TY - THES A1 - Selle, Reimer Andreas T1 - Adaptive Polarization Pulse Shaping and Modeling of Light-Matter Interactions with Neural Networks T1 - Adaptive Polarisationspulsformung und Modellierung von Licht-Materie-Wechselwirkungen mit Neuronalen Netzwerken N2 - The technique of ultrafast polarization shaping is applied to a model quantum system, the potassium dimer. The polarization dependence of the multiphoton ionization dynamics in this molecule is first investigated in pump–probe experiments, and it is then more generally addressed and exploited in an adaptive quantum control experiment utilizing near–IR polarization–shaped laser pulses. The extension of these polarization shaping techniques to the UV spectral range is presented, and methods for the generation and characterization of polarization–shaped laser pulses in the UV are introduced. Systematic scans of double–pulse sequences are introduced for the investigation and interpretation of control mechanisms. This concept is first introduced and illustrated for an optical demonstration experiment, and it is then applied for the analysis of the intrapulse dumping mechanism that is observed in the excitation of a large dye molecule in solution with ultrashort laser pulses. Shaped laser pulses are employed as a means for obtaining copious amounts of data on light–matter interactions. Neural networks are introduced as a novel tool for generating computer–based models for these interactions from the accumulated data. The viability of this approach is first tested for second harmonic generation (SHG) and molecular fluorescence processes. Neural networks are then utilized for modeling the far more complex coherent strong–field dynamics of potassium atoms. N2 - Die Technik der ultraschnellen Polarisationspulsformung wird auf ein Modell-Quantensystem, das Kalium-Dimer angewandt. Die Polarisationsabhängigkeit der Ionisationsdynamik wird zunächst mit Anrege-Abfrage-Experimenten untersucht, und anschließend in einem adaptiven Optimierungsexperiment mit polarisationsgeformten Nahinfrarot-Laserpulsen ausgenutzt. Die Polarisationspulsformungstechnik wird auf den ultravioletten Spektralbereich erweitert, und es werden Methoden zur Erzeugung und Charakterisierung von polarisationsgeformten UV-Pulsen vorgestellt. Systematische Abtastungen von Doppelpulsfolgen werden für die Untersuchung und Interpretation von Kontrollmechanismen vorgestellt. Geformte Laserpulse werden verwendet, um umfangreiche Daten über die Licht-Materie Wechselwirkung zu sammeln. Neuronale Netzwerke werden erstmals dazu verwendet, um aus den Daten numerische Modelle für die Wechselwirkung von Licht und Materie zu erzeugen. Die Durchführbarkeit dieses Ansatzes wird zunächst an SHG und Fluoreszenzprozessen demonstriert. Neuronale Netzwerke werden desweiteren dazu verwendet, um die weitaus komplexere Dynamik von Kaliumatomen in starken elektromagnetischen Feldern zu modellieren. KW - Lasertechnologie KW - Impulslaser KW - Optimale Kontrolle KW - Pulsformung KW - Neuronale Netzwerke KW - adaptive Optimierung KW - Polarisation KW - pulse shaping KW - neural networks KW - adaptive optimization KW - polarization Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-25596 ER - TY - THES A1 - Herbort, Oliver T1 - Encoding Redundancy for Task-dependent Optimal Control : A Neural Network Model of Human Reaching T1 - Redundante Repräsentationen als Grundlage aufgabenbezogener optimaler Steuerung:Ein neuronales Netzwerk Modell menschlicher Zeigebewegungen N2 - The human motor system is adaptive in two senses. It adapts to the properties of the body to enable effective control. It also adapts to different situational requirements and constraints. This thesis proposes a new neural network model of both kinds of adaptivity for the motor cortical control of human reaching movements, called SURE_REACH (sensorimotor unsupervised learning redundancy resolving control architecture). In this neural network approach, the kinematic and sensorimotor redundancy of a three-joint planar arm is encoded in task-independent internal models by an unsupervised learning scheme. Before a movement is executed, the neural networks prepare a movement plan from the task-independent internal models, which flexibly incorporates external, task-specific constraints. The movement plan is then implemented by proprioceptive or visual closed-loop control. This structure enables SURE_REACH to reach hand targets while incorporating task-specific contraints, for example adhering to kinematic constraints, anticipating the demands of subsequent movements, avoiding obstacles, or reducing the motion of impaired joints. Besides this functionality, the model accounts for temporal aspects of human reaching movements or for data from priming experiments. Additionally, the neural network structure reflects properties of motor cortical networks like interdependent population encoded body space representations, recurrent connectivity, or associative learning schemes. This thesis introduces and describes the new model, relates it to current computational models, evaluates its functionality, relates it to human behavior and neurophysiology, and finally discusses potential extensions as well as the validity of the model. In conclusion, the proposed model grounds highly flexible task-dependent behavior in a neural network framework and unsupervised sensorimotor learning. N2 - Das motorische System des Menschen ist in zweierlei Hinsicht anpassungsfähig. Es passt sich den Eigenschaften des Körpers an, um diesen effektiv zu kontrollieren. Es passt sich aber auch unterschiedlichen situationsabhängigen Erfordernissen und Beschränkungen an. Diese Dissertation stellt ein neues neuronales Netzwerk Modell der motor-kortikalen Steuerung von menschlichen Zeigebewegungen vor, das beide Arten von Anpassungsfähigkeit integriert (SURE_REACH, Sensumotorische, unüberwacht lernende, redundanzauflösende Kontrollarchitektur). Das neuronale Netzwerk speichert kinematische und sensumotorische Redundanz eines planaren, dreigelenkigen Armes in aufgabenunabhängigen internen Modellen mittels unüberwachter Lernverfahrenen. Vor der Ausführung einer Bewegung bereitet das neuronale Netzwerk einen Bewegungsplan vor. Dieser basiert auf den aufgabenunabhängigen internen Modells und passt sich flexibel äu"seren, aufgabenabhängigen Erfordernissen an. Der Bewegungsplan wird dann durch propriozeptive oder visuelle Regelung umgesetzt. Auf diese Weise erklärt SURE_REACH Bewegungen zu Handzielen die aufgabenabhängige Erfordernisse berücksichtigen, zum Beispiel werden kinematische Beschränkungen miteinbezogen, Erfordernisse nachfolgender Aufgaben antizipiert, Hindernisse vermieden oder Bewegungen verletzter Gelenke reduziert. Desweiteren werden zeitliche Eigenschaften menschlicher Bewegungen oder die Ergebnisse von Primingexperimenten erklärt. Die neuronalen Netzwerke bilden zudem Eigenschaften motor-kortikaler Netzwerke ab, zum Beispiel wechselseitig abhängige Raumrepräsentationen, rekurrente Verbindungen oder assoziative Lernverfahren. Diese Dissertation beschreibt das neue Modell, vergleicht es mit anderen Modellen, untersucht seine Funktionalität, stellt Verbindungen zu menschlichem Verhalten und menschlicher Neurophysiologie her und erörtert schlie"slich mögliche Erweiterungen und die Validität des Models. Zusammenfassend stellt das vorgeschlagene Model eine Erklärung für flexibles aufgabenbezogenes Verhalten auf ein Fundament aus neuronalen Netzwerken und unüberwachten sensumotorischen Lernen. KW - Bewegungssteuerung KW - Motorisches Lernen KW - Redundanz KW - Neuronales Netz KW - Optimale Kontrolle KW - Computersimulation KW - Populationscodes KW - dynamisches Programmieren KW - flexibles Verhalten KW - population codes KW - dynamic programming KW - flexible behavior Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-26032 ER - TY - THES A1 - Saska, Martin T1 - Trajectory planning and optimal control for formations of autonomous robots T1 - Die Bahnplanung und die optimale Steuerung für Formationen der autonomen Roboter N2 - In this thesis, we present novel approaches for formation driving of nonholonomic robots and optimal trajectory planning to reach a target region. The methods consider a static known map of the environment as well as unknown and dynamic obstacles detected by sensors of the formation. The algorithms are based on leader following techniques, where the formation of car-like robots is maintained in a shape determined by curvilinear coordinates. Beyond this, the general methods of formation driving are specialized and extended for an application of airport snow shoveling. Detailed descriptions of the algorithms complemented by relevant stability and convergence studies will be provided in the following chapters. Furthermore, discussions of the applicability will be verified by various simulations in existing robotic environments and also by a hardware experiment. N2 - In dieser Arbeit präsentieren wir neuartige Algorithmen für die Steuerung der Formationen der nichtholonomen Roboter und ihre optimale Bahnplanung. Die Algorithmen beruhen auf "leader-follower" Techniken. Die Formationen der "car-like" Roboter sind in einer bestimmten Form von "curvilinear" Koordinaten gehalten. Die Steuerungmethoden der Formationen sind spezialisiert und erweitert um ihre Anwendung auf das Flughafenschneeschaufeln. In dieser Arbeit werden die detaillierten Beschreibungen der Algorithmen durch entsprechende Stabilität- und Konvergenz-Studien gestellt. Ihre Anwendbarkeit wird durch verschiedene Simulationen und eine Hardware-Experiment überprüft. T3 - Forschungsberichte in der Robotik = Research Notes in Robotics - 3 KW - Autonomer Roboter KW - Mobiler Roboter KW - Optimale Kontrolle KW - Formation KW - Steuerung KW - formation driving KW - mobile robots KW - snow shoveling KW - receding horizon control KW - model predictive control KW - trajectory planning Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-53175 SN - 978-3-923959-56-3 ER - TY - THES A1 - Mauder, Markus T1 - Time-Optimal Control of the Bi-Steerable Robot: A Case Study in Optimal Control of Nonholonomic Systems T1 - Zeitoptimale Steuerung des zweiachsgelenkten Roboters: Eine Fallstudie zur optimalen Steuerung nichtholonomer Systeme N2 - In this thesis, time-optimal control of the bi-steerable robot is addressed. The bi-steerable robot, a vehicle with two independently steerable axles, is a complex nonholonomic system with applications in many areas of land-based robotics. Motion planning and optimal control are challenging tasks for this system, since standard control schemes do not apply. The model of the bi-steerable robot considered here is a reduced kinematic model with the driving velocity and the steering angles of the front and rear axle as inputs. The steering angles of the two axles can be set independently from each other. The reduced kinematic model is a control system with affine and non-affine inputs, as the driving velocity enters the system linearly, whereas the steering angles enter nonlinearly. In this work, a new approach to solve the time-optimal control problem for the bi-steerable robot is presented. In contrast to most standard methods for time-optimal control, our approach does not exclusively rely on discretization and purely numerical methods. Instead, the Pontryagin Maximum Principle is used to characterize candidates for time-optimal solutions. The resultant boundary value problem is solved by optimization to obtain solutions to the path planning problem over a given time horizon. The time horizon is decreased and the path planning is iterated to approximate a time-optimal solution. An optimality condition is introduced which depends on the number of cusps, i.e., reversals of the driving direction of the robot. This optimality condition allows to single out non-optimal solutions with too many cusps. In general, our approach only gives approximations of time-optimal solutions, since only normal regular extremals are considered as solutions to the path planning problem, and the path planning is terminated when an extremal with minimal number of cusps is found. However, for most desired configurations, normal regular extremals with the minimal number of cusps provide time-optimal solutions for the bi-steerable robot. The convergence of the approach is analyzed and its probabilistic completeness is shown. Moreover, simulation results on time-optimal solutions for the bi-steerable robot are presented. N2 - In dieser Dissertation wird die zeitoptimale Steuerung des zweiachsgelenkten Roboters behandelt. Der zweiachsgelenkte Roboter, ein Fahrzeug mit zwei voneinander unabhängig lenkbaren Achsen, ist ein komplexes nichtholonomes System mit Anwendungen in vielen Bereichen der Land-Robotik. Bahnplanung und optimale Steuerung sind anspruchsvolle Aufgaben für dieses System, da Standardverfahren hierfür nicht anwendbar sind. Das hier betrachtete Modell des zweiachsgelenkten Roboters ist ein reduziertes kinematisches Modell mit der Fahrgeschwindigkeit und den Lenkwinkeln als Eingangsgrößen. Die Lenkwinkel der beiden Achsen können unabhängig voneinander vorgegeben werden. Das reduzierte kinematische Modell ist ein Kontrollsystem mit affinen und nichtaffinen Eingängen, da die Fahrgeschwindigkeit linear in das System eingeht, während die Lenkwinkel nichtlineare Eingangsgrößen sind. In dieser Arbeit wird ein neuer Ansatz zur Lösung des zeitoptimalen Steuerungsproblems für den zweiachsgelenkten Roboter vorgestellt. Im Gegensatz zu den meisten Standardmethoden für die zeitoptimale Steuerung basiert unser Ansatz nicht ausschließlich auf Diskretisierung und rein numerischen Verfahren. Stattdessen wird das Pontryagin Maximum Prinzip angewendet, um Kandidaten für zeitoptimale Lösungen zu charakterisieren. Das sich dabei ergebende Randwertproblem wird durch Optimierung gelöst, um Lösungen für das Bahnplanungsproblem über einem bestimmten Zeithorizont zu erhalten. Die Bahnplanung wird über einem abnehmenden Zeithorizont iteriert, um eine zeitoptimale Lösung zu approximieren. Eine Optimalitätsbedingung wird eingeführt, die von der Anzahl der Richtungsumkehrungen des Roboters abhängt. Diese Optimalitätsbedingung erlaubt es, nichtoptimale Lösungen mit zu vielen Richtungsumkehrungen auszusondern. Im Allgemeinen liefert unser Ansatz nur Approximationen zeitoptimaler Lösungen, da nur normale reguläre Extremalen als Lösungen für das Bahnplanungsproblem betrachtet werden und die Bahnplanung beendet wird, sobald eine Extremale mit der minimalen Anzahl von Richtungsumkehrungen gefunden wurde. Allerdings ergeben normale reguläre Extremalen mit der minimalen Anzahl von Richtungsumkehrungen für die meisten Zielkonfigurationen des zweiachsgelenkten Roboters zeitoptimale Lösungen. Die Konvergenz des Ansatzes wird untersucht und seine probabilistische Vollständigkeit wird bewiesen. Des Weiteren werden Simulationsergebnisse für zeitoptimale Lösungen des zweiachsgelenkten Roboters präsentiert. KW - Mobiler Roboter KW - Optimale Kontrolle KW - Zeitoptimale Regelung KW - zweiachsgelenkter Roboter KW - nichtholonomes System KW - zeitoptimale Steuerung KW - Pontryagin Maximum Prinzip KW - Nichtlineare Kontrolltheorie KW - Steuerbarkeit KW - bi-steerable robot KW - nonholonomic system KW - time-optimal control KW - Pontryagin Maximum Principle Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-75036 ER - TY - THES A1 - Akindeinde, Saheed Ojo T1 - Numerical Verification of Optimality Conditions in Optimal Control Problems T1 - Numerischen Verifizierung von Optimalitätsbedingungen für Optimalsteurungsprobleme N2 - This thesis is devoted to numerical verification of optimality conditions for non-convex optimal control problems. In the first part, we are concerned with a-posteriori verification of sufficient optimality conditions. It is a common knowledge that verification of such conditions for general non-convex PDE-constrained optimization problems is very challenging. We propose a method to verify second-order sufficient conditions for a general class of optimal control problem. If the proposed verification method confirms the fulfillment of the sufficient condition then a-posteriori error estimates can be computed. A special ingredient of our method is an error analysis for the Hessian of the underlying optimization problem. We derive conditions under which positive definiteness of the Hessian of the discrete problem implies positive definiteness of the Hessian of the continuous problem. The results are complemented with numerical experiments. In the second part, we investigate adaptive methods for optimal control problems with finitely many control parameters. We analyze a-posteriori error estimates based on verification of second-order sufficient optimality conditions using the method developed in the first part. Reliability and efficiency of the error estimator are shown. We illustrate through numerical experiments, the use of the estimator in guiding adaptive mesh refinement. N2 - Diese Arbeit widmet sich der numerischen Verifizierung von Optimalitaetsbedingungen fuer nicht konvexe Optimalsteuerungsprobleme. Im ersten Teil beschaeftigen wir uns mit der a-posteriori Ueberpruefung von hinreichenden Optimalitaetskriterien. Es ist bekannt, dass der Nachweis solcher Bedingungen fuer allgemeine nicht konvexe Optimierungsproblemem mit Nebenbedingungen in Form von partiellen Differentialgleichungen sehr schwierig ist. Wir stellen eine Methode vor, um die hinreichenden Bedingungen zweiter Ordnung fuer eine allgemeine Problemklasse zu testen. Falls die vorgeschlagene Strategie bestaetigt, dass diese Bedingungen erfuellt sind, koennen a-posteriori Fehlerschaetzungen berechnet werden. Ein wesentlicher Bestandteil unserer Methode ist eine Fehleranalyse fuer die Hessematrix des zugrunde liegenden Optimierungsproblems. Es werden Bedingungen hergeleitet, unter denen die positive Definitheit der Hessematrix des diskreten Problems die positive Definitheit der Hessematrix fuer das kontinuierliche Problem nach sich zieht. Diese Ergebnisse werden durch numerische Experimente ergaenzt. Im zweiten Teil untersuchen wir adaptive (Diskretisierungs-)methoden fuer Optimalsteuerungsprobleme mit endlich vielen Kontrollparametern. Basierend auf dem Nachweis hinreichender Optimalitaetsbedingungen zweiter Ordnung analysieren wir a posteriori Fehlerschaetzungen. Dies geschieht unter der Nutzung der Resultate des ersten Teils der Arbeit. Es wird die Zuverlaessigkeit und Effizienz des Fehlerschaetzers bewiesen. Mittels weiterer numerischer Experimente illustrieren wir, wie der Fehlerschaetzer zur Steuerung adaptiver Gitterverfeinerung eingesetzt werden kann. KW - Optimale Kontrolle KW - Nichtkonvexe Optimierung KW - Numerisches Verfahren KW - non-convex optimal control problems KW - sufficient optimality conditions KW - a-posteriori error estimates KW - numerical approximations KW - adaptive refinement Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-76065 ER - TY - THES A1 - Wongkaew, Suttida T1 - On the control through leadership of multi-agent systems T1 - Die Steuerung durch den Hauptagent von Multi-Agenten -Systemen N2 - The investigation of interacting multi-agent models is a new field of mathematical research with application to the study of behavior in groups of animals or community of people. One interesting feature of multi-agent systems is collective behavior. From the mathematical point of view, one of the challenging issues considering with these dynamical models is development of control mechanisms that are able to influence the time evolution of these systems. In this thesis, we focus on the study of controllability, stabilization and optimal control problems for multi-agent systems considering three models as follows: The first one is the Hegselmann Krause opinion formation (HK) model. The HK dynamics describes how individuals' opinions are changed by the interaction with others taking place in a bounded domain of confidence. The study of this model focuses on determining feedback controls in order to drive the agents' opinions to reach a desired agreement. The second model is the Heider social balance (HB) model. The HB dynamics explains the evolution of relationships in a social network. One purpose of studying this system is the construction of control function in oder to steer the relationship to reach a friendship state. The third model that we discuss is a flocking model describing collective motion observed in biological systems. The flocking model under consideration includes self-propelling, friction, attraction, repulsion, and alignment features. We investigate a control for steering the flocking system to track a desired trajectory. Common to all these systems is our strategy to add a leader agent that interacts with all other members of the system and includes the control mechanism. Our control through leadership approach is developed using classical theoretical control methods and a model predictive control (MPC) scheme. To apply the former method, for each model the stability of the corresponding linearized system near consensus is investigated. Further, local controllability is examined. However, only in the Hegselmann-Krause opinion formation model, the feedback control is determined in order to steer agents' opinions to globally converge to a desired agreement. The MPC approach is an optimal control strategy based on numerical optimization. To apply the MPC scheme, optimal control problems for each model are formulated where the objective functions are different depending on the desired objective of the problem. The first-oder necessary optimality conditions for each problem are presented. Moreover for the numerical treatment, a sequence of open-loop discrete optimality systems is solved by accurate Runge-Kutta schemes, and in the optimization procedure, a nonlinear conjugate gradient solver is implemented. Finally, numerical experiments are performed to investigate the properties of the multi-agent models and demonstrate the ability of the proposed control strategies to drive multi-agent systems to attain a desired consensus and to track a given trajectory. N2 - Die Untersuchung von interagierende Multiagent-Modellen ist ein neues mathematisches Forschungsfeld, das sich mit dem Gruppenverhalten von Tieren beziehungsweise Sozialverhalten von Menschen. Eine interessante Eigenschaft der Multiagentensysteme ist kollektives Verhalten. Eine der herausfordernden Themen, die sich mit diesen dynamischen Modellen befassen, ist in der mathematischen Sicht eine Entwicklung der Regelungsmechanismen, die die Zeitevolution dieser Systemen beeinflussen können. In der Doktorarbeit fokussieren wir uns hauptsächlich auf die Studie von Problemen der Steuerbarkeit, Stabilität und optimalen Regelung für Multiagentensysteme anhand drei Modellen wie folgt: Das erste ist die Hegselmann- Krause opinion formation Modell. Die HK-Dynamik beschreibt die Änderung der Meinungen von einzelnen Personen aufgrund der Interaktionen mit den Anderen. Die Studie dieses Model fokussiert auf bestimmte Regelungen, um die Meinungen der Agenten zu betreiben, damit eine gewünschte Zustimmung erreicht wird. Das zweite Model ist das Heider social balance (HB) Modell. Die HB-Dynamik beschreibt die Evolution von Beziehungen in einem sozialen Netzwerk. Ein Ziel der Untersuchung dieses Systems ist die Konstruktion der Regelungsfunktion um die Beziehungen zu steuern, damit eine Freundschaft erreicht wird. Das dritte Modell ist ein Schar-Modell, das in biologischen Systemen beobachteten kollektive Bewegung beschreibt. Das Schar-Model unter Berücksichtigung beinhaltet Selbstantrieb, Friktion, Attraktion Repulsion und Anpassungsfähigkeiten. Wir untersuchen einen Regler für die Steuerung des Schar-Systems, um eine gewünschte Trajektorie zu verfolgen. Üblich wie alle dieser Systeme soll laut unsere Strategie ein Hauptagent, der sich mit alle anderen Mitgliedern des Systems interagieren, hinzugefügt werden und das Regelungsmechanismus inkludiert werden. Unserer Regelung anhand dem Vorgehen mit Führungsverhalten ist unter Verwendung von klassischen theoretischen Regelungsmethode und ein Schema der modellpr ädiktiven Regelung entwickelt. Zur Ausführung der genannten Methode wird für jedes Modell die Stabilität der korrespondierenden Linearsystem in der Nähe von Konsensus untersucht. Ferner wird die lokale Regelbarkeit geprüft. Nur in dem Hegselmann-Krause opinion formation Modell. Der Regler wird so bestimmt, dass die Meinungen der Agenten gesteuert werden können. Dadurch konvergiert es global zu eine gewünschten Zustimmung. Die MPC-Vorgehensweise ist eine optimale Regelung Strategie, die auf numerische Optimierung basiert. Zu Verwendung des MPC-Shema werden die optimalen Regelungsproblemen für jedes Modell formuliert, wo sich die objektive Funktionen in Abhängigkeit von den gewünschten objective des Problems unterscheidet. Die erforderliche Optimalitätsbedingungen erster Ordnung für jedes Problem sind präsentiert. Auÿerdem für die numerische Prozess, eine Sequenz von offenen diskreten Optimalitätssystemen ist nach dem expliziten Runge-Kutta Schema gelöst. In dem Optimierungsverfahren ist ein nicht linear konjugierter Gradientlöser umgesetzt. Schlieÿlich sind numerische Experimenten in der Lage, die Eigenschaften der Multiagent-Modellen zu untersuchen und die Fähigkeiten der gezielten Regelstrategie zu beweisen. Die Strategie nutzt zu betreiben Multiagentensysteme, um einen gewünschten Konsensus zu erreichen und eine gegebene Trajektorie zu verfolgen. KW - Controllability KW - Optimal control problem KW - Multi-agent systems KW - Mehragentensystem KW - Optimale Kontrolle Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-120914 ER - TY - THES A1 - Wurst, Jan-Eric T1 - Hp-Finite Elements for PDE-Constrained Optimization N2 - Diese Arbeit behandelt die hp-Finite Elemente Methode (FEM) für linear quadratische Optimal-steuerungsprobleme. Dabei soll ein Zielfunktional, welches die Entfernung zu einem angestrebten Zustand und hohe Steuerungskosten (als Regularisierung) bestraft, unter der Nebenbedingung einer elliptischen partiellen Differentialgleichung minimiert werden. Bei der Anwesenheit von Steuerungsbeschränkungen können die notwendigen Bedingungen erster Ordnung, die typischerweise für numerische Lösungsverfahren genutzt werden, als halbglatte Projektionsformel formuliert werden. Folglich sind optimale Lösungen oftmals auch nicht-glatt. Die Technik der hp-Diskretisierung berücksichtigt diese Tatsache und approximiert raue Funktionen auf feinen Gittern, während Elemente höherer Ordnung auf Gebieten verwendet werden, auf denen die Lösung glatt ist. Die erste Leistung dieser Arbeit ist die erfolgreiche Anwendung der hp-FEM auf zwei verwandte Problemklassen: Neumann- und Interface-Steuerungsprobleme. Diese werden zunächst mit entsprechenden a-priori Verfeinerungsstrategien gelöst, mit der randkonzentrierten (bc) FEM oder interface konzentrierten (ic) FEM. Diese Strategien generieren Gitter, die stark in Richtung des Randes beziehungsweise des Interfaces verfeinert werden. Um für beide Techniken eine algebraische Reduktion des Approximationsfehlers zu beweisen, wird eine elementweise interpolierende Funktion konstruiert. Außerdem werden die lokale und globale Regularität von Lösungen behandelt, weil sie entscheidend für die Konvergenzgeschwindigkeit ist. Da die bc- und ic- FEM kleine Polynomgrade für Elemente verwenden, die den Rand beziehungsweise das Interface berühren, können eine neue L2- und L∞-Fehlerabschätzung hergeleitet werden. Letztere bildet die Grundlage für eine a-priori Strategie zum Aufdatieren des Regularisierungsparameters im Zielfunktional, um Probleme mit bang-bang Charakter zu lösen. Zudem wird die herkömmliche hp-Idee, die daraus besteht das Gitter geometrisch in Richtung der Ecken des Gebiets abzustufen, auf die Lösung von Optimalsteuerungsproblemen übertragen (vc-FEM). Es gelingt, Regularität in abzählbar normierten Räumen für die Variablen des gekoppelten Optimalitätssystems zu zeigen. Hieraus resultiert die exponentielle Konvergenz im Bezug auf die Anzahl der Freiheitsgrade. Die zweite Leistung dieser Arbeit ist die Entwicklung einer völlig adaptiven hp-Innere-Punkte-Methode, die Probleme mit verteilter oder Neumann Steuerung lösen kann. Das zugrundeliegende Barriereproblem besitzt ein nichtlineares Optimilitätssystem, das eine numerische Herausforderung beinhaltet: die stabile Berechnung von Integralen über Funktionen mit möglichen Singularitäten in Elementen höherer Ordnung. Dieses Problem wird dadurch gelöst, dass die Steuerung an den Integrationspunkten überwacht wird. Die Zulässigkeit an diesen Punkten wird durch einen Glättungsschritt garantiert. In dieser Arbeit werden sowohl die Konvergenz eines Innere-Punkte-Verfahrens mit Glättungsschritt als auch a-posteriori Schranken für den Diskretisierungsfehler gezeigt. Dies führt zu einem adaptiven Lösungsalgorithmus, dessen Gitterverfeinerung auf der Entwicklung der Lösung in eine Legendre Reihe basiert. Hierbei dient das Abklingverhalten der Koeffizienten als Glattheitsindikator und wird für die Entscheidung zwischen h- und p-Verfeinerung herangezogen. N2 - This thesis deals with the hp-finite element method (FEM) for linear quadratic optimal control problems. Here, a tracking type functional with control costs as regularization shall be minimized subject to an elliptic partial differential equation. In the presence of control constraints, the first order necessary conditions, which are typically used to find optimal solutions numerically, can be formulated as a semi-smooth projection formula. Consequently, optimal solutions may be non-smooth as well. The hp-discretization technique considers this fact and approximates rough functions on fine meshes while using higher order finite elements on domains where the solution is smooth. The first main achievement of this thesis is the successful application of hp-FEM to two related problem classes: Neumann boundary and interface control problems. They are solved with an a-priori refinement strategy called boundary concentrated (bc) FEM and interface concentrated (ic) FEM, respectively. These strategies generate grids that are heavily refined towards the boundary or interface. We construct an elementwise interpolant that allows to prove algebraic decay of the approximation error for both techniques. Additionally, a detailed analysis of global and local regularity of solutions, which is critical for the speed of convergence, is included. Since the bc- and ic-FEM retain small polynomial degrees for elements touching the boundary and interface, respectively, we are able to deduce novel error estimates in the L2- and L∞-norm. The latter allows an a-priori strategy for updating the regularization parameter in the objective functional to solve bang-bang problems. Furthermore, we apply the traditional idea of the hp-FEM, i.e., grading the mesh geometrically towards vertices of the domain, for solving optimal control problems (vc-FEM). In doing so, we obtain exponential convergence with respect to the number of unknowns. This is proved with a regularity result in countably normed spaces for the variables of the coupled optimality system. The second main achievement of this thesis is the development of a fully adaptive hp-interior point method that can solve problems with distributed or Neumann control. The underlying barrier problem yields a non-linear optimality system, which poses a numerical challenge: the numerically stable evaluation of integrals over possibly singular functions in higher order elements. We successfully overcome this difficulty by monitoring the control variable at the integration points and enforcing feasibility in an additional smoothing step. In this work, we prove convergence of an interior point method with smoothing step and derive a-posteriori error estimators. The adaptive mesh refinement is based on the expansion of the solution in a Legendre series. The decay of the coefficients serves as an indicator for smoothness that guides between h- and p-refinement. KW - Finite-Elemente-Methode KW - Optimale Kontrolle KW - Elliptische Differentialgleichung KW - finite elements KW - optimal control KW - higher order methods KW - partial differetial equations Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-115027 SN - 978-3-95826-024-5 (print) SN - 978-3-95826-025-2 (online) PB - Würzburg University Press CY - Würzburg ER - TY - THES A1 - Schindele, Andreas T1 - Proximal methods in medical image reconstruction and in nonsmooth optimal control of partial differential equations T1 - Proximale Methoden in der medizinischen Bildrekonstruktion und in der nicht-glatten optimalen Steuerung von partiellen Differenzialgleichungen N2 - Proximal methods are iterative optimization techniques for functionals, J = J1 + J2, consisting of a differentiable part J2 and a possibly nondifferentiable part J1. In this thesis proximal methods for finite- and infinite-dimensional optimization problems are discussed. In finite dimensions, they solve l1- and TV-minimization problems that are effectively applied to image reconstruction in magnetic resonance imaging (MRI). Convergence of these methods in this setting is proved. The proposed proximal scheme is compared to a split proximal scheme and it achieves a better signal-to-noise ratio. In addition, an application that uses parallel imaging is presented. In infinite dimensions, these methods are discussed to solve nonsmooth linear and bilinear elliptic and parabolic optimal control problems. In particular, fast convergence of these methods is proved. Furthermore, for benchmarking purposes, truncated proximal schemes are compared to an inexact semismooth Newton method. Results of numerical experiments are presented to demonstrate the computational effectiveness of our proximal schemes that need less computation time than the semismooth Newton method in most cases. Results of numerical experiments are presented that successfully validate the theoretical estimates. N2 - Proximale Methoden sind iterative Optimierungsverfahren für Funktionale J = J1 +J2, die aus einem differenzierbaren Teil J2 und einem möglicherweise nichtdifferenzierbaren Teil bestehen. In dieser Arbeit werden proximale Methoden für endlich- und unendlichdimensionale Optimierungsprobleme diskutiert. In endlichen Dimensionen lösen diese `1- und TV-Minimierungsprobleme welche erfolgreich in der Bildrekonstruktion der Magnetresonanztomographie (MRT) angewendet wurden. Die Konvergenz dieser Methoden wurde in diesem Zusammenhang bewiesen. Die vorgestellten proximalen Methoden wurden mit einer geteilten proximalen Methode verglichen und konnten ein besseres Signal-Rausch-Verhältnis erzielen. Zusätzlich wurde eine Anwendung präsentiert, die parallele Bildgebung verwendet. Diese Methoden werden auch für unendlichdimensionale Probleme zur Lösung von nichtglatten linearen und bilinearen elliptischen und parabolischen optimalen Steuerungsproblemen diskutiert. Insbesondere wird die schnelle Konvergenz dieser Methoden bewiesen. Außerdem werden abgeschnittene proximale Methoden mit einem inexakten halbglatten Newtonverfahren verglichen. Die numerischen Ergebnisse demonstrieren die Effektivität der proximalen Methoden, welche im Vergleich zu den halbglatten Newtonverfahren in den meisten Fällen weniger Rechenzeit benötigen. Zusätzlich werden die theoretischen Abschätzungen bestätigt. KW - Optimale Kontrolle KW - Proximal-Punkt-Verfahren KW - Bildrekonstruktion KW - Komprimierte Abtastung KW - Optimal Control KW - Elliptic equations KW - Parabolic equations KW - Proximal Method KW - Semismooth Newton Method KW - Medical image reconstruction KW - Sparsity KW - Total Variation KW - Compressed Sensing KW - Magnetic Resonance Imaging KW - Partielle Differentialgleichung Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-136569 ER - TY - THES A1 - Merger, Juri T1 - Optimal Control and Function Identification in Biological Processes T1 - Optimalsteuerung und Funktionenidentifikation bei biologischen Prozessen N2 - Mathematical modelling, simulation, and optimisation are core methodologies for future developments in engineering, natural, and life sciences. This work aims at applying these mathematical techniques in the field of biological processes with a focus on the wine fermentation process that is chosen as a representative model. In the literature, basic models for the wine fermentation process consist of a system of ordinary differential equations. They model the evolution of the yeast population number as well as the concentrations of assimilable nitrogen, sugar, and ethanol. In this thesis, the concentration of molecular oxygen is also included in order to model the change of the metabolism of the yeast from an aerobic to an anaerobic one. Further, a more sophisticated toxicity function is used. It provides simulation results that match experimental measurements better than a linear toxicity model. Moreover, a further equation for the temperature plays a crucial role in this work as it opens a way to influence the fermentation process in a desired way by changing the temperature of the system via a cooling mechanism. From the view of the wine industry, it is necessary to cope with large scale fermentation vessels, where spatial inhomogeneities of concentrations and temperature are likely to arise. Therefore, a system of reaction-diffusion equations is formulated in this work, which acts as an approximation for a model including computationally very expensive fluid dynamics. In addition to the modelling issues, an optimal control problem for the proposed reaction-diffusion fermentation model with temperature boundary control is presented and analysed. Variational methods are used to prove the existence of unique weak solutions to this non-linear problem. In this framework, it is possible to exploit the Hilbert space structure of state and control spaces to prove the existence of optimal controls. Additionally, first-order necessary optimality conditions are presented. They characterise controls that minimise an objective functional with the purpose to minimise the final sugar concentration. A numerical experiment shows that the final concentration of sugar can be reduced by a suitably chosen temperature control. The second part of this thesis deals with the identification of an unknown function that participates in a dynamical model. For models with ordinary differential equations, where parts of the dynamic cannot be deduced due to the complexity of the underlying phenomena, a minimisation problem is formulated. By minimising the deviations of simulation results and measurements the best possible function from a trial function space is found. The analysis of this function identification problem covers the proof of the differentiability of the function–to–state operator, the existence of minimisers, and the sensitivity analysis by means of the data–to–function mapping. Moreover, the presented function identification method is extended to stochastic differential equations. Here, the objective functional consists of the difference of measured values and the statistical expected value of the stochastic process solving the stochastic differential equation. Using a Fokker-Planck equation that governs the probability density function of the process, the probabilistic problem of simulating a stochastic process is cast to a deterministic partial differential equation. Proofs of unique solvability of the forward equation, the existence of minimisers, and first-order necessary optimality conditions are presented. The application of the function identification framework to the wine fermentation model aims at finding the shape of the toxicity function and is carried out for the deterministic as well as the stochastic case. N2 - Mathematische Modellierung, Simulation und Optimierung sind wichtige Methoden für künftige Entwicklungen in Ingenieurs-, Natur- und Biowissenschaften. Ziel der vorliegende Arbeit ist es diese mathematische Methoden im Bereich von biologischen Prozessen anzuwenden. Dabei wurde die Weingärung als repräsentatives Modell ausgewählt. Erste Modelle der Weingärung, die man in der Literatur findet, bestehen aus gewöhnlichen Differentialgleichungen. Diese modellieren den Verlauf der Populationszahlen der Hefe, sowie die Konzentrationen von verwertbarem Stickstoff, Zucker und Ethanol. In dieser Arbeit wird auch die Konzentration von molekularem Sauerstoff betrachtet um den Wandel des Stoffwechsels der Hefe von aerob zu anaerob zu erfassen. Weiterhin wird eine ausgefeiltere Toxizitätsfunktion benutzt. Diese führt zu Simulationsergebnissen, die im Vergleich zu einem linearen Toxizitätsmodell experimentelle Messungen besser reproduzieren können. Außerdem spielt eine weitere Gleichung für die zeitliche Entwicklung der Temperatur eine wichtige Rolle in dieser Arbeit. Diese eröffnet die Möglichkeit den Gärprozess in einer gewünschten Weise zu beeinflussen, indem man die Temperatur durch einen Kühlmechanismus verändert. Für industrielle Anwendungen muss man sich mit großen Fermentationsgefäßen befassen, in denen räumliche Abweichungen der Konzentrationen und der Temperatur sehr wahrscheinlich sind. Daher ist in dieser Arbeit ein System von Reaktion-Diffusions Gleichungen formuliert, welches eine Approximation an ein Modell mit rechenaufwändiger Strömungsmechanik darstellt. Neben der Modellierung wird in dieser Arbeit ein Optimalsteuerungsproblem für das vorgestellte Gärmodell mit Reaktions-Diffusions Gleichungen und Randkontrolle der Temperatur gezeigt und analysiert. Variationelle Methoden werden benutzt, um die Existenz von eindeutigen schwachen Lösungen von diesem nicht-linearen Modell zu beweisen. Das Ausnutzen der Hilbertraumstruktur von Zustands- und Kontrolraum macht es möglich die Existenz von Optimalsteuerungen zu beweisen. Zusätzlich werden notwendige Optimalitätsbedingungen erster Ordnung vorgestellt. Diese charakterisieren Kontrollen, die das Zielfunktional minimieren. Ein numerisches Experiment zeigt, dass die finale Konzentration des Zuckers durch eine passend ausgewählte Steuerung reduziert werden kann. Der zweite Teil dieser Arbeit beschäftigt sich mit der Identifizierung einer unbekannten Funktion eines dynamischen Modells. Es wird ein Minimierungsproblem für Modelle mit gewöhnlichen Differentialgleichungen, bei denen ein Teil der Dynamik aufgrund der Komplexität der zugrundeliegenden Phänomene nicht hergeleitet werden kann, formuliert. Die bestmögliche Funktion aus einem Testfunktionenraum wird dadurch ausgewählt, dass Abweichungen von Simulationsergebnissen und Messungen minimiert werden. Die Analyse dieses Problems der Funktionenidentifikation beinhaltet den Beweis der Differenzierbarkeit des Funktion–zu–Zustand Operators, die Existenz von Minimierern und die Sensitivitätsanalyse mit Hilfe der Messung–zu–Funktion Abbildung. Weiterhin wird diese Funktionenidentifikationsmethode für stochastische Differentialgleichungen erweitert. Dabei besteht das Zielfunktional aus dem Abstand von Messwerten und dem Erwartungswert des stochastischen Prozesses, der die stochastische Differentialgleichung löst. In dem man die Fokker-Planck Gleichung benutzt wird das wahrscheinlichkeitstheoretische Problem einen stochastischen Prozess zu simulieren in eine deterministische partielle Differentialgleichung überführt. Es werden Beweise für die eindeutige Lösbarkeit der Vorwärtsgleichung, die Existenz von Minimierern und die notwendigen Bedingungen erster Ordnung geführt. Die Anwendung der Funktionenidentifikation auf die Weingärung zielt darauf ab die Form der Toxizitätsfunktion herauszufinden und wird sowohl für den deterministischen als auch für den stochastischen Fall durchgeführt. KW - optimal control KW - reaction-diffusion KW - wine fermentation KW - function identification KW - infinite dimensional optimization KW - Optimale Kontrolle KW - Fermentation KW - Wein KW - Infinite Optimierung Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-138900 ER - TY - THES A1 - Gaviraghi, Beatrice T1 - Theoretical and numerical analysis of Fokker-Planck optimal control problems for jump-diffusion processes T1 - Theoretische und numerische Analyse von Fokker-Planck Optimalsteuerungsproblemen von Sprung-Diffusions-Prozessen N2 - The topic of this thesis is the theoretical and numerical analysis of optimal control problems, whose differential constraints are given by Fokker-Planck models related to jump-diffusion processes. We tackle the issue of controlling a stochastic process by formulating a deterministic optimization problem. The key idea of our approach is to focus on the probability density function of the process, whose time evolution is modeled by the Fokker-Planck equation. Our control framework is advantageous since it allows to model the action of the control over the entire range of the process, whose statistics are characterized by the shape of its probability density function. We first investigate jump-diffusion processes, illustrating their main properties. We define stochastic initial-value problems and present results on the existence and uniqueness of their solutions. We then discuss how numerical solutions of stochastic problems are computed, focusing on the Euler-Maruyama method. We put our attention to jump-diffusion models with time- and space-dependent coefficients and jumps given by a compound Poisson process. We derive the related Fokker-Planck equations, which take the form of partial integro-differential equations. Their differential term is governed by a parabolic operator, while the nonlocal integral operator is due to the presence of the jumps. The derivation is carried out in two cases. On the one hand, we consider a process with unbounded range. On the other hand, we confine the dynamic of the sample paths to a bounded domain, and thus the behavior of the process in proximity of the boundaries has to be specified. Throughout this thesis, we set the barriers of the domain to be reflecting. The Fokker-Planck equation, endowed with initial and boundary conditions, gives rise to Fokker-Planck problems. Their solvability is discussed in suitable functional spaces. The properties of their solutions are examined, namely their regularity, positivity and probability mass conservation. Since closed-form solutions to Fokker-Planck problems are usually not available, one has to resort to numerical methods. The first main achievement of this thesis is the definition and analysis of conservative and positive-preserving numerical methods for Fokker-Planck problems. Our SIMEX1 and SIMEX2 (Splitting-Implicit-Explicit) schemes are defined within the framework given by the method of lines. The differential operator is discretized by a finite volume scheme given by the Chang-Cooper method, while the integral operator is approximated by a mid-point rule. This leads to a large system of ordinary differential equations, that we approximate with the Strang-Marchuk splitting method. This technique decomposes the original problem in a sequence of different subproblems with simpler structure, which are separately solved and linked to each other through initial conditions and final solutions. After performing the splitting step, we carry out the time integration with first- and second-order time-differencing methods. These steps give rise to the SIMEX1 and SIMEX2 methods, respectively. A full convergence and stability analysis of our schemes is included. Moreover, we are able to prove that the positivity and the mass conservation of the solution to Fokker-Planck problems are satisfied at the discrete level by the numerical solutions computed with the SIMEX schemes. The second main achievement of this thesis is the theoretical analysis and the numerical solution of optimal control problems governed by Fokker-Planck models. The field of optimal control deals with finding control functions in such a way that given cost functionals are minimized. Our framework aims at the minimization of the difference between a known sequence of values and the first moment of a jump-diffusion process; therefore, this formulation can also be considered as a parameter estimation problem for stochastic processes. Two cases are discussed, in which the form of the cost functional is continuous-in-time and discrete-in-time, respectively. The control variable enters the state equation as a coefficient of the Fokker-Planck partial integro-differential operator. We also include in the cost functional a $L^1$-penalization term, which enhances the sparsity of the solution. Therefore, the resulting optimization problem is nonconvex and nonsmooth. We derive the first-order optimality systems satisfied by the optimal solution. The computation of the optimal solution is carried out by means of proximal iterative schemes in an infinite-dimensional framework. N2 - Die vorliegende Arbeit beschäftigt sich mit der theoretischen und numerischen Analyse von Optimalsteuerungsproblemen, deren Nebenbedingungen die Fokker-Planck-Gleichungen von Sprung-Diffusions-Prozessen sind. Unsere Strategie baut auf der Formulierung eines deterministischen Problems auf, um einen stochastischen Prozess zu steuern. Der Ausgangspunkt ist, die Wahrscheinlichkeitsdichtefunktion des Prozesses zu betrachten, deren zeitliche Entwicklung durch die Fokker-Planck-Gleichung modelliert wird. Dieser Ansatz ist vorteilhaft, da er es ermöglicht, den gesamten Bereich des Prozesses durch die Wirkung der Steuerung zu beeinflussen. Zuerst beschäftigen wir uns mit Sprung-Diffusions-Prozessen. Wir definieren Ausgangswertprobleme, die durch stochastische Differentialgleichungen beschrieben werden, und präsentieren Ergebnisse zur Existenz und Eindeutigkeit ihrer Lösungen. Danach diskutieren wir, wie numerische Lösungen stochastischer Probleme berechnet werden, wobei wir uns auf die Euler-Maruyama-Methode konzentrieren. Wir wenden unsere Aufmerksamkeit auf Sprung-Diffusions-Modelle mit zeit- und raumabhängigen Koeffizienten und Sprüngen, die durch einen zusammengesetzten Poisson-Prozess modelliert sind. Wir leiten die zugehörigen Fokker-Planck-Glei-chungen her, die die Form von partiellen Integro-Differentialgleichungen haben. Ihr Differentialterm wird durch einen parabolischen Operator beschrieben, während der nichtlokale Integraloperator Spr\"{u}nge modelliert. Die Ableitung wird auf zwei unterschiedlichen Arten ausgef\"{u}hrt, je nachdem, ob wir einen Prozess mit unbegrenztem oder beschränktem Bereich betrachten. In dem zweiten Fall muss das Verhalten des Prozesses in der Nähe der Grenzen spezifiziert werden; in dieser Arbeit setzen wir reflektierende Grenzen. Die Fokker-Planck-Gleichung, zusammen mit einem Anfangswert und geeigneten Randbedingungen, erzeugt das Fokker-Planck-Problem. Die Lösbarkeit dieses Pro-blems in geeigneten Funktionenräumen und die Eigenschaften dessen Lösung werden diskutiert, nämlich die Positivität und die Wahrscheinlichkeitsmassenerhaltung. Da analytische Lösungen von Fokker-Planck-Problemen oft nicht verfügbar sind, m\"{u}ssen numerische Methoden verwendet werden. Die erste bemerkenswerte Leistung dieser Arbeit ist die Definition und Analyse von konservativen numerischen Verfahren, die Fokker-Planck-Probleme lösen. Unsere SIMEX1 und SIMEX2 (Splitting-Implizit-Explizit) Schemen basieren auf der Linienmethode. Der Differentialoperator wird durch das Finite-Volumen-Schema von Chang und Cooper diskretisiert, während der Integraloperator durch eine Mittelpunktregel angenähert wird. Dies führt zu einem großen System von gewöhnlichen Differentialgleichungen, das mit der Strang-Marchuk-Splitting-Methode gelöst wird. Diese Technik teilt das ursprüngliche Problem in eine Folge verschiedener Teilprobleme mit einer einfachen Struktur, die getrennt gelöst werden und danach durch deren Anfangswerte miteinander verbunden werden. Dank der Splitting-Methode kann jedes Teilproblem implizit oder explizit gelöst werden. Schließlich wird die numerische Integration des Anfangswertsproblems mit zwei Verfahren durchgeführt, n\"{a}mlich dem Euler-Verfahren und dem Predictor-Corrector-Verfahren. Eine umfassende Konvergenz- und Stabilitätsanalyse unserer Systeme ist enthalten. Darüber hinaus können wir beweisen, dass die Positivität und die Massenerhaltung der Lösung von Fokker-Planck-Problemen auf diskreter Ebene durch die numerischen Lösungen erfüllt werden, die mit den SIMEX-Schemen berechnet wurden. Die zweite bemerkenswerte Leistung dieser Arbeit ist die theoretische Analyse und die numerische Behandlung von Optimalsteuerungsproblemen, deren Nebenbedingungen die Fokker-Planck-Probleme von Sprung-Diffusions-Prozessen sind. Der Bereich der optimalen Steuerung befasst sich mit der Suche nach einer optimalen Funktion, die eine gegebene Zielfunktion minimiert. Wir zielen auf die Minimierung des Unterschieds zwischen einer bekannten Folge von Werten und dem ersten Moment eines Sprung-Diffusions-Prozesses. Auf diese Weise kann unsere Formulierung auch als ein Parameterschätzungsproblem für stochastische Prozesse angesehen werden. Zwei Fälle sind erläutert, in denen die Zielfunktion zeitstetig beziehungsweise zeitdiskret ist. Da die Steuerung ein Koeffizient des Integro-Differentialoperators der Zustandsglei-chung ist und die Zielfunktion einen $ L^1 $-Term beinhaltet, der die dünne Besetzung der Lösung erhöht, ist das Optimierungsproblem nichtkonvex und nichtglatt. Die von der optimalen L\"{o}sung erf\"{u}llten notwendigen Bedingungen werden hergeleitet, die man mit einem System beschreiben kann. Die Berechnung optimaler Lösungen wird mithilfe von Proximal-Methoden durchgeführt, die entsprechend um den unendlichdimensionalen Fall erweitert wurden. KW - Numerical analysis KW - Fokker-Planck KW - optimal control problems KW - jump-diffusion processes KW - Fokker-Planck-Gleichung KW - Optimale Kontrolle Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-145645 ER -