TY - THES A1 - Merget, Benjamin T1 - Computational methods for assessing drug-target residence times in bacterial enoyl-ACP reductases and predicting small-molecule permeability for the \(Mycobacterium\) \(tuberculosis\) cell wall T1 - Computermethoden zur Bestimmung von Protein-Ligand Verweilzeiten in bakteriellen Enoyl-ACP Reduktasen und Vorhersage der Permeabilitätswahrscheinlichkeit kleiner Moleküle gegenüber der \(Mycobacterium\) \(tuberculosis\) Zellwand N2 - \textbf{Molecular Determinants of Drug-Target Residence Times of Bacterial Enoyl-ACP Reductases.} Whereas optimization processes of early drug discovery campaigns are often affinity-driven, the drug-target residence time $t_R$ should also be considered due to an often strong correlation with \textit{in vivo} efficacy of compounds. However, rational optimization of $t_R$ is not straightforward and generally hampered by the lack of structural information about the transition states of ligand association and dissociation. The enoyl-ACP reductase FabI of the fatty acid synthesis (FAS) type II is an important drug-target in antibiotic research. InhA is the FabI enzyme of \textit{Mycobacterium tuberculosis}, which is known to be inhibited by various compound classes. Slow-onset inhibition of InhA is assumed to be associated with the ordering of the most flexible protein region, the substrate binding loop (SBL). Diphenylethers are one class of InhA inhibitors that can promote such SBL ordering, resulting in long drug-target residence times. Although these inhibitors are energetically and kinetically well characterized, it is still unclear how the structural features of a ligand affect $t_R$. Using classical molecular dynamics (MD) simulations, recurring conformational families of InhA protein-ligand complexes were detected and structural determinants of drug-target residence time of diphenyl\-ethers with different kinetic profiles were described. This information was used to deduce guidelines for efficacy improvement of InhA inhibitors, including 5'-substitution on the diphenylether B-ring. The validity of this suggestion was then analyzed by means of MD simulations. Moreover, Steered MD (SMD) simulations were employed to analyze ligand dissociation of diphenylethers from the FabI enzyme of \textit{Staphylococcus aureus}. This approach resulted in a very accurate and quantitative linear regression model of the experimental $ln(t_R)$ of these inhibitors as a function of the calculated maximum free energy change of induced ligand extraction. This model can be used to predict the residence times of new potential inhibitors from crystal structures or valid docking poses. Since correct structural characterization of the intermediate enzyme-inhibitor state (EI) and the final state (EI*) of two-step slow-onset inhibition is crucial for rational residence time optimization, the current view of the EI and EI* states of InhA was revisited by means of crystal structure analysis, MD and SMD simulations. Overall, the analyses affirmed that the EI* state is a conformation resembling the 2X23 crystal structure (with slow-onset inhibitor \textbf{PT70}), whereas a twist of residues Ile202 and Val203 with a further opened helix $\alpha 6$ corresponds to the EI state. Furthermore, MD simulations emphasized the influence of close contacts to symmetry mates in the SBL region on SBL stability, underlined by the observation that an MD simulation of \textbf{PT155} chain A with chain B' of a symmetry mate in close proximity of the SBL region showed significantly more stable loops, than a simulation of the tetrameric assembly. Closing Part I, SMD simulations were employed which allow the delimitation of slow-onset InhA inhibitors from rapid reversible ligands. \textbf{Prediction of \textit{Mycobacterium tuberculosis} Cell Wall Permeability.} The cell wall of \textit{M. tuberculosis} hampers antimycobacterial drug design due to its unique composition, providing intrinsic antibiotic resistance against lipophilic and hydrophilic compounds. To assess the druggability space of this pathogen, a large-scale data mining endeavor was conducted, based on multivariate statistical analysis of differences in the physico-chemical composition of a normally distributed drug-like chemical space and a database of antimycobacterial--and thus very likely permeable--compounds. The approach resulted in the logistic regression model MycPermCheck, which is able to predict the permeability probability of small organic molecules based on their physico-chemical properties. Evaluation of MycPermCheck suggests a high predictive power. The model was implemented as a freely accessible online service and as a local stand-alone command-line version. Methodologies and findings from both parts of this thesis were combined to conduct a virtual screening for antimycobacterial substances. MycPermCheck was employed to screen the chemical permeability space of \textit{M. tuberculosis} from the entire ZINC12 drug-like database. After subsequent filtering steps regarding ADMET properties, InhA was chosen as an exemplary target. Docking to InhA led to a principal hit compound, which was further optimized. The quality of the interaction of selected derivatives with InhA was subsequently evaluated using MD and SMD simulations in terms of protein and ligand stability, as well as maximum free energy change of induced ligand egress. The results of the presented computational experiments suggest that compounds with an indole-3-acethydrazide scaffold might constitute a novel class of InhA inhibitors, worthwhile of further investigation. N2 - \textbf{Molekulare Determinanten von Wirkstoff-Angriffsziel Verweilzeiten bakterieller Enoyl-ACP Reduktasen.} In frühen Phasen der Wirkstoffentwicklung sind Optimierungsprozesse häufig affini\-täts\-geleitet. Darüber hinaus sollte zusätzlich die Wirkstoff-Angriffsziel Verweilzeit $t_R$ berücksichtigt werden, da diese oft eine starke Korrelation zur \textit{in vivo} Wirksamkeit der Substanzen aufweist. Rationale Optimierung von $t_R$ ist jedoch auf Grund eines Mangels an struktureller Information über den Übergangszustand der Ligandbindung und Dissoziierung nicht einfach umsetzbar. Die Enoyl-ACP Reduktase FabI der Fettsäurebio\-synthese (FAS) Typ II ist ein wichtiger Angriffspunkt in der Antibiotikaforschung. InhA ist das FabI Enzym des Organismus \textit{Mycobacterium tuberculosis} und kann durch Substanzen diverser Klassen gehemmt werden. Es wird vermutet, dass Hemmung von InhA durch langsam-bindende (``slow-onset'') Inhibitoren mit der Ordnung der flexibelsten Region des Enzyms assoziiert ist, dem Substratbindungsloop (SBL). Diphenylether sind eine InhA Inhibitorenklasse, die eine solche SBL Ordnung fördern und dadurch lange Verweilzeiten im Angriffsziel aufweisen. Obwohl diese Inhibitoren energetisch und kinetisch gut charakterisiert sind, ist noch immer unklar, wie die strukturellen Eigenschaften eines Liganden $t_R$ beeinflussen. Durch die Verwendung klassischer Molekulardynamik (MD) Simulationen wurden wiederkehrende Konformationsfamilien von InhA Protein-Ligand Komplexen entdeckt und strukturelle Determinanten der Wirkstoff-Angriffsziel Verweilzeit von Diphenylethern mit verschiedenen kinetischen Profilen beschrieben. Anhand dieser Ergebnisse wurden Richtlinien zur Wirksamkeitsoptimierung von InhA Inhibitoren abgeleitet, einschließlich einer 5'-Substitution am Diphenylether B-Ring. Die Validität dieses Vorschlags wurde mittels MD Simulationen nachfolgend analysiert. Darüber hinaus wurden ``Steered MD'' (SMD) Simulationen als MD Technik für umfangreicheres Sampling verwendet um die Liganddissoziation von Diphenylethern aus dem FabI Enzym von \textit{Staphylococcus aureus} zu untersuchen. Dieser Ansatz resultierte in einem sehr akkuraten, quantitativen linearen Regressionsmodell der experimentellen Verweilzeit $ln(t_R)$ dieser Inhibitoren als Funktion der berechneten maximalen freien Energieänderung induzierter Ligandextraktion. Dieses Modell kann genutzt werden um die Verweilzeiten neuer potentieller Inhibitoren aus Kristallstrukturen oder validen Dockingposen vorherzusagen. Die korrekte strukturelle Charakterisierung des intermediären und des finalen Zustandes (EI und EI*-Zustand) eines Enzym-Inhibitor Komplexes bei einem zweistufigen Inhibitionsmechanismus durch langsam-bindende Hemmstoffe ist essentiell für rationale Verweilzeitoptimierung. Daher wurde die gegenwärtige Ansicht des EI und EI*-Zustandes von InhA mittels Kristallstrukturanalyse, MD und SMD Simulationen erneut aufgegriffen. Insgesamt bestätigten die Analysen, dass der EI*-Zustand einer Konformation ähnlich der 2X23 Kristallstruktur (mit langsam-bindenden Inhibitor \textbf{PT70}) gleicht, während eine Drehung der Reste Ile202 und Val203 mit einer weiter geöffneten Helix $\alpha 6$ dem EI-Zustand entspricht. Des Weiteren zeigten MD Simulationen den Einfluss naher Kristallkontakte zu Symmetrie-Nachbarn in der SBL Region auf die SBL Stabilität. Dies wird durch die Beobachtung hervorgehoben, dass die Ketten A und B' eines InhA-\textbf{PT155}-Komplexes und des angrenzenden Symmetrie-Nachbars, welche in engem Kontakt in der SBL Region stehen, signifikant stabilere SBLs aufweisen, als die Ketten A und B in einer Simulation des Tetramers. Zum Abschluss von Teil I wurden SMD Simulationen angewandt, auf deren Basis es möglich war, langsam-bindende InhA Inhibitoren von schnell-reversiblen (``rapid reversible'') Liganden zu unterscheiden. \textbf{Vorhersage von \textit{Mycobacterium tuberculosis} Zellwand Permeabilität.} Die Zellwand von \textit{M.~tuberculosis} erschwert die antimycobakterielle Wirkstofffindung auf Grund ihrer einzigartigen Zusammensetzung und bietet eine intrinsische Antibiotikaresistenz gegenüber lipophilen und hydrophilen Substanzen. Um den chemischen Raum wirkstoffähnlicher Moleküle gegen diesen Erreger (``Druggability Space'') einzugrenzen, wurde eine groß angelegte Dataminingstudie durchgeführt, welche auf multivariater statistischer Analyse der Unterschiede der physikochemischen Zusammensetzung eines normalverteilten wirkstoffähnlichen chemischen Raumes und einer Datenbank von antimycobakteriellen -- und somit höchstwahrscheinlich permeablen -- Substanzen beruht. Dieser Ansatz resultierte in dem logistischen Regressionsmodell MycPermCheck, welches in der Lage ist die Permeabilitätswahrscheinlichkeit kleiner organischer Moleküle anhand ihrer physikochemischen Eigenschaften vorherzusagen. Die Evaluation von MycPermCheck deutet auf eine große Vorhersagekraft hin. Das Modell wurde als frei zugänglicher online Service und als lokale Kommandozeilenversion implementiert. Methodiken und Ergebnisse aus beiden Teilen dieser Dissertation wurden kombiniert um ein virtuelles Screening nach antimycobakteriellen Substanzen durchzuführen. Myc\-PermCheck wurde verwendet um den chemischen Permeabilitätsraum von \textit{M.~tuberculosis} anhand der gesamten ZINC12 Datenbank wirkstoffähnlicher Moleküle abzuschätzen. Nach weiteren Filterschritten mit Bezug auf ADMET Eigenschaften, wurde InhA als exemplarisches Angriffsziel ausgewählt. Docking nach InhA führte schließlich zu einer Treffersubstanz, welche in darauffolgenden Schritten weiter optimiert wurde. Die Interaktionsqualität ausgewählter Derivate mit InhA wurde daraufhin mittels MD und SMD Simulationen in Bezug auf Protein und Ligand Stabilität, sowie auch der maximalen freien Energieänderung induzierter Ligandextraktion, untersucht. Die Ergebnisse der vorgestellten computerbasierten Experimente legen nahe, dass Substanzen mit einem Indol-3-Acethydrazid Gerüst eine neuartige Klasse von InhA Inhibitoren darstellen könnten. Weiterführende Untersuchungen könnten sich somit als lohnenswert erweisen. KW - Computational chemistry KW - Arzneimitteldesign KW - Molekulardynamik KW - Permeabilität KW - Tuberkelbakterium KW - Computational drug-design KW - steered molecular dynamics KW - molecular dynamics KW - residence time KW - mycobacterium tuberculosis KW - staphylococcus aureus KW - permeability KW - InhA KW - FabI KW - Enoyl-acyl-carrier-protein-Reductase KW - Drug design KW - Computational chemistry Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-127386 ER - TY - THES A1 - Kuhn, Maximilian T1 - Strukturbasiertes Design von MIP-Inhibitoren und computergestützte Selektivitätsuntersuchung gegenüber MIP- und humanen FKB-Proteinen T1 - Structure-based design of MIP-Inhibitors and computer-aided selectivity studies towards MIP and human FKB proteins N2 - Bakterielle und parasitäre MIP-Proteine stellen wichtige Virulenzfaktoren dar, deren Inhibition das Überleben der Erreger sowie deren Penetration in menschliche Zellen stark einschränken kann. In dieser Arbeit standen die MIP-Proteine von Burkholderia pseudomallei (Auslöser der Melioidose) und Legionella pneumophila (Legionärskrankheit) im Fokus. Außerdem wurde das MIP-Protein von Trypanosoma cruzi (Chagas-Krankheit) untersucht. Die strukturverwandten humanen FKB-Proteine FKBP12 und FKBP52 sind relevante „off-targets“, wie Experimente mit Knockout-Mäusen gezeigt haben. Ziel dieser Arbeit war die Verbesserung von bekannten MIP-Inhibitoren im Hinblick auf ihre Affinität und Selektivität für MIP-Proteine gegenüber den beiden genannten FKB-Proteinen bei gleichzeitig verbesserter Löslichkeit, mit Hilfe von in silico Methoden. Ausgangspunkt waren hierbei zwei von Dr. Christina Juli und Dr. Florian Seufert entwickelte Leitstrukturen, welche ein Pipecolinsäuregrundgerüst aufweisen. Diese Referenzliganden beinhalten einen 3,4,5-Trimethoxyphenylring (TMPR, vgl. Ref_t) bzw. einen Pyridinylring (Ref_p). Beim Vergleich von insgesamt 32 MIP- und FKB-Proteinen konnten in zwei Loop-Bereichen, welche 50er bzw. 80er Loop genannt werden, relevante Unterschiede in der Aminosäuresequenz identifiziert werden. Die Nummerierung bezieht sich stets auf FKBP12. Diese Unterschiede ließen sich zum Design von vergleichsweise selektiv an MIP-Proteine bindenden Molekülen nutzen. Der 50er Loop ist in nahezu allen MIP-Proteinen (jedoch nicht in BpsMIP) im Vergleich zu den FKB-Proteinen um zwei Aminosäuren verkürzt. Dadurch befindet sich das Proteinrückgrat von LpnMIP (Gln49) und TcrMIP (Arg49) näher am Zentrum der Bindetasche (definiert als Ile56, welches durch die Pipecolinsäureesterfunktion der Liganden adressiert wird). MD-Simulationen der beiden Apoproteine belegten, dass die geringere Distanz nicht durch Artefakte beim Modellieren der Strukturen bedingt ist. Aufbauend auf dieser Erkenntnis wurde gezeigt, dass der Pyridinylring von Ref_p eine Wasserstoffbrücke zu Gln49 ausbildet. Experimentell wurde dieser Befund durch eine entsprechende chemische Verschiebung der Aminosäure im NMR-Experiment von Dr. Kristian Schweimer bestätigt. Durch Überbrückung des Pipecolinsäurerings (Ligand 6bp) konnte die Wasserstoffbrücke in MD-Simulationen weiter stabilisiert werden. Durch Rechnungen zur Abschätzung der freien Bindungsenthalpien (mittels LIE und MM/GBSA) wurde eine erhöhte Affinität von 6bp im Vergleich zu Ref_p in LpnMIP ermittelt. Im Laufe der Arbeit wurde anhand von pIC50-Werten, welche von Dr. Mathias Weiwad bestimmt wurden, erkannt, dass Liganden mit Pyridinylring oftmals eine bessere Affinität in LpnMIP aufweisen als die entsprechenden Liganden mit TMPR. Durch MD Simulationen wurde nachgewiesen, dass der TMPR in LpnMIP nur schwer an der in den anderen Proteinen bevorzugten Position binden kann. Grund hierfür ist die Mutation einer Aminosäure (zu Pro57) in diesem Bereich von LpnMIP: Diese verfügt über eine wenig flexible Seiten-kette, an welche sich der TMPR auf Grund seiner Rigidität nicht anpassen kann, was die Interaktion zwischen Protein und Ligand stört. Der Pyridinylring von Ref_p ist hiervon nicht betroffen, da er bevorzugt an einer anderen Stelle (Gln49, s. o.) bindet. Der 80er Loop weist in vielen MIP-Proteinen deutlich hydrophobere Aminosäuren auf als in FKB-Proteinen. Von besonderem Interesse ist die Position 90, da hier in BpsMIP und LpnMIP sterisch weniger anspruchsvolle Aminosäuren (Val, Pro) vorliegen als in den bei-den FKB-Proteinen (Ile, Lys). Dieser Unterschied wurde mit kleinen hydrophoben Substituenten am Phenylring der Liganden adressiert. Bereits im Docking zeigten sich die positiven Effekte der para-Substitution durch Halogenatome oder eine Methylgruppe. Die von Dr. Mathias Weiwad und Dr. Mirella Vivoli ermittelten pIC50- bzw. pKi-Werte bestätigten diesen Trend. Zugleich nahm die Affinität zu FKBP12 deutlich ab. Bei der Untersuchung der Referenzliganden sowie deren Chlor- und Bromderivate in MD-Simulationen zeigte sich, dass der Phenylring der Liganden in den MIP-Proteinen bevorzugt in Richtung des 80er Loops orientiert ist; in den FKB-Proteinen liegt er hingegen um etwa 110° gedreht vor und kann somit schlechter mit der Bindetasche interagieren. Besonders ausgeprägt ist dieser Effekt in FKBP12. Basierend auf diesen Ergebnissen wurde der Phenylring durch einen 4-Bromo-1H-imidazol-2-ylsubstituenten ersetzt (Ligand 8ap). Dieser ist in der Lage, in der erwarteten Orientierung im Bereich des 80er Loops von BpsMIP zu binden und gleichzeitig eine stabile Wasserstoffbrücke zu Asp37 auszubilden. Hieraus resultiert für den Liganden eine deutlich höhere Affinität in LIE- und MM/GBSA-Rechnungen; in FKBP12 blieb sie auf Grund der dort instabilen Interaktion unverändert. Die berechneten Energien können unmittelbar für einen relativen Vergleich verschiedener Liganden in einer Bindetasche verwendet werden. Für die Vorhersage von pKi- bzw. pIC50-Werten in den verschiedenen Proteinen ist eine Kalibrierung gegen die gemessenen Affinitäten erforderlich. Dies wurde für BpsMIP durchgeführt, indem eine lineare Korrelation zwischen den pKi- bzw. pIC50-Werten und den mit MM/GBSA ermittelten Energien aufgestellt wurde. Für LIE wurde auf publizierte Werte von Lamb et al. zurückgegriffen. Die berechneten Affinitäten stimmen für die bereits getesteten Inhibitoren gut mit den experimentellen pKi- und pIC50-Werten überein. Anhand der Modelle werden für 8ap Werte vorhergesagt, die besser als die experimentellen Affinitäten bekannter Liganden sind. Idealerweise können auch aus den Scores, die durch Docking erhalten werden, bereits Rückschlüsse auf die Affinitäten der Liganden gezogen werden. Für die untersuchten Proteine war dies, auf Grund des engen Bereichs der experimentell ermittelten pKi- und pIC50-Werte, nicht mit hinreichender Richtigkeit möglich. Um die Scores dennoch für die Beurteilung neuer Liganden verwenden zu können, wurden logistische Regressionsmodelle erstellt. Anhand dieser kann abgeschätzt werden, ob ein Molekül in BpsMIP submikromolare Affinität aufweist. Die Richtigkeit dieser Vorhersagemodelle konnte durch die Berücksichtigung dreier weiterer Deskriptoren (Konfiguration am Stereozentrum der Pipecolinsäure, Molekulargewicht und logD-Wert) deutlich verbessert werden, wobei die AUC der entsprechenden ROC-Kurven Werte bis zu 0.9 erreichte. Diese Modelle können für die Postprozessierung eines Dockings angewendet werden, um die vielversprechendsten Kandidaten zu identifizieren und anschließend in rechnerisch anspruchsvolleren MD-Simulationen genauer zu untersuchen. Mit dieser Arbeit wurde zur Weiterentwicklung der Leitstrukturen Ref_t und Ref_p beigetragen. Viele der getesteten Derivate wiesen deutlich verbesserte Löslichkeit bei gleichbleibender Affinität auf. Ferner wurden erstmalig detailliert die Unterschiede in den Bindetaschen zwischen 32 MIP- und FKB-Proteinen evaluiert. Hiervon wurden fünf in MD-Simulationen als Apoprotein und im Komplex mit verschiedenen Inhibitoren verglichen. Anhand dieser Simulationen wurde nachgewiesen, dass jeweils eine Aminosäure in BpsMIP und LpnMIP im Vergleich zum wichtigsten „off-target“ FKBP12 selektiv durch eine Wasserstoffbrücke adressiert werden kann. Durch LIE- und MM/GBSA-Rechnungen konnte gezeigt werden, dass in diesen hochkonservierten Bindetaschen eine bedeutende Modulation der Affinität zugunsten von BpsMIP möglich ist. N2 - Bacterial and parasitic MIP proteins constitute important virulence factors. Inhibiting these proteins can considerably reduce the survival of the pathogens as well as their penetration into human host cells. The work presented in this thesis focused on the MIP proteins of Burkholderia pseudomallei (the causative agent of melioidosis) and Legionella pneumophila (Legionnaires’ disease). Furthermore, the MIP protein of Trypanosoma cruzi (Chagas disease) was also investigated. The structurally homologous human FKB proteins FKBP12 and FKBP52 were taken into account as relevant off-targets. The aim of this thesis was to improve MIP inhibitors by means of in silico methods with respect to affinity and selectivity (for MIP proteins over FKBP12 and FKBP52) as well as solubility. The starting point for this task were two lead structures with a pipecolic acid scaffold from the work of Dr. Christina Juli and Dr. Florian Seufert. These reference ligands contain a 3,4,5-trimethoxyphenyl ring (TMPR, cf. Ref_t) or a pyridinyl ring (Ref_p). By comparison of 32 MIP and FKB proteins major differences with regard to the amino acid sequence could be identified in two loop regions, the so called 50s and 80s loop (numbering always with respect to FKBP12). It was possible to utilise these differences for the design of molecules with preferential binding to MIP proteins. The 50s loop is truncated by two amino acids in nearly all MIP proteins compared to the FKB proteins, except for BpsMIP. Thus, the protein backbone of LpnMIP (Gln49) and TcrMIP (Arg49) is located closer to the centre of the binding pocket. The centre is defined as Ile56, which is binding to the pipecolic ester function of the ligands. MD simulations of both apoproteins proved that the smaller distance is not caused by artefacts introduced during modelling of the structures. Expanding on this knowledge, it could be shown that the pyridinyl ring of Ref_p forms a hydrogen bond to Gln49. This finding was proven ex-perimentally by a corresponding chemical shift of the amino acid in an NMR experiment conducted by Dr. Kristian Schweimer. The hydrogen bond was stabilised further in MD simulations via bridging of the pipecolic acid ring (ligand 6bp). Calculations by MM/GBSA and LIE, estimating the binding free energies of the ligands, yielded im-proved affinity for 6bp compared to Ref_p in LpnMIP. It was noted in the course of this work, based on pIC50 measurements conducted by Dr. Mathias Weiwad, that ligands containing a pyridinyl ring often exhibit better affinity in LpnMIP than their corresponding counterparts with a TMPR. It could be shown with MD simulations that the TMPR is barely able to bind to LpnMIP at the position preferred in the other proteins. This is caused by mutation of an amino acid (to Pro57) in this region of LpnMIP. Due to its rigidity, the TMPR is not able to adjust to the hardly flexible side chain of proline. Consequently, the interaction between protein and ligand is disrupted. The pyridinyl ring of Ref_p is not affected by this mutation since it binds at another position (Gln49, see above). The 80s loop contains more hydrophobic amino acids in MIP proteins than in FKB proteins. Position 90 is of particular interest, as there are sterically less demanding amino acids in BpsMIP and LpnMIP (Val, Pro) than in both FKB proteins (Ile, Lys). This difference was addressed with small hydrophobic substituents at the ligands’ phenyl ring. The favourable effects of the substitution in para-position by halogen atoms or a methyl group could be observed in initial docking experiments. pIC50 and pKi values measured by Dr. Mathias Weiwad und Dr. Mirella Vivoli confirmed this trend. Furthermore, the affinity for FKBP12 clearly decreased. MD simulations of both reference ligands as well as their derivatives substituted with chlorine or bromine showed that the phenyl ring preferentially adopts a conformation pointing towards the 80s loop in MIP proteins. In contrast, the phenyl ring is rotated by approximately 110° in FKB proteins, leading to decreased interactions with the binding pocket. This effect is especially pronounced in FKBP12. Based on these results, the phenyl ring was substituted by 4-Bromo-1H-imidazol-2-yl (ligand 8ap). A ligand containing this substituent can bind next to the 80s loop of BpsMIP maintaining the previously described orientation and simultaneously form a stable hydrogen bond to Asp37. Hence, a considerably higher binding affinity of this ligand to BpsMIP was predicted via LIE and MM/GBSA calculations. There were no changes in affinity for FKBP12 due to the instable interaction in this protein. The calculated energies can directly be used to rank different ligands in a binding pocket. In order to predict pIC50 and pKi values in different proteins, these energies require calibration versus experimentally measured affinities. Such a calibration was carried out for BpsMIP by linearly correlating pIC50 and pKi values with energies gained from MM/GBSA calculations. For the LIE method, parameters published by Lamb et al. were used. Both computational approaches yielded affinities in good agreement with experimentally measured pIC50 and pKi values of known ligands. The affinities predicted by these models for 8ap are better than the inhibition constants of all currently known inhibitors. Ideally, scores obtained by docking can directly be used to gain insights into the ligands’ affinities. However, sufficient accuracy for the proteins investigated could not be gained, due to the narrow range of the experimental pIC50 and pKi values. Consequently, logistic regression models were created to allow for assessment of the ligands based on their score. These models predict whether a ligand is likely to show submicromolar affinity in BpsMIP. The accuracy of these models was considerably increased by implementing three other descriptors (configuration at the stereo centre of the pipecolic acid, molecular weight and logD value). Thus, AUCs up to 0.9 could be achieved in the corresponding ROC curves. The models can be used for postprocessing a docking calculation in order to identify the most promising ligands and subsequently investigating them with computationally more demanding MD simulations. This work contributed to the improvement of the lead structures Ref_t and Ref_p. Many of the tested derivatives exhibited increased solubility while affinity was maintained. Furthermore, differences in the binding pockets of 32 MIP and FKB proteins were evaluated in detail for the first time. Five of these proteins were compared in MD simulations, both as apoproteins as well as complexed with different inhibitors. It was proven by these simulations that one amino acid in BpsMIP as well as in LpnMIP can selectively be addressed with a hydrogen bond. These interactions cannot be formed in the most prominent off-target FKBP12. LIE and MM/GBSA calculations proved that considerable modulation of the binding affinity towards BpsMIP is possible in these highly conserved binding pockets. KW - Computational chemistry KW - Macrophage Infectivity Potentiator Protein KW - Arzneimitteldesign KW - MIP protein KW - FKBP KW - docking KW - MD simulation KW - Burkholderia pseudomallei KW - Legionella pneumophila KW - Trypanosoma cruzi KW - Drug design KW - molecular dynamics Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-165757 ER -