TY - JOUR A1 - Meier, Johannes P. A1 - Möbus, Selina A1 - Heigl, Florian A1 - Asbach-Nitzsche, Alexandra A1 - Niller, Hans Helmut A1 - Plentz, Annelie A1 - Avsar, Korkut A1 - Heiß-Neumann, Marion A1 - Schaaf, Bernhard A1 - Cassens, Uwe A1 - Seese, Bernd A1 - Teschner, Daniel A1 - Handzhiev, Sabin A1 - Graf, Uwe A1 - Lübbert, Christoph A1 - Steinmaurer, Monika A1 - Kontogianni, Konstantina A1 - Berg, Christoph A1 - Maieron, Andreas A1 - Blaas, Stefan H. A1 - Wagner, Ralf A1 - Deml, Ludwig A1 - Barabas, Sascha T1 - Performance of T-Track\(^®\) TB, a novel dual marker RT-qPCR-based whole-blood test for improved detection of active tuberculosis JF - Diagnostics N2 - Tuberculosis (TB) is one of the leading causes of death by an infectious disease. It remains a major health burden worldwide, in part due to misdiagnosis. Therefore, improved diagnostic tests allowing the faster and more reliable diagnosis of patients with active TB are urgently needed. This prospective study examined the performance of the new molecular whole-blood test T-Track\(^®\) TB, which relies on the combined evaluation of IFNG and CXCL10 mRNA levels, and compared it to that of the QuantiFERON\(^®\)-TB Gold Plus (QFT-Plus) enzyme-linked immunosorbent assay (ELISA). Diagnostic accuracy and agreement analyses were conducted on the whole blood of 181 active TB patients and 163 non-TB controls. T-Track\(^®\) TB presented sensitivity of 94.9% and specificity of 93.8% for the detection of active TB vs. non-TB controls. In comparison, the QFT-Plus ELISA showed sensitivity of 84.3%. The sensitivity of T-Track\(^®\) TB was significantly higher (p < 0.001) than that of QFT-Plus. The overall agreement of T-Track\(^®\) TB with QFT-Plus to diagnose active TB was 87.9%. Out of 21 samples with discordant results, 19 were correctly classified by T-Track\(^®\) TB while misclassified by QFT-Plus (T-Track\(^®\) TB-positive/QFT-Plus-negative), and two samples were misclassified by T-Track\(^®\) TB while correctly classified by QFT-Plus (T-Track\(^®\) TB-negative/QFT-Plus-positive). Our results demonstrate the excellent performance of the T-Track\(^®\) TB molecular assay and its suitability to accurately detect TB infection and discriminate active TB patients from non-infected controls. KW - tuberculosis KW - TB KW - active TB KW - infection detection KW - T-Track\(^®\) TB KW - QuantiFERON\(^®\)-TB Gold Plus KW - mRNA KW - RT-qPCR KW - CXCL10 KW - IFNG Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-304113 SN - 2075-4418 VL - 13 IS - 4 ER - TY - JOUR A1 - Feldheim, Jonas A1 - Kessler, Almuth F. A1 - Feldheim, Julia J. A1 - Schmitt, Dominik A1 - Oster, Christoph A1 - Lazaridis, Lazaros A1 - Glas, Martin A1 - Ernestus, Ralf-Ingo A1 - Monoranu, Camelia M. A1 - Löhr, Mario A1 - Hagemann, Carsten T1 - BRMS1 in gliomas — an expression analysis JF - Cancers N2 - The metastatic suppressor BRMS1 interacts with critical steps of the metastatic cascade in many cancer entities. As gliomas rarely metastasize, BRMS1 has mainly been neglected in glioma research. However, its interaction partners, such as NFκB, VEGF, or MMPs, are old acquaintances in neurooncology. The steps regulated by BRMS1, such as invasion, migration, and apoptosis, are commonly dysregulated in gliomas. Therefore, BRMS1 shows potential as a regulator of glioma behavior. By bioinformatic analysis, in addition to our cohort of 118 specimens, we determined BRMS1 mRNA and protein expression as well as its correlation with the clinical course in astrocytomas IDH mutant, CNS WHO grade 2/3, and glioblastoma IDH wild-type, CNS WHO grade 4. Interestingly, we found BRMS1 protein expression to be significantly decreased in the aforementioned gliomas, while BRMS1 mRNA appeared to be overexpressed throughout. This dysregulation was independent of patients’ characteristics or survival. The protein and mRNA expression differences cannot be finally explained at this stage. However, they suggest a post-transcriptional dysregulation that has been previously described in other cancer entities. Our analyses present the first data on BRMS1 expression in gliomas that can provide a starting point for further investigations. KW - glioblastoma KW - metastasis KW - suppressor KW - behavior KW - mRNA KW - protein Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-319225 SN - 2072-6694 VL - 15 IS - 11 ER - TY - JOUR A1 - Marquardt, André A1 - Hartrampf, Philipp A1 - Kollmannsberger, Philip A1 - Solimando, Antonio G. A1 - Meierjohann, Svenja A1 - Kübler, Hubert A1 - Bargou, Ralf A1 - Schilling, Bastian A1 - Serfling, Sebastian E. A1 - Buck, Andreas A1 - Werner, Rudolf A. A1 - Lapa, Constantin A1 - Krebs, Markus T1 - Predicting microenvironment in CXCR4- and FAP-positive solid tumors — a pan-cancer machine learning workflow for theranostic target structures JF - Cancers N2 - (1) Background: C-X-C Motif Chemokine Receptor 4 (CXCR4) and Fibroblast Activation Protein Alpha (FAP) are promising theranostic targets. However, it is unclear whether CXCR4 and FAP positivity mark distinct microenvironments, especially in solid tumors. (2) Methods: Using Random Forest (RF) analysis, we searched for entity-independent mRNA and microRNA signatures related to CXCR4 and FAP overexpression in our pan-cancer cohort from The Cancer Genome Atlas (TCGA) database — representing n = 9242 specimens from 29 tumor entities. CXCR4- and FAP-positive samples were assessed via StringDB cluster analysis, EnrichR, Metascape, and Gene Set Enrichment Analysis (GSEA). Findings were validated via correlation analyses in n = 1541 tumor samples. TIMER2.0 analyzed the association of CXCR4 / FAP expression and infiltration levels of immune-related cells. (3) Results: We identified entity-independent CXCR4 and FAP gene signatures representative for the majority of solid cancers. While CXCR4 positivity marked an immune-related microenvironment, FAP overexpression highlighted an angiogenesis-associated niche. TIMER2.0 analysis confirmed characteristic infiltration levels of CD8+ cells for CXCR4-positive tumors and endothelial cells for FAP-positive tumors. (4) Conclusions: CXCR4- and FAP-directed PET imaging could provide a non-invasive decision aid for entity-agnostic treatment of microenvironment in solid malignancies. Moreover, this machine learning workflow can easily be transferred towards other theranostic targets. KW - machine learning KW - tumor microenvironment KW - immune infiltration KW - angiogenesis KW - mRNA KW - miRNA KW - transcriptome Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-305036 SN - 2072-6694 VL - 15 IS - 2 ER - TY - JOUR A1 - Watermann, Christoph A1 - Meyer, Malin Tordis A1 - Wagner, Steffen A1 - Wittekindt, Claus A1 - Klussmann, Jens Peter A1 - Erguen, Sueleyman A1 - Baumgart-Vogt, Eveline A1 - Karnati, Srikanth T1 - Peroxisomes are highly abundant and heterogeneous in human parotid glands JF - International Journal of Molecular Sciences N2 - The parotid gland is one of the major salivary glands producing a serous secretion, and it plays an essential role in the digestive and immune systems. Knowledge of peroxisomes in the human parotid gland is minimal; furthermore, the peroxisomal compartment and its enzyme composition in the different cell types of the human parotid gland have never been subjected to a detailed investigation. Therefore, we performed a comprehensive analysis of peroxisomes in the human parotid gland’s striated duct and acinar cells. We combined biochemical techniques with various light and electron microscopy techniques to determine the localization of parotid secretory proteins and different peroxisomal marker proteins in parotid gland tissue. Moreover, we analyzed the mRNA of numerous gene encoding proteins localized in peroxisomes using real-time quantitative PCR. The results confirm the presence of peroxisomes in all striated duct and acinar cells of the human parotid gland. Immunofluorescence analyses for various peroxisomal proteins showed a higher abundance and more intense staining in striated duct cells compared to acinar cells. Moreover, human parotid glands comprise high quantities of catalase and other antioxidative enzymes in discrete subcellular regions, suggesting their role in protection against oxidative stress. This study provides the first thorough description of parotid peroxisomes in different parotid cell types of healthy human tissue. KW - peroxisomes KW - parotid gland KW - human KW - catalase KW - differential expression KW - PSP KW - mRNA KW - immunofluorescence Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-311079 SN - 1422-0067 VL - 24 IS - 5 ER - TY - JOUR A1 - Libre, Camille A1 - Seissler, Tanja A1 - Guerrero, Santiago A1 - Batisse, Julien A1 - Verriez, Cédric A1 - Stupfler, Benjamin A1 - Gilmer, Orian A1 - Cabrera-Rodriguez, Romina A1 - Weber, Melanie M. A1 - Valenzuela-Fernandez, Agustin A1 - Cimarelli, Andrea A1 - Etienne, Lucie A1 - Marquet, Roland A1 - Paillart, Jean-Christophe T1 - A conserved uORF regulates APOBEC3G translation and is targeted by HIV-1 Vif protein to repress the antiviral factor JF - Biomedicines N2 - The HIV-1 Vif protein is essential for viral fitness and pathogenicity. Vif decreases expression of cellular restriction factors APOBEC3G (A3G), A3F, A3D and A3H, which inhibit HIV-1 replication by inducing hypermutation during reverse transcription. Vif counteracts A3G at several levels (transcription, translation, and protein degradation) that altogether reduce the levels of A3G in cells and prevent its incorporation into viral particles. How Vif affects A3G translation remains unclear. Here, we uncovered the importance of a short conserved uORF (upstream ORF) located within two critical stem-loop structures of the 5′ untranslated region (5′-UTR) of A3G mRNA for this process. A3G translation occurs through a combination of leaky scanning and translation re-initiation and the presence of an intact uORF decreases the extent of global A3G translation under normal conditions. Interestingly, the uORF is also absolutely required for Vif-mediated translation inhibition and redirection of A3G mRNA into stress granules. Overall, we discovered that A3G translation is regulated by a small uORF conserved in the human population and that Vif uses this specific feature to repress its translation. KW - HIV-1 KW - APOBEC3G KW - Vif KW - mRNA KW - translation KW - uORF Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-252147 SN - 2227-9059 VL - 10 IS - 1 ER - TY - JOUR A1 - Feldheim, Jonas A1 - Wend, David A1 - Lauer, Mara J. A1 - Monoranu, Camelia M. A1 - Glas, Martin A1 - Kleinschnitz, Christoph A1 - Ernestus, Ralf-Ingo A1 - Braunger, Barbara M. A1 - Meybohm, Patrick A1 - Hagemann, Carsten A1 - Burek, Malgorzata T1 - Protocadherin Gamma C3 (PCDHGC3) is strongly expressed in glioblastoma and its high expression is associated with longer progression-free survival of patients JF - International Journal of Molecular Sciences N2 - Protocadherins (PCDHs) belong to the cadherin superfamily and represent the largest subgroup of calcium-dependent adhesion molecules. In the genome, most PCDHs are arranged in three clusters, α, β, and γ on chromosome 5q31. PCDHs are highly expressed in the central nervous system (CNS). Several PCDHs have tumor suppressor functions, but their individual role in primary brain tumors has not yet been elucidated. Here, we examined the mRNA expression of PCDHGC3, a member of the PCDHγ cluster, in non-cancerous brain tissue and in gliomas of different World Health Organization (WHO) grades and correlated it with the clinical data of the patients. We generated a PCDHGC3 knockout U343 cell line and examined its growth rate and migration in a wound healing assay. We showed that PCDHGC3 mRNA and protein were significantly overexpressed in glioma tissue compared to a non-cancerous brain specimen. This could be confirmed in glioma cell lines. High PCDHGC3 mRNA expression correlated with longer progression-free survival (PFS) in glioma patients. PCDHGC3 knockout in U343 resulted in a slower growth rate but a significantly faster migration rate in the wound healing assay and decreased the expression of several genes involved in WNT signaling. PCDHGC3 expression should therefore be further investigated as a PFS-marker in gliomas. However, more studies are needed to elucidate the molecular mechanisms underlying the PCDHGC3 effects. KW - glioblastoma multiforme KW - glioma KW - astrocytoma KW - recurrence KW - relapse KW - mRNA KW - protein KW - brain KW - expression KW - PCDHGC3 KW - WNT signaling Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-284433 SN - 1422-0067 VL - 23 IS - 15 ER - TY - JOUR A1 - Meyer, Malin Tordis A1 - Watermann, Christoph A1 - Dreyer, Thomas A1 - Wagner, Steffen A1 - Wittekindt, Claus A1 - Klussmann, Jens Peter A1 - Ergün, Süleyman A1 - Baumgart-Vogt, Eveline A1 - Karnati, Srikanth T1 - Differential expression of peroxisomal proteins in distinct types of parotid gland tumors JF - International Journal of Molecular Sciences N2 - Salivary gland cancers are rare but aggressive tumors that have poor prognosis and lack effective cure. Of those, parotid tumors constitute the majority. Functioning as metabolic machinery contributing to cellular redox balance, peroxisomes have emerged as crucial players in tumorigenesis. Studies on murine and human cells have examined the role of peroxisomes in carcinogenesis with conflicting results. These studies either examined the consequences of altered peroxisomal proliferators or compared their expression in healthy and neoplastic tissues. None, however, examined such differences exclusively in human parotid tissue or extended comparison to peroxisomal proteins and their associated gene expressions. Therefore, we examined differences in peroxisomal dynamics in parotid tumors of different morphologies. Using immunofluorescence and quantitative PCR, we compared the expression levels of key peroxisomal enzymes and proliferators in healthy and neoplastic parotid tissue samples. Three parotid tumor subtypes were examined: pleomorphic adenoma, mucoepidermoid carcinoma and acinic cell carcinoma. We observed higher expression of peroxisomal matrix proteins in neoplastic samples with exceptional down regulation of certain enzymes; however, the degree of expression varied between tumor subtypes. Our findings confirm previous experimental results on other organ tissues and suggest peroxisomes as possible therapeutic targets or markers in all or certain subtypes of parotid neoplasms. KW - peroxisomes KW - parotid gland KW - salivary KW - tumors KW - pleomorphic adenoma KW - mucoepidermoid carcinoma KW - acinic cell carcinoma KW - differential expression KW - immunohistochemistry KW - mRNA Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-261047 SN - 1422-0067 VL - 22 IS - 15 ER - TY - JOUR A1 - Kramer, Susanne A1 - Meyer-Natus, Elisabeth A1 - Stigloher, Christian A1 - Thoma, Hanna A1 - Schnaufer, Achim A1 - Engstler, Markus T1 - Parallel monitoring of RNA abundance, localization and compactness with correlative single molecule FISH on LR White embedded samples JF - Nucleic Acids Research N2 - Single mRNA molecules are frequently detected by single molecule fluorescence in situ hybridization (smFISH) using branched DNA technology. While providing strong and background-reduced signals, the method is inefficient in detecting mRNAs within dense structures, in monitoring mRNA compactness and in quantifying abundant mRNAs. To overcome these limitations, we have hybridized slices of high pressure frozen, freeze-substituted and LR White embedded cells (LR White smFISH). mRNA detection is physically restricted to the surface of the resin. This enables single molecule detection of RNAs with accuracy comparable to RNA sequencing, irrespective of their abundance, while at the same time providing spatial information on RNA localization that can be complemented with immunofluorescence and electron microscopy, as well as array tomography. Moreover, LR White embedding restricts the number of available probe pair recognition sites for each mRNA to a small subset. As a consequence, differences in signal intensities between RNA populations reflect differences in RNA structures, and we show that the method can be employed to determine mRNA compactness. We apply the method to answer some outstanding questions related to trans-splicing, RNA granules and mitochondrial RNA editing in single-cellular trypanosomes and we show an example of differential gene expression in the metazoan Caenorhabditis elegans. KW - mRNA Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-230647 VL - 49 IS - 3 ER - TY - JOUR A1 - Feldheim, Jonas A1 - Kessler, Almuth F. A1 - Schmitt, Dominik A1 - Salvador, Ellaine A1 - Monoranu, Camelia M. A1 - Feldheim, Julia J. A1 - Ernestus, Ralf-Ingo A1 - Löhr, Mario A1 - Hagemann, Carsten T1 - Ribosomal Protein S27/Metallopanstimulin-1 (RPS27) in Glioma — A New Disease Biomarker? JF - Cancers N2 - Despite its significant overexpression in several malignant neoplasms, the expression of RPS27 in the central nervous system (CNS) is widely unknown. We identified the cell types expressing RPS27 in the CNS under normal and disease conditions. We acquired specimens of healthy brain (NB), adult pilocytic astrocytoma (PA) World Health Organization (WHO) grade I, anaplastic PA WHO grade III, gliomas WHO grade II/III with or without isocitrate dehydrogenase (IDH) mutation, and glioblastoma multiforme (GBM). RPS27 protein expression was examined by immunohistochemistry and double-fluorescence staining and its mRNA expression quantified by RT-PCR. Patients’ clinical and tumor characteristics were collected retrospectively. RPS27 protein was specifically expressed in tumor cells and neurons, but not in healthy astrocytes. In tumor tissue, most macrophages were positive, while this was rarely the case in inflamed tissue. Compared to NB, RPS27 mRNA was in mean 6.2- and 8.8-fold enhanced in gliomas WHO grade II/III with (p < 0.01) and without IDH mutation (p = 0.01), respectively. GBM displayed a 4.6-fold increased mean expression (p = 0.02). Although RPS27 expression levels did not affect the patients’ survival, their association with tumor cells and tumor-associated macrophages provides a rationale for a future investigation of a potential function during gliomagenesis and tumor immune response. KW - glioblastoma multiforme KW - low-grade glioma KW - astrocytoma KW - recurrence KW - relapse KW - mRNA KW - protein KW - brain KW - expression KW - MPS1 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-203648 SN - 2072-6694 VL - 12 IS - 5 ER - TY - JOUR A1 - Goos, Carina A1 - Dejung, Mario A1 - Wehman, Ann M. A1 - M-Natus, Elisabeth A1 - Schmidt, Johannes A1 - Sunter, Jack A1 - Engstler, Markus A1 - Butter, Falk A1 - Kramer, Susanne T1 - Trypanosomes can initiate nuclear export co-transcriptionally JF - Nucleic Acids Research N2 - The nuclear envelope serves as important messenger RNA (mRNA) surveillance system. In yeast and human, several control systems act in parallel to prevent nuclear export of unprocessed mRNAs. Trypanosomes lack homologues to most of the involved proteins and their nuclear mRNA metabolism is non-conventional exemplified by polycistronic transcription and mRNA processing by trans-splicing. We here visualized nuclear export in trypanosomes by intra- and intermolecular multi-colour single molecule FISH. We found that, in striking contrast to other eukaryotes, the initiation of nuclear export requires neither the completion of transcription nor splicing. Nevertheless, we show that unspliced mRNAs are mostly prevented from reaching the nucleus-distant cytoplasm and instead accumulate at the nuclear periphery in cytoplasmic nuclear periphery granules (NPGs). Further characterization of NPGs by electron microscopy and proteomics revealed that the granules are located at the cytoplasmic site of the nuclear pores and contain most cytoplasmic RNA-binding proteins but none of the major translation initiation factors, consistent with a function in preventing faulty mRNAs from reaching translation. Our data indicate that trypanosomes regulate the completion of nuclear export, rather than the initiation. Nuclear export control remains poorly understood, in any organism, and the described way of control may not be restricted to trypanosomes. KW - molecular biology KW - nuclear export KW - trypanosomes KW - mRNA KW - nuclear envelope Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-177709 VL - 47 IS - 1 ER -