TY - JOUR A1 - Lüningschrör, Patrick A1 - Binotti, Beyenech A1 - Dombert, Benjamin A1 - Heimann, Peter A1 - Perez-Lara, Angel A1 - Slotta, Carsten A1 - Thau-Habermann, Nadine A1 - von Collenberg, Cora R. A1 - Karl, Franziska A1 - Damme, Markus A1 - Horowitz, Arie A1 - Maystadt, Isabelle A1 - Füchtbauer, Annette A1 - Füchtbauer, Ernst-Martin A1 - Jablonka, Sibylle A1 - Blum, Robert A1 - Üçeyler, Nurcan A1 - Petri, Susanne A1 - Kaltschmidt, Barbara A1 - Jahn, Reinhard A1 - Kaltschmidt, Christian A1 - Sendtner, Michael T1 - Plekhg5-regulated autophagy of synaptic vesicles reveals a pathogenic mechanism in motoneuron disease JF - Nature Communications N2 - Autophagy-mediated degradation of synaptic components maintains synaptic homeostasis but also constitutes a mechanism of neurodegeneration. It is unclear how autophagy of synaptic vesicles and components of presynaptic active zones is regulated. Here, we show that Pleckstrin homology containing family member 5 (Plekhg5) modulates autophagy of synaptic vesicles in axon terminals of motoneurons via its function as a guanine exchange factor for Rab26, a small GTPase that specifically directs synaptic vesicles to preautophagosomal structures. Plekhg5 gene inactivation in mice results in a late-onset motoneuron disease, characterized by degeneration of axon terminals. Plekhg5-depleted cultured motoneurons show defective axon growth and impaired autophagy of synaptic vesicles, which can be rescued by constitutively active Rab26. These findings define a mechanism for regulating autophagy in neurons that specifically targets synaptic vesicles. Disruption of this mechanism may contribute to the pathophysiology of several forms of motoneuron disease. KW - autophagy KW - synaptic vesicles KW - Pleckstrin homology containing family member 5 (Plekhg5) KW - regulation KW - motoneuron disease Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170048 VL - 8 IS - 678 ER -