki, Y. Kozuka, A. Kikkawa, Y. Taguchi, M. Kawasaki, M. Ichikawa, F. Kagawa, and Y. Tokura. Formation of In-plane Skyrmions in Epitaxial MnSi Thin Films as Revealed by Planar Hall Effect. Journal of the Physical Society of Japan, 84(10):104708, 2015. [WC67] R. H. Walden and R. F. Cotellessa. Magnetoresistance of Nickel-Copper Single-Crystal Thin Films. Journal of Applied Physics, 38(3):1335, 1967. [TYY+12] A. Tonomura, X. Yu, K. Yanagisawa, T. Matsuda, Y. Onose, N. Kanazawa, H. S. Park, and Y. Tokura. Real-Space Observation of Skyrmion Lattice in Helimagnet MnSi Thin Samples. Nano Letters, 12(3):1673, 2012. [HC12] S. X. Huang and C. L. Chien. Extended Skyrmion Phase in Epitaxial FeGe(111) Thin Films. Physical Review Letters, 108(26):267201, 2012. N2 - Diese Arbeit befasst sich mit dem Wachstum und der Charakterisierung dünner epitaktischer MnSi Schichten auf Si Substraten. Das Interesse an diesem Materialsystem liegt insbesondere im reichhaltigen magnetischen Phasendiagramm begründet, welches aus der nicht zentrosymmetrischen B20 Kristallstruktur des MnSi resultiert. Im Gegensatz zu Ferro- oder Antiferromagneten bevorzugen benachbarte Spins sich unter einem Winkel zueinander auszurichten, was zu einem helikalen Grundzustand führt in dem die Händigkeit von Kristallstruktur und Spin-Helix aneinander gekoppelt sind [IEM+85]. Diese Kopplung macht die Charakterisierung und Kontrolle der Händigkeit der Kristallstruktur zum Hauptziel dieser Arbeit. Nach einer kurzen Beschreibung der Materialeigenschaften und der angewendeten Methoden ist die Arbeit selbst in vier Hauptteile aufgeteilt. Im ersten Teil ist sowohl die Verbesserung des Molekularstrahlepitaxie-Wachstumsprozesses von MnSi auf Si\((111)\) Substrat, als auch die grundlegende strukturelle Charakterisierung beschrieben. Hierbei ist die Verbesserung der Substratgrenzfläche mit Hilfe eines angepassten Vorbereitungsprozesses erläutert, welche die Basis für glatte, geordnete dünne MnSi Schichten bildet. Auf dieser Basis ist der Einfluss des Mn/Si Fluss-Verhältnisses sowie der Substrattemperatur mittels Röntgenbeugung dargestellt und ein optimales Wachstumsfenster identifiziert. Die nicht stöchiometrischen Phasen außerhalb dieses Wachstumsfensters sind MnSi\(_{1.75-x}\) (HMS) sowie Mn\(_5\)Si\(_3\). Zusätzlich tritt bei hohen Substrattemperaturen und niedrigem Mn Fluss eine Phase auf, in der MnSi Inseln, eingebettet in eine Si Schicht, wachsen. Diese könnten von weiterführendem Interesse sein, da die Größenbeschränkung das magnetische Phasendiagramm beeinflussen kann [DBS+18]. Röntgenbeugungsmessungen zeigen die Homogenität der gewachsenen MnSi Schichten über einen Großteil des 3\ Zoll Wafer Durchmessers sowie die hohe Qualität mittels einer kleinen \(\omega\)-Halbwertsbreite von ungefähr 0.02°. Röntgenbeugungs- und Transmissionselektronenmikroskopiemessungen zeigen außerdem, dass die MnSi Dünnschichten mittels Fehlversetzungen an der Grenzfläche zwischen Dünnschicht und Substrat relaxieren. Der zweite Teil befasst sich mit der Händigkeit der Kristallstruktur. Azimutale \(\phi\)-Messungen asymmetrischer Röntgenbeugungsreflexe zeigen Kristallzwillingsdomänen welche \(\pm\)30° zum Substrat rotiert sind. Die Kristallzwillingsdomänen lassen sich vermutlich als rechts- und links-händiges MnSi identifizieren, welche durch eine Spiegelung an der \((\bar{1}10)\) Ebene verbunden sind. Anhand der unterschiedlichen Intensität mancher Reflexe für unterschiedliche Händigkeit wird außerdem gezeigt, dass eine der Domänen um +30° und die andere Domäne um -30° rotiert ist. Mithilfe der Röntgenbeugung und Transmissionselektronenmikroskopie wird außerdem der gleiche Volumenanteil der Kristallzwillinge demonstriert. Verschieden Mechanismen zur Unterdrückung dieser Kristallzwillingsdomänen werden untersucht und die erfolgreiche Unterdrückung gelang mit Hilfe des Wachstums auf chiralen Si Substraten, nämlich Si\((321)\) und Si\((531)\) Substraten. Hier ist mit azimutalen \(\phi\)-Messungen der asymmetrischen Röntgenbeugungsreflexen eine Unterdrückung von bis zu 92% demonstriert. Die erfolgreiche Unterdrückung der Kristallzwillingsdomänen ist ein wichtiger Schritt zur vorgeschlagenen Nutzung von MnSi in Spintronik-Anwendungen, wie in der Einleitung erläutert. Aufgrund dessen befasst sich der dritte Teil nicht nur mit den magnetischen Eigenschaften der dünnen MnSi Schichten, sondern auch damit, wie die Unterschiede für Schichten mit Kristallzwillingsdomänen und mit deren Unterdrückung sind. Im ersten Abschnitt ist anhand von Magnetometriemessungen gezeigt, dass sich die MnSi Dünnschichten prinzipiell so verhalten, wie es aus der Literatur zu erwarten ist. Das Verhalten von Sättigungs- und Restmagnetisierung deutet auf die Unterdrückung der Kristallzwillingsdomänen auf Si\((321)\) und Si\((531)\) Substraten hin, wobei das Gesamtbild mittels einer erweiterten Probenserie vervollständigt werden kann. Für vergleichbare MnSi Dünnschichten auf Si\((111)\), Si\((321)\) und Si\((531)\) ist die Curie-Weiss Temperatur innerhalb von 1 K und das kritische Magnetfeld innerhalb von 0.1 T identisch. Die Temperaturabhängigkeit des Magnetowiderstands zeigt das zu erwartende \(T^2\) Verhalten nicht nur auf Si\((111)\), sondern auch auf Si\((321)\). Dies zeigt das erfolgreiche Wachstum von MnSi auf Si\((321)\) und Si\((531)\). Die letzteren Messungen ergeben außerdem einen Restwiderstand von weniger als der Hälfte für MnSi auf Si\((321)\) im Vergleich zu Si\((111)\). Dies kann durch die geringere Anzahl an Domänengrenzen erklärt werden und zeigt die erfolgreiche Unterdrückung einer Kristallzwillingsdomäne. Mit Hilfe der Restwiderstände und Hall-Messungen ist die Homogenität des Restwiderstandes und der Ladungsträgerdichte über einen großen Bereich des Wafers gezeigt. Im vierten Teil werden der Anisotrope Magnetwiderstand und der Planare Hall Effekt für MnSi abhängig von den Winkeln von Stromrichtung und Magnetfeld im Bezug auf die Kristallrichtung untersucht. Dies wurde als Werkzeug zur Identifikation der Skyrmionenphase vorgeschlagen [YKT+15]. Der Einfluss der höheren C\(_{3\mathrm{v}}\) Symmetrie des Kristallzwillingssystems und nicht der C\(_3\) Symmetrie des B20 Einzelkristalls ist gezeigt Der Unterschied könnte ein nützliches zusätzliches Werkzeug für die Demonstration der Kristallzwillingsunterdrückung sein. Dies ist allerdings nur für die Rotation mit spezifischen symmetrischen Oberflächen möglich und nicht für die untersuchte unsymmetrische Si\((321)\) Oberfläche. Messungen von MnSi Dünnschichten auf Si\((111)\) oberhalb des kritischen Magnetfeldes zeigen die Abnahme der Anisotropie-Parameter für den Anisotropen Magnetwiderstand und den Planaren Hall-Effekt für steigenden Widerstand, wie aus der Literatur zu erwarten [WC67]. Auch wenn ein direkter Vergleich zu den Parametern für Dünnschichten auf Si\((321)\) nicht möglich ist, können die größeren Parameterwerte bei Si\((321)\) mit der reduzierten Streuung an Domänengrenzen erklärt werden. Die Analyse unterhalb des kritischen Magnetfeldes, der Bereich in dem eine mögliche Skyrmionenphase zu erwarten wäre, wird durch magnetische Hysterese verkompliziert. Nur ein Phasenübergang beim kritischen Magnetfeld kann deutlich gezeigt werden. Damit bleibt die Frage zur Existenz der Skyrmionen in den MnSi Dünnschichten weiter offen. Die beste Möglichkeit diese Frage zu klären wäre ein direkterer Ansatz in Form von Lorentz-Transmissionselektronenmikroskopie, welche schon erfolgreich genutzt wurde um das Skyrmionengitter in dünnen Platten aus Volumenkristall MnSi zu visualisieren [TYY+12]. Für die Detektion von Skyrmionen in der Schichtebene müssten Lamellen für eine Seitenansicht präpariert werden, was prinzipiell möglich erscheint. Die gezeigte erfolgreiche Unterdrückung von einem der Kristallzwillinge für MnSi Schichten auf Si\((321)\) und Si\((531)\) sollte außerdem auf andere Materialsysteme übertragbar sein. Die Kristallzwillingsbildung in FeGe auf Si\((111)\) zu unterdrücken würde zu einem Skyrmionengitter mit einer einzigen Händigkeit bei annähernd Raumtemperatur führen [HC12]. Dies könnte Skyrmionen als Informationsträger in der Spintronik in greifbare Nähe bringen. Bibliographie: [IEM+85] M. Ishida, Y. Endoh, S. Mitsuda, Y. Ishikawa, and M. Tanaka. Crystal Chirality and Helicity of the Helical Spin Density Wave in MnSi. II. Polarized Neutron Diffraction. Journal of the Physical Society of Japan, 54(8):2975, 1985. [DBS+18] B. Das, B. Balasubramanian, R. Skomski, P. Mukherjee, S. R. Valloppilly, G. C. Hadjipanayis, and D. J. Sellmyer. Effect of size confinement on skyrmionic properties of MnSi nanomagnets. Nanoscale, 10(20):9504, 2018. [YKT+15] T. Yokouchi, N. Kanazawa, A. Tsukazaki, Y. Kozuka, A. Kikkawa, Y. Taguchi, M. Kawasaki, M. Ichikawa, F. Kagawa, and Y. Tokura. Formation of In-plane Skyrmions in Epitaxial MnSi Thin Films as Revealed by Planar Hall Effect. Journal of the Physical Society of Japan, 84(10):104708, 2015. [WC67] R. H. Walden and R. F. Cotellessa. Magnetoresistance of Nickel-Copper Single-Crystal Thin Films. Journal of Applied Physics, 38(3):1335, 1967. [TYY+12] A. Tonomura, X. Yu, K. Yanagisawa, T. Matsuda, Y. Onose, N. Kanazawa, H. S. Park, and Y. Tokura. Real-Space Observation of Skyrmion Lattice in Helimagnet MnSi Thin Samples. Nano Letters, 12(3):1673, 2012. [HC12] S. X. Huang and C. L. Chien. Extended Skyrmion Phase in Epitaxial FeGe(111) Thin Films. Physical Review Letters, 108(26):267201, 2012. KW - Molekularstrahlepitaxie KW - Mangansilicide KW - Magnetische Eigenschaft KW - MnSi KW - Epitaxy KW - XRD KW - Twin Domains KW - Twin Suppression KW - Magnetometry KW - Magnetoresistance KW - Anisotropic Magnetoresistance KW - Röntgendiffraktometrie KW - Zwillingsbildung KW - Magnetismus KW - Magnetowiderstand Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-184720 ER -