TY - THES A1 - Schmidt, Traudel T1 - Establishment of Hey-triple-KO-ES cells and characterisation of Bre, a Hey binding partner T1 - Etablierung von Hey-triple-KO ES-Zellen und Charakterisierung von Bre, einem Hey Bindepartner N2 - Hey1, Hey2 and HeyL are downstream effectors of the Notch signalling pathway. Hey genes play decisive roles during embryonic development for example in cardiovascular development. However, the precise transcriptional programmes and genes, which are affected by each single Hey gene, are still poorly understood. One drawback for the analysis of Hey1, Hey2 or HeyL single gene function is that these genes are co-expressed in many tissues and share a high degree of functional redundancy. Thus, it was necessary to establish a system, which is either devoid of Hey expression, or just comprises one single Hey gene family member. For this, Hey1(fl/fl)/Hey2(-/-)/HeyL(-/-)- as well as Hey-triple- knock out (KO)-ES cells (embryonic stem cells) were generated in this work, because ES cells and their differentiation as EBs (embryoid bodies) represent a valuable tool for the in vitro analysis of embryonic developmental processes. After the establishment of Hey1(fl/fl)/Hey2(-/-)/HeyL(-/-)- and Hey-triple- KO-ES cells, it could be seen by ALP staining and pluripotency marker expression that loss of Hey expression did not affect ES cell pluripotency features. Thus, these ES cells represent bona fide ES cells and could be further used for the differentiation as EBs. Here, differences in gene expression between Hey1(fl/fl)/Hey2(-/-)/HeyL(-/-)- and Hey-triple- KO-ES cells (after the loss of Hey1) could be observed in realtime-RT-PCR analysis for the endodermal marker AFP as well as for neural and myogenic markers in d10 EBs. However, the establishment of inducible Hey1, Hey2 or HeyL ES cell lines will be essential to confirm these findings and to search for novel Hey target genes. To get further insight into the mode of Hey action, the analysis of Hey interaction partners is necessary. One such binding partner, the Bre protein, has previously been found in a yeast-two-hybrid screen. Bre has been described to be a member of two distinct complexes (i.e. the nuclear BRCA1-A complex with a function in DNA damage response and the cytoplasmic BRISC complex), to directly interact with the TNF-receptor and Fas and to interfere with apoptotic signalling. The Hey-Bre interaction could be further corroborated in this work; yet, it was not possible to narrow down the interaction site of Bre with Hey1. It rather seems that non-overlapping parts of the Bre protein may bind to Hey. This interaction may be direct– pointing to more than one interaction site inside the Bre protein – or via a common binding partner such as the endogenous Bre protein itself. Besides the interaction studies, functional assays were performed for a more detailed characterisation of Hey1 and Bre interaction. Here, it could be shown that Hey1 over-expression did not have any influence on Bre sub-cellular localisation. Interestingly, it could be demonstrated that Bre positively interfered with Hey1 repressive function in luciferase assays at three of four promoters analysed. Moreover, interaction with Bre seems to lead to a stabilisation of Hey1. As Bre has been described to modulate the E3-ligase activity intrinsic to the BRCC complex it was analysed whether Bre over-expression results in an ubiquitination of Hey1. Yet, this could not be observed in the present work. Furthermore, an interaction of Bre with ubiquitinated proteins could not be demonstrated in an ubiquitin binding assay. To obtain a better insight into Bre function, Bre LacZ gene trap-ES cells and animals were generated. However, realtime-RT-analyses revealed that these cells and mice did not show a loss of Bre expression on mRNA level indicating that insertion mutagenesis did not occur as expected. However, embryos derived from these mice could nevertheless be used for the detection of tissues with Bre expression by β-galactosidase staining. Bre deficiency on mRNA levels was only achieved after the deletion of the floxed exon 3 resulting in the generation of Bre del-mice. Bre del-mice were fertile and without any obvious phenotype and they were used for the generation of Bre del- and wt-MEFs (murine embryonic fibroblasts). Characterisation of these cells showed that proliferation was not affected after loss of Bre (neither under normal nor under stress conditions). However, loss of Bre notably resulted in a reduction in the BRCA1 DNA damage response, in a slightly increased sensitivity towards apoptosis induction by FasL treatment and in an increase in the K63-poly-ubiquitin content in Bre del-cytoplasmic fractions, probably linked to a change in the BRISC de-ubiquitinase activity. Even though these results have the same tendencies as observed in former studies, the effects in the present work are less striking. Further studies as well as intercrossing of Bre del- to Hey KO-animals will be necessary to further understand the functional relevance of Hey and Bre interaction. N2 - Hey1, Hey2 und HeyL sind Zielgene des Notch Signalwegs und spielen eine entscheidende Rolle während der Embryonalentwicklung, z. B. bei der Bildung des kardiovaskulären Systems. Die genauen Effekte eines jeden einzelnen Hey Gens auf Transkriptionsprogramme und einzelne Gene sind allerdings noch relativ unbekannt. Einer der Gründe hierfür liegt vermutlich in der Koexpression von Hey-Proteinen in vielen Geweben bzw. in der daraus resultierenden funktionellen Redundanz. Daher sollte in dieser Arbeit ein System entwickelt werden, in dem entweder keines oder jeweils nur eines der Hey-Gene intakt ist. Hierzu wurden Hey1fl/fl/Hey2-/-/HeyL-/- und Hey-triple-knock out (KO) ES-Zellen (embryonale Stammzellen) etabliert. ES-Zellen stellen ein hervorragendes Modellsystem für die Embryonalentwicklung dar, weil ihre in vitro Differenzierung als sog. „embryoid bodies“ (EBs) embryonale Entwicklungsprozesse widerspiegelt. Der Verlust der Hey-Genexpression hatte keinen Einfluss auf den Stammzellcharakter der etablierten Zellen, da sowohl die generierten Hey-triple-KO- als auch die Hey1fl/fl/Hey2-/-/HeyL-/--ES-Zellen eine positive ALP-Färbung sowie eine hohe Expression von Pluripotenzmarkern zeigten. Daher konnten die Zellen im Folgenden als EBs differenziert und auf Genexpressionsunterschiede während der Differenzierung untersucht werden. Zwischen Hey1fl/fl/Hey2-/-/HeyL-/-- (mit intakter Hey1-Expression) und Hey-triple- KO- ES Zellen konnten an EB Tag 10 mittels realtime-RT-PCR Unterschiede in der Genexpression für den endodermalen Marker AFP, sowie für neurale und myogene Marker festgestellt werden. Um diese Ergebnisse zu bestätigen, aber auch, um neue Hey Zielgene ausfindig machen zu können, ist jedoch die Etablierung induzierbarer ES-Zellen (für Hey1, Hey2 bzw. HeyL) notwendig. Um einen tieferen Einblick in die Funktionsweise der Hey-Gene gewinnen zu können ist die Untersuchung von Hey Interaktionspartnern wichtig. Das Bre-Protein ist ein solcher Bindepartner und wurde zuvor in einem Yeast-two-hybrid Assay gefunden. Bre ist in zwei verschiedenen Komplexen beschrieben worden: dem nukleären BRCA1-A-Komplex, der eine Rolle bei der Detektion von DNA-Schäden spielt und dem cytoplasmatischen BRISC-Komplex. Es ist außerdem bekannt, dass Bre direkt mit dem TNF-Rezeptor und mit Fas interagiert und die apoptotische Antwort in der Zelle beeinflusst. Die Interaktion zwischen Bre und Hey1 konnte in dieser Arbeit zunächst bestätigt werden; in weiteren Ko-immunpräzipitations-Experimenten war es aber nicht möglich, den Bereich des Bre-Proteins zu bestimmen, der die Interaktion mit Hey1 vermittelt, da verschiedene nicht überlappende Bereiche des Bre-Proteins eine Interaktion mit Hey1 zeigten. Ob es sich hierbei um direkte Interaktionen handelte und Bre somit mehrere Bindestellen für Hey1 aufweist oder ob die Interaktion indirekt über einen gemeinsamen Bindepartner wie z.B. das endogene Bre-Protein selbst vermittelt wird, ist noch nicht geklärt. Für eine weitere Charakterisierung der Interaktion zwischen den beiden Proteinen wurden funktionelle Versuche durchgeführt. Hierbei konnte gezeigt werden, dass die Überexpression von Hey1 keinen Einfluss auf die subzelluläre Lokalisation des Bre Proteins hat. Mit Hilfe von Luziferase Assays konnte aber interessanterweise nachgewiesen werden, dass Bre bei drei von vier untersuchten Promotern positiv auf die Repression durch Hey1 einwirkte. Außerdem scheint die Überexpression von Bre möglicherweise eine Stabilisierung des Hey1-Proteins zu bewirken. Da Bre eine Verstärkung der E3-Ligasefunktion des BRCC-Komplexes zugeschrieben wird, wurde außerdem untersucht, ob die Überexpression von Bre zu einer Ubiquitinylierung von Hey1 führt. Dies konnte allerdings nicht festgestellt werden. Desweiteren konnte in einem Ubiquitin-Bindeassay keine Interaktion von Bre mit anderen ubiquitinylierten Proteinen gezeigt werden. ... KW - Embryonale Stammzelle KW - Zeitdifferenzierung KW - Gen notch KW - Knockout KW - Hey KW - Bre KW - Hey KW - embryonic stem cells KW - differentiation KW - interaction KW - Bre-knockout KW - Interaktion Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-85459 ER - TY - THES A1 - Hofstetter, Christine T1 - Inhibition of H3K27me-Specific Demethylase Activity During Murine ES cell Differentiation Induces DNA Damage Response T1 - Inhibierung der H3K27me-Spezifischen Demethylase Aktivität in Murin Differenzierenden ES Zellen Induziert die DNA Schadensantwort N2 - Stem cells are defined by their capacity to self-renew and their potential to differentiate into multiple cell lineages. Pluripotent embryonic stem (ES) cells can renew indefinitely while keeping the potential to differentiate into any of the three germ layers (ectoderm, endoderm or mesoderm). For decades, ES cells are in the focus of research because of these unique features. When ES cells differentiate they form spheroid aggregates termed “embryoid bodies” (EBs). These EBs mimic post- implantation embryonic development and therefore facilitate the understanding of developmented mechanisms. During ES cell differentiation, de-repression or repression of genes accompanies the changes in chromatin structure. In ES cells, several mechanisms are involved in the regulation of the chromatin architecture, including post-translational modifications of histones. Post-translational histone methylation marks became one of the best- investigated epigenetic modifications, and they are essential for maintaining pluripotency. Until the first histone demethylase KDM1A was discovered in 2004 histone modifications were considered to be irreversible. Since then, a great number of histone demethylases have been identified. Their activity is linked to gene regulation as well as to stem cell self-renewal and differentiation. KDM6A and KDM6B are H3K27me3/2-specific histone demethylases, which are known to play a central role in the regulation of posterior development by regulating HOX gene expression. So far less is known about the molecular function of KDM6A or KDM6B in undifferentiated and differentiating ES cells. In order to completely abrogate KDM6A and KDM6B demethylase activity in undifferentiated and differentiating ES cells, a specific inhibitor (GSK-J4) was employed. Treatment with GSK-J4 had no effect on the viability or proliferation on ES cells. However, in the presence of GSK-J4 ES cell differentiation was completely abrogated with cells arrested in G1-phase and an increased rate of apoptosis. Global transcriptome analyses in early-differentiating ES cells revealed that only a limited set of genes were differentially regulated in response to GSK-J4 treatment with more genes up- regulated than down-regulated. Many of the up-regulated genes are linked to DNA damage response (DDR). In agreement with this, DNA damage was found in EBs incubated with GSK-J4. A co-localization of H3K27me3 or KDM6B with γH2AX foci, marking DNA breaks, could be excluded. However, differentiating Eed knockout (KO) ES cells, which are devoid of the H3K27me3 mark, showed an attenuated GSK-J4- induced DDR. Finally, hematopoietic differentiation in the presence of GSK-J4 resulted in a reduced colony-forming potential. This leads to the conclusion that differentiation in the presence of GSK-J4 is also restricted to hematopoietic differentiation. In conclusion, my results show that the enzymatic activity of KDM6A and KDM6B is not essential for maintaining the pluripotent state of ES cells. In contrast, the enzymatic activity of both proteins is indispensable for ES cell and hematopoietic differentiation. Additionally KDM6A and KDM6B enzymatic inhibition in differentiating ES cells leads to increased DNA damage with an activated DDR. Therefore, KDM6A and KDM6B are associated with DNA damage and in DDR in differentiating ES cells. N2 - Stammzellen sind definiert durch ihre Fähigkeit zur Selbsterneuerung und dem Potential in multiple Zellinien zu differenzieren. Pluripotente embryonale Stammzellen (ES Zellen) können sich fortlaufend erneuern und besitzen zudem das Potential, in alle drei Keimblätter (Ektoderm, Endoderm oder Mesoderm) zu differenzieren. Auf Grund dieser einzigartigen Eigenschaften sind ES Zellen seit Jahrzehnten im Focus der Wissenschaft. Wenn ES Zellen differenzieren, sind sie in der Lage, sphäroid-förmige Aggregate zu bilden, welche als embryoide Körperchen (EBs) bezeichnet werden. In EBs finden sich Zellen aller 3 Keimblätter und daher dienen sie als in vitro Modell für frühe embryonale Entwicklung. Während der ES Zell Differenzierung verändert die De-repression oder Repression von Genen die Struktur des Chromatins. ES Zellen besitzen eine Vielzahl von Mechanismen, die mit der Regulation des Chromatins assoziiert sind, einschließlich post-translationale Modifikationen an Histonen. Post-translationale Histon- methylierung gehören zu den am häufigsten untersuchten epigenetischen Modifikationen und spielen z.B. ein wichtige Rolle bei der Aufrechterhaltung der Pluripotenz. Bis zur Entdeckung der ersten Histon-Demethylase KDM1A im Jahre 2004 glaubte man, dass Modifikationen an Histonen irreversible sind. Bislang wurden jedoch eine Vielzahl an Histon-Demethylasen identifiziert, welche mit der Genregulation, sowie der Selbsterneuerung und Differenzierung von Stammzelle in Verbindung gebracht werden konnten. KDM6A und KDM6B sind H3K27me3/2-spezifische Histon-Demethylasen, welche bei der posterioren Entwicklung durch Regulation der Hox Gene eine wichtige Rolle spielen. Bislang ist über die molekulare Funktion von KDM6A und KDM6B in nicht differenzierten und differenzierenden ES Zellen wenig bekannt. Um die KDM6A und KDM6B Demethylase Aktivität in nicht differenzierten und differenzierenden ES Zellen außer Kraft zu setzten kam ein spezifischer Inhibitor (GSK-J4) zum Einsatz. Die Behandlung mit GSK-J4 zeigte keine Auswirkungen auf die Viabilität oder Proliferation von nicht differenzierten ES Zellen. Jedoch war die Differenzierung von ES Zellen in Gegenwart von GSK-J4 inhibiert und zeigte einen erhöhten G1-Phase Arrest sowie eine erhöhte Rate an apoptotischen Zellen. Eine globale Transkriptionsanalyse in frühen differenzierenden ES Zellen, in Gegenwart von GSK- J4 zeigte, dass lediglich eine relativ geringe Zahl von Genen differenziell reguliert war. Dabei waren mehr Gene hochreguliert als herunterreguliert. Viele der hochregulierten Gene konnten mit der DNA Schadensantwort in Verbindung gebracht werden. In Übereinstimmung damit konnte in Gegenwart von GSK-J4 in differenzierenden ES Zellen DNA Schaden nachgewiesen werden. Eine Kolokalisation von H3K27me3 oder KDM6B mit γH2AX markierten Foci, welche DNA Schaden markieren, konnte nicht nachgewiesen werden. Nichts desto trotz zeigten GSK-J4 behandelte, differenzierende Eed KO ES Zellen, welche keine H3K27me3 Modifikation besitzen, eine abgemilderte DNA Schadensantwort. In Anwesenheit von GSK-J4 konnte während der hämatopoetischen Differenzierung eine reduzierte Kolonie-Bildung beobachtet werden. Daraus lässt sich schließen, dass in Anwesenheit von GSK-J4 ebenfalls auch die hämatopoetische Differenzierung inhibiert wird. Zusammenfassend zeigen meine Ergebnisse, dass die enzymatische Aktivität von KDM6A und KDM6B für die Aufrechterhaltung des pluripotenten Zustands nicht essenziell ist. Im Gegensatz dazu ist die enzymatische Aktivität von beiden Proteinen unabdingbar für die ES Zell sowie die hämatopoetische Differenzierung. Die enzymatische Inhibierung von KDM6A und KDM6B führt während der Differenzierung zu einem erhöhten DNA Schaden, wodurch die DNA Schadensantwort aktiviert wird. Somit sind KDM6A und KDM6B mit DNA Schaden und der DNA Schadensantwort assoziiert. KW - Embryonale Stammzelle KW - Epigenetic KW - Maus KW - Histone KW - Demethylierung KW - DNS-Schädigung KW - Epigenetik Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-107023 ER - TY - THES A1 - Li, Xiaoli T1 - Functional analyses of ES cell pluripotency by inducible knockdown of the Polycomb group protein Pcgf6 T1 - Functionelle Analysen der ES-Zell-Pluripotenz durch induzierbaren Knockdown des Polycomb group Proteins Pcgf6 N2 - Polycomb group (PcG) proteins are chromatin modifiers involved in heritable gene repression. Two main PcG complexes have been characterized: Polycomb repressive complex (PRC) 2 is involved in the initiation of gene silencing, whereas PRC1 participates in the stable maintenance of gene repression. Pcgf4 (Polycomb group protein, Bmi1) is one of the most studied PRC1 members with essential functions for embryonic development and adult stem cell self renewal. In embryonic stem cells (ES cells), Pcgf4 is poorly expressed while its paralogs (Pcgf1, Pcgf2, Pcgf3, Pcgf5 and Pcgf6) are expressed at higher levels. The relevance of the Pcgf paralog Pcgf6 for the maintenance of ESC pluripotency has not been addressed so far. My analyses revealed that Pcgf6 was the most expressed Pcgf paralog in undifferentiated ES cells. When ES cells differentiated, gene expression of Pcgf6 strongly declined. To investigate the functions of Pcgf6 in ES cells, we established a doxycycline (dox) inducible shRNA-targeted knockdown system according to publications by Seibler et al. (Seibler et al. 2005; Seibler et al. 2007). Following dox-induced knockdown (KD) of Pcgf6, we observed decreased ES cell colony formation. In parallel, gene expression of pluripotency markers Oct4, Nanog and Sox2 was reduced upon dox-treatment, wheras the expression of mesoderm genes such as T (Brachyury) were up-regulated. Further, microarray analysis revealed de-repression of several spermatogenesis-specic genes upon Pcgf6-KD, suggesting that Pcgf6 may play a role during spermatogenesis. Upon in vitro differentiation, Pcgf6-KD ES cells showed increased hemangioblast formation, paralleled by increased hematopoietic development. In summary, results of this study suggest that Pcgf6 is involved in maintaining ES cell identity by repressing lineage-specific gene expression in undifferentiated ES cells. N2 - Polycomb Gruppe (PcG) Proteine sind Chromatin-Modifikatoren, die an der vererbbaren Genrepression beteiligt sind. Primär wurden bisher zwei PcG-Komplexe charakterisiert: Polycomb-repressiv-Komplex (PRC) 2, der die ersten Schritte des Gen-Silencings übernimmt, und PRC1, der an der stabilen Aufrechterhaltung der Genrepression beteiligt ist. Pcgf4 (Bmi1) ist das am besten untersuchte PRC1-Mitglied. Pcgf4 hat wichtige Funktionen in der embryonalen Entwicklung und in der Selbst-Erneuerung adulter Stammzellen. In embryonalen Stammzellen (ES-Zellen) wird Pcgf4 kaum exprimiert, während seine Paraloge (Pcgf1, Pcgf2, Pcgf3, Pcgf5 und Pcgf6) höher exprimiert sind. Die Bedeutung des Pcgf-Paralogs Pcgf6 für die Aufrechterhaltung der Pluripotenz von ES-Zellen wurde bislang nicht untersucht. Meine Analysen zeigten, dass Pcgf6 der am meisten exprimierter Pcgf-Paralog in undifferenzierten ES-Zellen war. Während der Differenzierung von ES-Zellen wurde die Expression von Pcgf6 stark reduziert. Um die Funktionen von Pcgf6 in ES-Zellen zu untersuchen, habe ich ein Doxycyclin (dox)-induzierbares shRNA-Expressionssystem für den gezielten Knockdown (KD) von Pcgf6 nach Seibler et al. (Seibler et al. 2005; Seibler et al. 2007) etabliert. Nach dox-induziertem KD von Pcgf6 beobachtete ich eine Verringerung der ES-Zell-Kolonie-Bildung. Die Expression der Pluripotenzmarker Oct4, Nanog und Sox2 war nach Dox-Behandlung reduziert, während die Expression mesodermaler Gene, wie z.B. T (Brachyury), hochreguliert wurden. Außerdem zeigten Microarray-Analysen eine De-Repression Spermatogenese-spezifischer Gene nach KD von Pcgf6, was darauf hindeutete, dass Pcgf6 eine Rolle in der Spermatogenese spielen könnte. In der in-vitro- Differenzierung zeigten Pcgf6-KD-ES-Zellen, neben einer erhöhten Bildung von Hämangioblasten, mehr hämatopoetische Vorläufer. Zusammenfassend zeigten die Daten dieser Studie, dass das Pcgf-Paralog Pcgf6 an der Aufrechterhaltung der ES-Zell-Identität durch Unterdrücken lineage-spezifischer Geneexpression in undifferenzierten ES-Zellen beteiligt ist. KW - Embryonale Stammzelle KW - Pluripotenz KW - ES cells KW - Polycomb KW - Epigenetik KW - ES Zellen Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-84015 ER - TY - THES A1 - Ahmad, Ruhel T1 - Neurogenesis from parthenogenetic human embryonic stem cells T1 - Neurogenese von parthenogenetischen humanen embryonalen Stammzellen N2 - Imprinted genes play important roles in brain development. As the neural developmental capabilities of human parthenogenetic embryonic stem cells (hpESCs) with only a maternal genome were not assessed in great detail, hence here the potential of hpESCs to differentiate into various neural subtypes was determined. In addition DNA methylation and expression of imprinted genes upon neural differentiation was also investigated. The results demonstrated that hpESC-derived neural stem cells (hpNSCs) showed expression of NSC markers Sox1, Nestin, Pax6, and Musashi1 (MS1), the silencing of pluripotency genes (Oct4, Nanog) and the absence of activation of neural crest (Snai2, FoxD3) and mesodermal (Acta1) markers. Moreover, confocal images of hpNSC cultures exhibited ubiquitous expression of NSC markers Nestin, Sox1, Sox2 and Vimentin. Differentiating hpNSCs for 28 days generated neural subtypes with neural cell type-specific morphology and expression of neuronal and glial markers, including Tuj1, NeuN, Map2, GFAP, O4, Tau, Synapsin1 and GABA. hpNSCs also responded to region-specific differentiation signals and differentiated into regional phenotypes such as midbrain dopaminergic- and motoneuron-type cells. hpESC-derived neurons showed typical neuronal Na+/K+ currents in voltage clamp mode, elicited multiple action potentials with a maximum frequency of 30 Hz. Cell depicted a typical neuron-like current pattern that responded to selective pharmacological blockers of sodium (tetrodotoxin) and potassium (tetraethylammonium) channels. Furthermore, in hpESCs and hpNSCs the majority of CpGs of the differentially methylated regions (DMRs) KvDMR1 were methylated whereas DMR1 (H19/Igf2 locus) showed partial or complete absence of CpG methylation, which is consistent with a parthenogenetic (PG) origin. Upon differentiation parent-of-origin-specific gene expression was maintained in hpESCs and hpNSCs as demonstrated by imprinted gene expression analyses. Together this shows that despite the lack of a paternal genome, hpNSCs are proficient in differentiating into glial- and neuron-type cells, which exhibit electrical activity similar to newly formed neurons. Moreover, maternal-specific gene expression and imprinting-specific DNA-methylation are largely maintained upon neural differentiation. hpESCs are a means to generate histocompatible and disease allele-free ESCs. Additionally, hpESCs are a unique model to study the influence of imprinting on neurogenesis. N2 - Imprinted Gene spielen eine wichtige Rolle bei der Gehirnentwicklung. Da das neurale Entwicklungspotenzial von hpESCs bisher noch nicht ausführlich untersucht wurde, war das Ziel dieser Arbeit das Differenzierungspotenzial von hpESCs zu verschiedenen neuralen Subtypen zu untersuchen. Außerdem wurden die DNA-Methylierung und Expression imprinted Gene in hpESCs während der neuralen Differenzierung analysiert. Die Ergebnisse zeigten, dass von hpESCs abgeleitete neurale Stammzellen (hpNSCs) die NSC-Marker Sox1, Nestin, Pax6 und Musashi1 (MS1) exprimierten, Pluripotenzmarker-Gene (Oct4, Nanog) abschalteten und keine Aktivierung von Markern der Neuralleistenzellen (Snai2, FoxD3) sowie dem mesodermalen Marker Acta1 stattfand. Immunfärbungen zeigten weiterhin, dass aus hpESCs abgeleitete Stammzellen die NSC-Marker Nestin, Sox1, Sox2 und Vimentin auf Proteinebene exprimierten. Durch gerichtete neurale Differenzierung für 28 Tage konnten aus hpESCs neurale Subtypen abgeleitet werden, die eine neurale Zelltyp-spezifische Morphologie aufweisen und positiv für neuronale und gliale Marker wie Tuj1, NeuN, Map2, GFAP, O4, Tau, Synapsin1 und GABA sind. Um aus hpNSCs dopaminerge und Motoneuronen abzuleiten, wurden während der Differenzierung Morphogene und trophische Faktoren zugegeben. Elektrophysiologische Analysen konnten zeigen, dass die in vitro differenzierten Neuronen, die von hpESCs abgeleitet wurden, für Neurone typische Na+/K+ Ströme sowie Aktionspotentiale (30 Hz) vorweisen ausbilden und auf ausgewählte pharmakologische Natrium- (Tetrodotoxin) und Kalium- (Tetraethylammonium) Kanal-Blocker reagierten. Desweiteren war der Großteil der CpGs von differentiell methylierten Regionen (DMRs) KvDMR1 in hpESCs und hpNSCs methyliert, während DMR1 (H19/Igf2 Locus) eine partiell oder komplett abwesende CpG-Methylierung zeigte, was dem parthenogenetischen Ursprung entspricht. Während der Differenzierung wurde die elternabhängige (parent-of-origin) spezifische Genexpression in hpESCs und hpNSCs aufrechterhalten, wie mit Genexpressionsanalysen imprinted Gene gezeigt werden konnte. In der Summe zeigen die hier dargestellten Ergebnisse, dass hpESCs, die kein paternales Genom besitzen, keine Beeinträchtigung im neuralen Differenzierungspotential zeigten und zu Gliazellen und Neurone differenziert werden konnten. Elektrophysiologische Analysen zeigten ferner, dass von hpESCs abgeleitete Neurone funktionell sind. Zudem wird die Expression maternal-spezifischer Gene und die Imprinting-spezifische DNA-Methylierung während der Differenzierung größtenteils aufrechterhalten. In der Summe stellen hpESCs ein einzigartiges Modell dar, um den Einfluss des Imprintings auf die Neurogenese zu untersuchen. KW - Embryonale Stammzelle KW - Neurogenese KW - Zelldifferenzierung KW - Stammzelle KW - human parthenogenetic stem cells KW - in vitro neural differentiation KW - human parthenogenetic neural stem cells KW - PG neurons KW - imprinting. Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-75935 ER - TY - THES A1 - Choi, Soon Won T1 - Analyse des neuralen Differenzierungspotentials androgenetischer muriner embryonaler Stammzellen in vitro und in vivo T1 - Analysis of the neural differentiation potential of androgenetic murine embryonic stem cells in vitro and in vivo N2 - Pluripotente embryonale Stammzellen (ES Zellen) sind aufgrund ihrer Selbsterneuerung- und ihrer Multiliniendifferenzierungs-Fähigkeiten interessante Zelltypen sowohl für die Grundlagenforschung als auch für die regenerative Medizin. Uniparentale Zygoten mit zwei väterlichen (androgenetisch: AG) oder zwei mütterlichen (gynogenetisch: GG; parthenogenetisch: PG) Genomen sind nicht in der Lage, lebensfähige Nachkommen zu entwickeln. Sie entwickeln sich jedoch erfolgreich bis zu Blastozysten, aus denen pluripotente ES Zellen abgeleitet werden können. Mit uniparentalen ES Zellen können zum Einen parent-of-origin-spezifische Einflüsse auf die Gewebeentwicklung untersucht und zum Anderen histokompatible und somit therapeutisch relevante Zellpopulationen generiert werden. Obwohl viele Aspekte des in vitro und in vivo Differenzierungspotenzials von PG ES Zellen aus mehreren Spezies in den zurückliegenden Jahren untersucht worden sind, ist das volle Differenzierungspotenzial von AG ES Zellen bisher nicht erschöpfend analysiert worden. Zellen der Inneren Zellmasse (ICM) von PG und AG Embryonen zeigten nach Blastozysteninjektion ortsspezifische Kontribution zur Gehirnentwicklung, wobei PG Zellen bevorzugt im Cortex und im Striatum lokalisierten, während sich AG Zellen verstärkt im Hypothalamus nachzuweisen waren. Aus AG und GG ES Zellen konnten zudem in vitro hämatopoetische Stammzellen differenziert werden, die nach Transplantation im Mausmodell tumorfrei das gesamte hämatopoetische System repopulierten. Weiterhin konnte gezeigt werden, dass AG ES Zellen ein mit N ES Zellen vergleichbares in vitro und in vivo Differenzierungspotential in der frühen neuralen Entwicklung besitzen. Das Ziel meiner Arbeit war es zu untersuchen, ob murine AG ES Zellen sich zu verschiedenen neuronalen Subtypen entwickeln können und ob sie tumorfrei neurale Zelltypen nach Transplantation bilden können. In dieser Studie wurden AG ES Zellen im Vergleich zu biparentalen (N) ES Zellen in vitro über Embryoid Bodies (EBs) zunächst zu pan-neuronalen Vorläuferzellen (pNPCs) und weiter zu Neuron- und Glialzell-Marker (ß-III Tubulin (Tuj-1), NeuN, TH und GFAP) positiven Zellen differenziert.. Weiterhin wurde das dopaminerge (DA) Differenzierungspotential von AG ES Zellen näher untersucht, indem sie in einem Ko-Kultursystem mit Stromazellen gerichtet differenziert wurden. Diese DA Neurone wurden durch semiquantitative RT-PCR Analysen und immunhistochemische Färbungen für DA Neuronen-spezifische Marker (TH, PITX3, Nurr1) charakterisiert. Darüber hinaus wurde der Imprinting-Status von neun ausgesuchten Loci in AG und N ES, pNPC und DA Zellkulturen durch real-time RT-PCR Analysen untersucht. Die hier analysierten Gene, die im Gehirn allelspezifisch exprimiert werden, zeigten in pNPCs eine parent-of-origin-spezifische Genexpression mit Ausnahme von Ube3a. Nach Blastozysteninjektion wurde die Bildung von DA Neuronen in AG und N fötalen chimären Gehirnen untersucht. Hier zeigte sich, dass TH- and PITX3-positive AG DA Neurone abgeleitet aus ES Zellen im Mittelhirn von E12.5 und E16.5 Chimären detektiert werden konnten. Diese fötalen chimären Gehirne zeigten eine verbreitete und gleichmäßige Verteilung der AG Donorzellen in den Arealen Cortex, Striatum und Hypothalamus. Stereotaktische Transplantationen von AG und N pNPCs in ein „Traumatic Brain Injury (TBI) Model“ zeigten zudem, dass frühe Differenzierungsstufen von AG und N pNPC-Kulturen häufig Teratome generierten. Durch die Transplantation von langzeitdifferenzierten AG oder N pNPC-Kulturen konnte jedoch ein tumorfreies Anwachsen neuronaler und glialer Zellen erreicht werden. Die immunhistochemische Auswertung von Transplantaten bezüglich der Donorzellkontribution im Gehirn erfolgten bis zu drei Monaten nach der Injektion. Die vorliegenden Ergebnisse zeigen, dass AG ES Zellen neurales Differenzierungspotential, speziell zur Bildung von DA Neuronen, besitzen. Darüber hinaus konnte gezeigt werden, dass langzeitdifferenzierte AG und N pNPCs nach Transplantation im traumatisierte Mausgehirnmodell tumorfrei anwachsen und anschließend zu neuralen Zellen differenzieren können. Trotz unbalancierter Genexpression von imprinted Genen lässt sich feststellen, dass AG ES Zellen therapeutisch relevant für zukünftige zelluläre Ersatzstrategien von Nervengewebe sein können. N2 - Pluripotent embryonic stem (ES) cells are interesting cell types both for basic research and for regenerative medicine because of their enormous self-renewal and multi-lineage differentiation capacity. Uniparental zygotes with two paternal (androgenetic: AG) or two maternal (gynogenetic: GG; parthenogenetic: PG) genomes are not able to develop into viable offsprings but develop successfully up to blastocysts, from which ES cells can be derived. Uniparental ES cells can be utilized to study parent-of-origin-specific influences on tissue development and histocompatible, and therapeutically-relevant cell populations could be generated from them. While many aspects of the in vitro and in vivo differentiation potential of PG uniparental ES cells were studied for several species, the capacity of AG ES cells have not been analyzed to the same extent. PG and AG inner cell mass (ICM) cells showed region-specific contribution in brain development following blastocyst injection. While PG cells were preferentially located in the cortex and the striatum, AG cells were most commonly found in the hypothalamus. Hematopoietic cells derived from AG and GG ES cells generated after transplantation long-term repopulating and tumor-free complete hematopoietic engraftments in irradiated transplant recipients. Furthermore, AG and N ES cells also show a comparable in vitro and in vivo neural differentiation potential during early development, The aim of the present study was to investigate whether AG ES cells can develop into specific neuronal subtypes, and whether they can form neural cell types after transplantation, lacking teratoma formation. In this study, AG ES cells and as controls biparental (N) ES cells were differentiated in vitro via embryoid bodies (EBs) into pan-neural progenitor cells (pNPCs) and consequently to cells which expressed a variety of neuron- and glial cell-specific markers, including ß-III tubulin (Tuj-1), NeuN, TH, and GFAP. Furthermore the dopaminergic (DA) differentiation potential of AG ES cells was investigated more closely, by directed neuronal differentiation of AG ES cells in a co-culture system with stromal cells. The resulting neurons were characterized by semi-quantitative RT-PCR analyses and immunohistochemical stainings for DA neuron-specific markers (TH, PITX3, Nurr1). Additionally, the imprinting status of nine selected loci in AG and N ES cell, pNPC and DA cell cultures was studied by real-time RT-PCR analyses. The genes analyzed here, known to be expressed allel-specific in the brain, maintained in pNPCs a parent-of-origin-specific gene expression with the exception of UBE3A.   Following blastocyst injection the formation of DA neurons was studied in the AG and N chimeric fetal brains. TH- and PITX3-positive DA neurons derived from ES AG cells in the midbrain of E12.5 and E16.5 chimeras were detected. These chimeric fetal brains showed a widespread and balanced distribution of AG cells in the brain areas Cortex, Striatum and Hypothalamus. Stereotactic transplantations of AG and N pNPCs in a "Traumatic Brain Injury (TBI) Model" showed that early neural differentiation stages of AG and N pNPC cultures tended to generate teratomas. Importantly, neuronal and glial tumor-free engraftments could be achieved by the transplantation of long-term differentiated AG or N pNPC cultures. The immunohistochemical assessment of the donor cell contribution of individual transplants was performed up to three months post-transplantation. The results presented here show that AG ES cells have DA neuronal differentiation potential, and that long-term differentiated AG and N pNPCs can engraft tumor-free in a brain injury model. In spite of imbalanced imprinted gene expressions my results suggest that AG ES cells could be therapeutically relevant for future cellular replacement strategies of neural tissues. KW - Deutschland / Stammzellgesetz KW - Dopaminerge Nervenzelle KW - Nervenzelle KW - Embryonale Stammzelle KW - Stammzelle KW - Embryonale Stammzelle KW - androgenetisch KW - Differenzierung KW - Imprinting KW - Transplantation KW - embryonic stem cell KW - androgenetic KW - differentiation KW - imprinting KW - transplantation Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-48452 ER -