TY - THES A1 - Bischofberger, Simon T1 - Entwicklung und biomechanische Untersuchungen eines Kreuzbandkonstrukts aus biomaterialbasiertem Kollagen I T1 - Development and biomechanical studies of biomaterial based collagen I anteriorcruciate ligament construct N2 - Das ACL ist eine der am häufigsten verletzten Strukturen des menschlichen Körpers bei Sportunfällen und die Anzahl der Rekonstruktionen wird weiterhin zunehmen. In den letzten Jahren wurden große Fortschritte in der Charakterisierung der biomechanischen Eigenschaften von Sehnen und Bändern erzielt und neue Ansätze auf dem Gebiet des Tissue Engineering eröffnen neue Möglichkeiten. In dieser Arbeit wurde ein ACL-Konstrukt aus biomaterialbasiertem Kollagen I entwickelt und getestet. Die gewonnenen Ergebnisse können als Grundlage für die Herstellung eines Kreuzbandkonstruktes verwendet werden. N2 - The ACL is one of the most common injured structures of the human body in sports accidents and the number of reconstructions will continue to grow. In recent years, major advances in the characterization of the biomechanical properties of tendons and ligaments have been achieved and new approaches in the field of tissue engineering offer new opportunities. In this work an ACL construct of biomaterial based collagen I was developed and tested. The results can be used as a basis for the production of a ligament constructs. KW - Kreuzband KW - Kollagen KW - Konstrukt KW - ACL KW - Collagen KW - Scaffold Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-85648 ER - TY - THES A1 - Blum, Carina T1 - A first step to an integral biointerface design for the early phase of regeneration T1 - Ein erster Schritt zur Etablierung eines integralen biologischen Grenzflächendesigns für die frühe Phase der Regeneration N2 - The implantation of any foreign material into the body automatically starts an immune reaction that serves as the first, mandatory step to regenerate tissue. The course of this initial immune reaction decides on the fate of the implant: either the biomaterial will be integrated into the host tissue to subsequently fulfill its intended function (e.g., tissue regeneration), or it will be repelled by fibrous encapsulation that determines the implant failure. Especially neutrophils and macrophages play major roles during this inflammatory response and hence mainly decide on the biomaterial's fate. For clinically relevant tissue engineering approaches, biomaterials may be designed in shape and morphology as well as in their surface functionality to improve the healing outcome, but also to trigger stem cell responses during the subsequent tissue regeneration phase. The main focus of this thesis was to unravel the influence of scaffold characteristics, including scaffold morphology and surface functionality, on primary human innate immune cells (neutrophils and macrophages) and human mesenchymal stromal cells (hMSCs) to assess their in vitro immune response and tissue regeneration capacity, respectively. The fiber-based constructs were produced either via melt electrowriting (MEW), when the precise control over scaffold morphology was required, or via solution electrospinning (ES), when the scaffold design could be neglected. All the fiber-based scaffolds used throughout this thesis were composed of the polymer poly(ε caprolactone) (PCL). A novel strategy to model and alleviate the first direct cell contact of the immune system with a peptide-bioactived fibrous material was presented in chapter 3 by treating the material with human neutrophil elastase (HNE) to imitate the neutrophil attack. The main focus of this study was put on the effect of HNE towards an RGDS-based peptide that was immobilized on the surface of a fibrous material to improve subsequent L929 cell adhesion. The elastase efficiently degraded the peptide-functionality, as evidenced by a decreased L929 cell adhesion, since the peptide integrated a specific HNE-cleavage site (AAPV-motif). A sacrificial hydrogel coating based on primary oxidized hyaluronic acid (proxHA), which dissolved within a few days after the neutrophil attack, provided an optimal protection of the peptide-bioactivated fibrous mesh, i.e, the hydrogel alleviated the neutrophil attack and largely ensured the biomaterial's integrity. Thus, according to these results, a means to protect the biomaterial is required to overcome the neutrophil attack. Chapter 4 was based on the advancement of melt electrowriting (MEW) to improve the printing resolution of MEW scaffolds in terms of minimal inter-fiber distances and a concomitant high stacking precision. Initially, to gain a better MEW understanding, the influence of several parameters, including spinneret diameter, applied pressure, and collector velocity on mechanical properties, crystallinity, fiber diameter and fiber surface morphology was analyzed. Afterward, innovative MEW designs (e.g., box-, triangle-, round , and wall-shaped scaffolds) have been established by pushing the printing parameters to their physical limits. Further, the inter-fiber distance within a standardized box-structured scaffold was successfully reduced to 40 µm, while simultaneously a high stacking precision was maintained. In collaboration with a co-worker of my department (Tina Tylek, who performed all cell-based experiments in this study), these novel MEW scaffolds have been proven to facilitate human monocyte-derived macrophage polarization towards the regenerative M2 type in an elongation-driven manner with a more pronounced effect with decreasing pore sizes. Finally, a pro-adipogenic platform for hMSCs was developed in chapter 5 using MEW scaffolds with immobilized, complex ECM proteins (e.g., human decellularized adipose tissue (DAT), laminin (LN), and fibronectin (FN)) to test for the adipogenic differentiation potential in vitro. Within this thesis, a special short-term adipogenic induction regime enabled to more thoroughly assess the intrinsic pro-adipogenic capacity of the composite biomaterials and prevented any possible masking by the commonly used long-term application of adipogenic differentiation reagents. The scaffolds with incorporated DAT consistently showed the highest adipogenic outcome and hence provided an adipo-inductive microenvironment for hMSCs, which holds great promise for applications in soft tissue regeneration. Future studies should combine all three addressed projects in a more in vivo-related manner, comprising a co-cultivation setup of neutrophils, macrophages, and MSCs. The MEW-scaffold, particularly due to its ability to combine surface functionality and adjustable morphology, has been proven to be a successful approach for wound healing and paves the way for subsequent tissue regeneration. N2 - Die Implantation eines Biomaterials löst stets eine Immunreaktion im Körper aus, die den ersten zwingenden Schritt zur Geweberegeneration darstellt. Der Verlauf dieser anfänglichen Immunreaktion entscheidet über das Schicksal des Implantats: Entweder wird das Biomaterial in das Wirtsgewebe integriert, um anschließend seine vorgesehene Funktion (z.B. Geweberegeneration) zu erfüllen, oder aber es findet eine Abstoßungsreaktion durch Einkapselung des Implantats statt. Insbesondere Neutrophile und Makrophagen spielen für die Immunantwort eine wichtige Rolle und entscheiden daher hauptsächlich über das Schicksal des Biomaterials. Für klinisch relevante Ansätze der Gewebezüchtung können Biomaterialien sowohl in ihrer Morphologie als auch in ihrer Oberflächenfunktionalität so gestaltet werden, dass sie zum einen die Wundheilung verbessern, zum anderen auch Stammzellreaktionen während der anschließenden Geweberegenerationsphase auslösen. Der Fokus dieser Doktorarbeit lag auf der Beurteilung des Einflusses von Morphologie und Oberflächenfunktionalität fasriger Scaffolds auf die frühe Phase der Geweberegeneration. Insbesondere wurde die in vitro-Immunantwort von primären humanen Immunzellen (Neutrophile und Makrophagen) sowie die Geweberegenerationskapazität von humanen mesenchymalen Stromazellen (hMSCs) untersucht. Die hierfür verwendeten faserbasierten Poly(ε-Caprolacton) (PCL) Scaffolds wurden entweder mittels Solution Electrospinning (ES) oder Melt Electrowriting (MEW) hergestellt. Während ES eine zufällig orientierte Faserablage zur Folge hat, erlaubt MEW eine präzise Kontrolle der Scaffold-Morphologie. Zunächst wurde eine neue Strategie zur Nachahmung und Abmilderung des ersten direkten Zellkontakts während der Immunreaktion vorgestellt. Dabei wurde die Interaktion zwischen Neutrophilen mit einem Peptid-bioaktivierten Fasermaterial untersucht (Kapitel 3), wobei der sog. Neutrophilen-Angriff mittels des Enzyms Neutrophilen Elastase (HNE) nachgeahmt wurde. Das an der Faseroberfläche immobilisierte CGGGAAPVGGRGDS-Peptid verfügte über eine spezifische HNE-Schnittstelle (AAPV-Motiv), an welcher die Elastase das Peptid effizient degradieren konnte. Das Degradationsverhalten des Enzyms wurde anschließend über L929 Zelladhärenz analysiert, welche über das RGDS-Motiv im Peptid vermittelt wurde. Im Rahmen der Arbeit konnte nachgewiesen werden, dass der Neutrophilen-Angriff und die damit einhergehende Verringerung des RGDS-Motivs zu einer reduzierten Zelladhärenz führte. Die Einbettung des Scaffolds in ein Hydrogel auf der Basis von Aldehyd-haltiger Hyaluronsäure (proxHA) bot während des Neutrophilen-Angriffs einen optimalen Schutz der Peptidfunktionalität. Um diese wiederum anschließend für Adhäsionsversuche verfügbar zu machen, konnte das Hydrogelsystem derartig eingestellt werden, dass sich dieses innerhalb weniger Tage auflöste. Auf diese Weise konnte das Hydrogel den Neutrophilen-Angriff abmildern und so die Integrität des Biomaterials weitestgehend gewährleisten. Kapitel 4 behandelt die Präzisierung der Faserablage, insbesondere die Verringerung des Faserabstands, während des MEW-Prozesses. Zunächst wurde der Einfluss verschiedener Parameter (Spinndüsendurchmesser, angelegter Luftdruck und Kollektorgeschwindigkeit) auf die mechanischen Eigenschaften, die Kristallinität, den Faserdurchmesser und die Faseroberflächenmorphologie analysiert. Durch Optimierung der Druckparameter konnten innovative MEW-Designs (u.a. mit runder Porengeometrie) gedruckt werden. Der Abstand zwischen den Fasern in einem Scaffold mit standardisierter kastenförmiger Porengeometrie wurde erfolgreich auf 40 µm reduziert, während gleichzeitig eine hohe Stapelpräzision gewährleistet wurde. In Zusammenarbeit mit einer Kollegin am Lehrstuhl (Tina Tylek, die alle zellbasierten Experimente in dieser Studie durchführte) wurde nachgewiesen, dass diese innovativen MEW-Scaffolds die Polarisierung menschlicher Makrophagen in Richtung des regenerativen M2-Typs förderten. Die Makrophagen-Polarisierung ging einher mit einer Zellelongation, wobei dieser Effekt verstärkt für kleinere Porengrößen auftrat. Abschließend stand die Untersuchung der pro-adipogenen Wirkung von faserfunktionalisierten MEW-Scaffolds im Fokus (Kapitel 5), welche mit ECM-Proteinen, wie beispielsweise dezellularisiertes Fettgewebe (DAT), beschichtet wurden. Das pro-adipogene Potential dieser Materialien wurde mit Hilfe einer adipogenen Kurzzeitinduktion näher analysiert, da eine Langzeitapplikation der Differenzierungsreagenzien diesen Effekt überdeckte. Die Scaffolds mit der DAT-Beschichtung zeigten durchweg die höchste adipogene Differenzierung und boten somit für Stammzellen eine adipo-induzierende Mikroumgebung, weshalb sie für die Anwendung in der Weichgeweberegeneration sehr vielversprechend sind. An diese Arbeit anschließende Experimente sollten alle drei Projekte in einem Co-Kulturansatz von Neutrophilen, Makrophagen und MSCs kombinieren, um so einen stärkeren in vivo-Bezug herzustellen. Hierfür erweist sich das MEW-Scaffold insbesondere durch seine Kombinationsfähigkeit der Oberflächenfunktionalität und Morphologie als Ansatz für einen erfolgreichen Wundheilungsprozess und ebnet damit den Weg für eine bestmögliche Geweberegeneration. KW - Scaffold KW - Biomaterial KW - tissue regeneration KW - melt electrowriting KW - Scaffold Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-212117 ER - TY - THES A1 - Fernández González, Robin T1 - Einfluss von verschieden strukturierten 3D-Poly(2-oxazolin) Scaffolds auf die Proteinexpression humaner Makrophagen T1 - Impact of different structured 3D-Poly(2-oxazoline) scaffolds on the proteinexpression in human macrophages N2 - In vorliegender Dissertationsarbeit wurde der Einfluss von MEW-gedruckten Scaffolds aus dem synthetischen Polymer PnPrOx, einem Poly(2-oxazolin), mit verschiedenen Oberflächenstrukturen (fibrillär, glatt) auf die Proteinexpression menschlicher Makrophagen untersucht. Dabei wurde überprüft, inwiefern die Beschaffenheit der Oberflächenstruktur des Polymers die Polarisierung von Makrophagen auf Proteinebene beeinflusst. N2 - In this dissertation, the impact of MEW-printed scaffolds on protein expression in human macrophages was analyzed. These scaffolds were made of the synthetic polymer PnPrOx, a Poly(2-oxazoline), with different surface structures (fibrous, smooth). The aim was to evaluate in what way the surface structure of the polymer affects polarization of macrophages on a protein level. KW - Scaffold KW - Makrophagen Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-205922 ER - TY - THES A1 - Fuchs, Andreas Rudolf T1 - 3D-Pulverdruck von Zellkulturträgern mit Magnesium-Phosphat-Chemie T1 - 3d powder printing of scaffolds with a magnesium phosphate chemistry N2 - In der vorliegenden Arbeit wurden erstmals im 3D-Pulerdruckverfahren hergestellte Struvit-Matrizes auf ihre Eignung als Trägermaterial für Knochenzellen in vitro untersucht. Hierzu wurde die Zytokompatibilität sowie die chemische Löslichkeit von gedruckten Struvit-Strukturen betrachtet. In einem zweiten Schritt wurde untersucht, ob die biologische Funktion von BMP-2-Lösungen nach Durchlaufen des Druckprozesses erhalten bleibt und ob es möglich ist, BMP-2 unter Beibehaltung seiner biologischen Wirksamkeit direkt in Struvit-Matrizes zu drucken. Als Reaktanten zur Herstellung der Struvit-Matrizes wurde modifiziertes Farringtonit-Pulver mit definierter Körnung und eine äquimolare Binder-Lösung aus DAHP und ADHP verwendet. Die untersuchten Zellkulturträger mit Magnesiumammoniumphosphatchemie zeigten eine ausreichende Zytokompatibilität in vitro. Außerdem wurde gezeigt, dass thermolabile Proteine wie BMP-2 im 3D-Pulverdruckverfahren unter weitgehender Beibehaltung ihrer biologischen Wirksamkeit in vitro grundsätzlich prozessierbar sind. Die Freisetzung direkt eingedruckter Proteine aus den Struvit-Matrizes blieb jedoch hinter den Erwartungen zurück. Mit Struvit steht ein alternatives Zementsystem für den 3D-Pulverdruck zur Verfügung, welches spezifische Vorteile gegenüber den etablierten Calciumphosphaten bietet. Weitere Untersuchungen sind erforderlich, um die Ursache für die geringe BMP-Freisetzung aus den Struvit-Matrizes zu ermitteln und die Vorteile der neutralen Abbindereaktion voll nutzen zu können. N2 - The purpose of the present study was the investigation of 3d powder printed struvite-scaffolds as a carrier material for osteoblastic cells in vitro. For this purpose, their cytocompatibility and their chemical solubility were observed. In a second step we analysed, if BMP-2 could pass through the whole printing process without losing its biological function and furthermore if it is possible to print BMP-2 directly into struvite-scaffolds without a significant loss of biological activity. As reactants for the fabrication of the struvite-scaffolds, we used a modified farringtonite-powder and a binder solution consisting of an equimolar mixture of DAHP and ADHP. The investigated struvite-scaffolds showed a sufficient cytocompatibility. It was also shown, that thermolabile proteins, such as BMP-2, could be processed in 3d powder printing without losing much of their biological activity in vitro. The release of directly imprinted proteins out of the struvite scaffolds remained unsatisfying. Struvite is an alternative hydraulic-setting cement for 3d powder printing with certain advantages over the established calcium phosphate cements. Further investigations are necessary to identify the reasons for the low BMP-release out of the struvite-scaffolds and to take full advantage of the neutral setting reaction of struvite-cements. KW - Struvit KW - Rapid Prototyping KW - Knochen-Morphogenese-Proteine KW - 3D-Pulverdruck KW - BMP KW - Scaffold KW - 3d powder printing KW - scaffold KW - BMP KW - struvite Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-77415 ER - TY - THES A1 - Maier, Alexander T1 - Analyse der Expression osteogener Markerproteine in humanen mesenchymalen Stromazellen nach Kultur auf elektrogesponnenen Scaffolds T1 - Analysis of the expression of osteogenic marker proteins in human mesenchymal stromal cells after culture on electrospun scaffolds N2 - Es wurde die Expression der osteogenen Markerproteine Alkalische Phosphatase, Bone Sialoprotein, Kollagen Typ I und Osteopontin von humanen mesenchymalen Stromazellen nach Kultur auf elektrogesponnenen Scaffolds analysiert. Die Scaffolds wurden mittels der Melt electrospinning writing Methode erstellt und unterschieden sich in ihrer Maschenweite. Anhand weiterer Kontrollversuche auf Monolayern wurde ein möglicher Einfluss der Geometrie auf die Proteinexpression untersucht. N2 - The Expression of the marker proteins alkaline phosphatase, bone sialoprotein, collagen type I and osteopontin of human mesenchymal stromal cells after culture on electrospun scaffolds was analyzed. The scaffolds were made by the melt electrospinning writing method and differed in their mesh size. Further control experiments on monolayers were used to investigate the possible influence of the scaffolds´ geometry on the expression of the proteins. KW - Scaffold KW - mesenchymale Stromazellen Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-184687 ER -