TY - JOUR A1 - Navarro, Stefano A1 - Stegner, David A1 - Nieswandt, Bernhard A1 - Heemskerk, Johan W. M. A1 - Kuijpers, Marijke J. E. T1 - Temporal roles of platelet and coagulation pathways in collagen- and tissue factor-induced thrombus formation JF - International Journal of Molecular Sciences N2 - In hemostasis and thrombosis, the complex process of thrombus formation involves different molecular pathways of platelet and coagulation activation. These pathways are considered as operating together at the same time, but this has not been investigated. The objective of our study was to elucidate the time-dependency of key pathways of thrombus and clot formation, initiated by collagen and tissue factor surfaces, where coagulation is triggered via the extrinsic route. Therefore, we adapted a microfluidics whole-blood assay with the Maastricht flow chamber to acutely block molecular pathways by pharmacological intervention at desired time points. Application of the technique revealed crucial roles of glycoprotein VI (GPVI)-induced platelet signaling via Syk kinase as well as factor VIIa-induced thrombin generation, which were confined to the first minutes of thrombus buildup. A novel anti-GPVI Fab EMF-1 was used for this purpose. In addition, platelet activation with the protease-activating receptors 1/4 (PAR1/4) and integrin αIIbβ3 appeared to be prolongedly active and extended to later stages of thrombus and clot formation. This work thereby revealed a more persistent contribution of thrombin receptor-induced platelet activation than of collagen receptor-induced platelet activation to the thrombotic process. KW - coagulation KW - fibrin KW - glycoprotein VI KW - platelet receptors KW - spatiotemporal thrombus KW - thrombin Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-284219 SN - 1422-0067 VL - 23 IS - 1 ER - TY - JOUR A1 - Vogelsang, Anna A1 - Eichler, Susann A1 - Huntemann, Niklas A1 - Masanneck, Lars A1 - Böhnlein, Hannes A1 - Schüngel, Lisa A1 - Willison, Alice A1 - Loser, Karin A1 - Nieswandt, Bernhard A1 - Kehrel, Beate E. A1 - Zarbock, Alexander A1 - Göbel, Kerstin A1 - Meuth, Sven G. T1 - Platelet inhibition by low-dose acetylsalicylic acid reduces neuroinflammation in an animal model of multiple sclerosis JF - International Journal of Molecular Sciences N2 - Aside from the established immune-mediated etiology of multiple sclerosis (MS), compelling evidence implicates platelets as important players in disease pathogenesis. Specifically, numerous studies have highlighted that activated platelets promote the central nervous system (CNS)-directed adaptive immune response early in the disease course. Platelets, therefore, present a novel opportunity for modulating the neuroinflammatory process that characterizes MS. We hypothesized that the well-known antiplatelet agent acetylsalicylic acid (ASA) could inhibit neuroinflammation by affecting platelets if applied at low-dose and investigated its effect during experimental autoimmune encephalomyelitis (EAE) as a model to study MS. We found that oral administration of low-dose ASA alleviates symptoms of EAE accompanied by reduced inflammatory infiltrates and less extensive demyelination. Remarkably, the percentage of CNS-infiltrated CD4\(^+\) T cells, the major drivers of neuroinflammation, was decreased to 40.98 ± 3.28% in ASA-treated mice compared to 56.11 ± 1.46% in control animals at the disease maximum as revealed by flow cytometry. More interestingly, plasma levels of thromboxane A\(_2\) were decreased, while concentrations of platelet factor 4 and glycoprotein VI were not affected by low-dose ASA treatment. Overall, we demonstrate that low-dose ASA could ameliorate the platelet-dependent neuroinflammatory response in vivo, thus indicating a potential treatment approach for MS. KW - acetylsalicylic acid KW - experimental autoimmune encephalomyelitis KW - platelets KW - multiple sclerosis KW - thromboxane KW - glycoprotein VI KW - platelet factor 4 Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-284535 SN - 1422-0067 VL - 22 IS - 18 ER - TY - JOUR A1 - Makbul, Cihan A1 - Kraft, Christian A1 - Grießmann, Matthias A1 - Rasmussen, Tim A1 - Katzenberger, Kilian A1 - Lappe, Melina A1 - Pfarr, Paul A1 - Stoffer, Cato A1 - Stöhr, Mara A1 - Wandinger, Anna-Maria A1 - Böttcher, Bettina T1 - Binding of a pocket factor to Hepatitis B virus capsids changes the rotamer conformation of Phenylalanine 97 JF - Viruses N2 - (1) Background: During maturation of the Hepatitis B virus, a viral polymerase inside the capsid transcribes a pre-genomic RNA into a partly double stranded DNA-genome. This is followed by envelopment with surface proteins inserted into a membrane. Envelopment is hypothetically regulated by a structural signal that reports the maturation state of the genome. NMR data suggest that such a signal can be mimicked by the binding of the detergent Triton X 100 to hydrophobic pockets in the capsid spikes. (2) Methods: We have used electron cryo-microscopy and image processing to elucidate the structural changes that are concomitant with the binding of Triton X 100. (3) Results: Our maps show that Triton X 100 binds with its hydrophobic head group inside the pocket. The hydrophilic tail delineates the outside of the spike and is coordinated via Lys-96. The binding of Triton X 100 changes the rotamer conformation of Phe-97 in helix 4, which enables a π-stacking interaction with Trp-62 in helix 3. Similar changes occur in mutants with low secretion phenotypes (P5T and L60V) and in a mutant with a pre-mature secretion phenotype (F97L). (4) Conclusion: Binding of Triton X 100 is unlikely to mimic structural maturation because mutants with different secretion phenotypes show similar structural responses. KW - Hepatitis B Virus KW - pocket factor KW - Triton X 100 KW - envelopment KW - maturation signal KW - single strand blocking KW - electron cryo-microscopy KW - isothermal titration calorimetry Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-248565 SN - 1999-4915 VL - 13 IS - 11 ER - TY - JOUR A1 - Weigand, Isabel A1 - Ronchi, Cristina L. A1 - Vanselow, Jens T. A1 - Bathon, Kerstin A1 - Lenz, Kerstin A1 - Herterich, Sabine A1 - Schlosser, Andreas A1 - Kroiss, Matthias A1 - Fassnacht, Martin A1 - Calebiro, Davide A1 - Sbiera, Silviu T1 - PKA Cα subunit mutation triggers caspase-dependent RIIβ subunit degradation via Ser\(^{114}\) phosphorylation JF - Science Advances N2 - Mutations in the PRKACA gene are the most frequent cause of cortisol-producing adrenocortical adenomas leading to Cushing’s syndrome. PRKACA encodes for the catalytic subunit α of protein kinase A (PKA). We already showed that PRKACA mutations lead to impairment of regulatory (R) subunit binding. Furthermore, PRKACA mutations are associated with reduced RIIβ protein levels; however, the mechanisms leading to reduced RIIβ levels are presently unknown. Here, we investigate the effects of the most frequent PRKACA mutation, L206R, on regulatory subunit stability. We find that Ser\(^{114}\) phosphorylation of RIIβ is required for its degradation, mediated by caspase 16. Last, we show that the resulting reduction in RIIβ protein levels leads to increased cortisol secretion in adrenocortical cells. These findings reveal the molecular mechanisms and pathophysiological relevance of the R subunit degradation caused by PRKACA mutations, adding another dimension to the deregulation of PKA signaling caused by PRKACA mutations in adrenal Cushing’s syndrome. KW - mutation triggers KW - phosphorylation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-270445 VL - 7 IS - 8 ER - TY - JOUR A1 - Göb, Vanessa A1 - Voll, Maximilian G. A1 - Zimmermann, Lena A1 - Hemmen, Katharina A1 - Stoll, Guido A1 - Nieswandt, Bernhard A1 - Schuhmann, Michael K. A1 - Heinze, Katrin G. A1 - Stegner, David T1 - Infarct growth precedes cerebral thrombosis following experimental stroke in mice JF - Scientific Reports N2 - Ischemic stroke is among the leading causes of disability and death worldwide. In acute ischemic stroke, successful recanalization of occluded vessels is the primary therapeutic aim, but even if it is achieved, not all patients benefit. Although blockade of platelet aggregation did not prevent infarct progression, cerebral thrombosis as cause of secondary infarct growth has remained a matter of debate. As cerebral thrombi are frequently observed after experimental stroke, a thrombus-induced impairment of the brain microcirculation is considered to contribute to tissue damage. Here, we combine the model of transient middle cerebral artery occlusion (tMCAO) with light sheet fluorescence microscopy and immunohistochemistry of brain slices to investigate the kinetics of thrombus formation and infarct progression. Our data reveal that tissue damage already peaks after 8 h of reperfusion following 60 min MCAO, while cerebral thrombi are only observed at later time points. Thus, cerebral thrombosis is not causative for secondary infarct growth during ischemic stroke. KW - cerebrovascular disorders KW - thrombosis Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-265791 VL - 11 IS - 1 ER - TY - JOUR A1 - Martín, Ovidio Jiménez A1 - Schlosser, Andreas A1 - Furtwängler, Rhoikos A1 - Wegert, Jenny A1 - Gessler, Manfred T1 - MYCN and MAX alterations in Wilms tumor and identification of novel N-MYC interaction partners as biomarker candidates JF - Cancer Cell International N2 - Background Wilms tumor (WT) is the most common renal tumor in childhood. Among others, MYCN copy number gain and MYCN P44L and MAX R60Q mutations have been identified in WT. MYCN encodes a transcription factor that requires dimerization with MAX to activate transcription of numerous target genes. MYCN gain has been associated with adverse prognosis in different childhood tumors including WT. The MYCN P44L and MAX R60Q mutations, located in either the transactivating or basic helix-loop-helix domain, respectively, are predicted to be damaging by different pathogenicity prediction tools, but the functional consequences remain to be characterized. Methods We screened a large cohort of unselected WTs for MYCN and MAX alterations. Wild-type and mutant protein function were characterized biochemically, and we analyzed the N-MYC protein interactome by mass spectrometric analysis of N-MYC containing protein complexes. Results Mutation screening revealed mutation frequencies of 3% for MYCN P44L and 0.9% for MAX R60Q that are associated with a higher risk of relapse. Biochemical characterization identified a reduced transcriptional activation potential for MAX R60Q, while the MYCN P44L mutation did not change activation potential or protein stability. The protein interactome of N-MYC-P44L was likewise not altered as shown by mass spectrometric analyses of purified N-MYC complexes. Nevertheless, we could identify a number of novel N-MYC partner proteins, e.g. PEG10, YEATS2, FOXK1, CBLL1 and MCRS1, whose expression is correlated with MYCN in WT samples and several of these are known for their own oncogenic potential. Conclusions The strongly elevated risk of relapse associated with mutant MYCN and MAX or elevated MYCN expression corroborates their role in WT oncogenesis. Together with the newly identified co-expressed interactors they expand the range of potential biomarkers for WT stratification and targeting, especially for high-risk WT. KW - Wilms tumor KW - MYCN KW - MAX KW - interactome KW - mutation screening Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-265542 VL - 21 ER - TY - JOUR A1 - Koelmel, Wolfgang A1 - Kuper, Jochen A1 - Kisker, Caroline T1 - Cesium based phasing of macromolecules: a general easy to use approach for solving the phase problem JF - Scientific Reports N2 - Over the last decades the phase problem in macromolecular x-ray crystallography has become more controllable as methods and approaches have diversified and improved. However, solving the phase problem is still one of the biggest obstacles on the way of successfully determining a crystal structure. To overcome this caveat, we have utilized the anomalous scattering properties of the heavy alkali metal cesium. We investigated the introduction of cesium in form of cesium chloride during the three major steps of protein treatment in crystallography: purification, crystallization, and cryo-protection. We derived a step-wise procedure encompassing a "quick-soak"-only approach and a combined approach of CsCl supplement during purification and cryo-protection. This procedure was successfully applied on two different proteins: (i) Lysozyme and (ii) as a proof of principle, a construct consisting of the PH domain of the TFIIH subunit p62 from Chaetomium thermophilum for de novo structure determination. Usage of CsCl thus provides a versatile, general, easy to use, and low cost phasing strategy. KW - structural biology KW - X-ray crystallography Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-261644 VL - 11 IS - 1 ER - TY - JOUR A1 - Beck, Sarah A1 - Stegner, David A1 - Loroch, Stefan A1 - Baig, Ayesha A. A1 - Göb, Vanessa A1 - Schumbutzki, Cornelia A1 - Eilers, Eva A1 - Sickmann, Albert A1 - May, Frauke A1 - Nolte, Marc W. A1 - Panousis, Con A1 - Nieswandt, Bernhard T1 - Generation of a humanized FXII knock-in mouse-A powerful model system to test novel anti-thrombotic agents JF - Journal of Thrombosis and Haemostasis N2 - Background Effective inhibition of thrombosis without generating bleeding risks is a major challenge in medicine. Accumulating evidence suggests that this can be achieved by inhibition of coagulation factor XII (FXII), as either its knock-out or inhibition in animal models efficiently reduced thrombosis without affecting normal hemostasis. Based on these findings, highly specific inhibitors for human FXII(a) are under development. However, currently, in vivo studies on their efficacy and safety are impeded by the lack of an optimized animal model expressing the specific target, that is, human FXII. Objective The primary objective of this study is to develop and functionally characterize a humanized FXII mouse model. Methods A humanized FXII mouse model was generated by replacing the murine with the human F12 gene (genetic knock-in) and tested it in in vitro coagulation assays and in in vivo thrombosis models. Results These hF12\(^{KI}\) mice were indistinguishable from wild-type mice in all tested assays of coagulation and platelet function in vitro and in vivo, except for reduced expression levels of hFXII compared to human plasma. Targeting FXII by the anti-human FXIIa antibody 3F7 increased activated partial thromboplastin time dose-dependently and protected hF12\(^{KI}\) mice in an arterial thrombosis model without affecting bleeding times. Conclusion These data establish the newly generated hF12\(^{KI}\) mouse as a powerful and unique model system for in vivo studies on anti-FXII(a) biologics, supporting the development of efficient and safe human FXII(a) inhibitors. KW - hemostasis, KW - blood coagulation KW - factor XII KW - animal models KW - thrombosis Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-259567 VL - 19 IS - 11 ER - TY - JOUR A1 - Meir, Michael A1 - Maurus, Katja A1 - Kuper, Jochen A1 - Hankir, Mohammed A1 - Wardelmann, Eva A1 - Rosenwald, Andreas A1 - Germer, Christoph-Thomas A1 - Wiegering, Armin T1 - The novel KIT exon 11 germline mutation K558N is associated with gastrointestinal stromal tumor, mastocytosis, and seminoma development JF - Genes, Chromosomes & Cancer N2 - Familial gastrointestinal stromal tumors (GIST) are dominant genetic disorders that are caused by germline mutations of the type III receptor tyrosine kinase KIT. While sporadic mutations are frequently found in mastocytosis and GISTs, germline mutations of KIT have only been described in 39 families until now. We detected a novel germline mutation of KIT in exon 11 (p.Lys-558-Asn; K558N) in a patient from a kindred with several GISTs harboring different secondary somatic KIT mutations. Structural analysis suggests that the primary germline mutation alone is not sufficient to release the autoinhibitory region of KIT located in the transmembrane domain. Instead, the KIT kinase module becomes constitutively activated when K558N combines with different secondary somatic mutations. The identical germline mutation in combination with an additional somatic KIT mutation was detected in a second patient of the kindred with seminoma while a third patient within the family had a cutaneous mastocytosis. These findings suggest that the K558N mutation interferes with the juxtamembranous part of KIT, since seminoma and mastocystosis are usually not associated with exon 11 mutations. KW - germline mutation KW - GIST KW - KIT KW - mastocytosis KW - seminoma Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-257476 VL - 60 IS - 12 ER - TY - JOUR A1 - Schuhmann, Michael K. A1 - Bieber, Michael A1 - Franke, Maximilian A1 - Kollikowski, Alexander M. A1 - Stegner, David A1 - Heinze, Katrin G. A1 - Nieswandt, Bernhard A1 - Pham, Mirko A1 - Stoll, Guido T1 - Platelets and lymphocytes drive progressive penumbral tissue loss during middle cerebral artery occlusion in mice JF - Journal of Neuroinflammation N2 - Background In acute ischemic stroke, cessation of blood flow causes immediate tissue necrosis within the center of the ischemic brain region accompanied by functional failure in the surrounding brain tissue designated the penumbra. The penumbra can be salvaged by timely thrombolysis/thrombectomy, the only available acute stroke treatment to date, but is progressively destroyed by the expansion of infarction. The underlying mechanisms of progressive infarction are not fully understood. Methods To address mechanisms, mice underwent filament occlusion of the middle cerebral artery (MCAO) for up to 4 h. Infarct development was compared between mice treated with antigen-binding fragments (Fab) against the platelet surface molecules GPIb (p0p/B Fab) or rat immunoglobulin G (IgG) Fab as control treatment. Moreover, Rag1\(^{−/−}\) mice lacking T-cells underwent the same procedures. Infarct volumes as well as the local inflammatory response were determined during vessel occlusion. Results We show that blocking of the platelet adhesion receptor, glycoprotein (GP) Ibα in mice, delays cerebral infarct progression already during occlusion and thus before recanalization/reperfusion. This therapeutic effect was accompanied by decreased T-cell infiltration, particularly at the infarct border zone, which during occlusion is supplied by collateral blood flow. Accordingly, mice lacking T-cells were likewise protected from infarct progression under occlusion. Conclusions Progressive brain infarction can be delayed by blocking detrimental lymphocyte/platelet responses already during occlusion paving the way for ultra-early treatment strategies in hyper-acute stroke before recanalization. KW - ischemic penumbra KW - glycoprotein receptor Ib KW - T-cells KW - ischemic stroke KW - thrombo-inflammation KW - middle cerebral artery occlusion Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-259172 VL - 18 IS - 1 ER -