TY - JOUR A1 - Sivarajan, Rinu A1 - Kessie, David Komla A1 - Oberwinkler, Heike A1 - Pallmann, Niklas A1 - Walles, Thorsten A1 - Scherzad, Agmal A1 - Hackenberg, Stephan A1 - Steinke, Maria T1 - Susceptibility of Human Airway Tissue Models Derived From Different Anatomical Sites to Bordetella pertussis and Its Virulence Factor Adenylate Cyclase Toxin JF - Frontiers in Cellular and Infection Microbiology N2 - To study the interaction of human pathogens with their host target structures, human tissue models based on primary cells are considered suitable. Complex tissue models of the human airways have been used as infection models for various viral and bacterial pathogens. The Gram-negative bacterium Bordetella pertussis is of relevant clinical interest since whooping cough has developed into a resurgent infectious disease. In the present study, we created three-dimensional tissue models of the human ciliated nasal and tracheo-bronchial mucosa. We compared the innate immune response of these models towards the B. pertussis virulence factor adenylate cyclase toxin (CyaA) and its enzymatically inactive but fully pore-forming toxoid CyaA-AC\(^-\). Applying molecular biological, histological, and microbiological assays, we found that 1 µg/ml CyaA elevated the intracellular cAMP level but did not disturb the epithelial barrier integrity of nasal and tracheo-bronchial airway mucosa tissue models. Interestingly, CyaA significantly increased interleukin 6, interleukin 8, and human beta defensin 2 secretion in nasal tissue models, whereas tracheo-bronchial tissue models were not significantly affected compared to the controls. Subsequently, we investigated the interaction of B. pertussis with both differentiated primary nasal and tracheo-bronchial tissue models and demonstrated bacterial adherence and invasion without observing host cell type-specific significant differences. Even though the nasal and the tracheo-bronchial mucosa appear similar from a histological perspective, they are differentially susceptible to B. pertussis CyaA in vitro. Our finding that nasal tissue models showed an increased innate immune response towards the B. pertussis virulence factor CyaA compared to tracheo-bronchial tissue models may reflect the key role of the nasal airway mucosa as the first line of defense against airborne pathogens. KW - human nasal epithelial cells KW - human tracheo-bronchial epithelial cells KW - human airway mucosa tissue models KW - adenylate cyclase toxin KW - Bordetella pertussis Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-253302 SN - 2235-2988 VL - 11 ER - TY - JOUR A1 - Bianchi, Maria A1 - Sivarajan, Rinu A1 - Walles, Thorsten A1 - Hackenberg, Stephan A1 - Steinke, Maria T1 - Susceptibility of primary human airway epithelial cells to Bordetella pertussis adenylate cyclase toxin in two- and three-dimensional culture conditions JF - Innate Immunity N2 - The human pathogen Bordetella pertussis targets the respiratory epithelium and causes whooping cough. Its virulence factor adenylate cyclase toxin (CyaA) plays an important role in the course of infection. Previous studies on the impact of CyaA on human epithelial cells have been carried out using cell lines derived from the airways or the intestinal tract. Here, we investigated the interaction of CyaA and its enzymatically inactive but fully pore-forming toxoid CyaA-AC– with primary human airway epithelial cells (hAEC) derived from different anatomical sites (nose and tracheo-bronchial region) in two-dimensional culture conditions. To assess possible differences between the response of primary hAEC and respiratory cell lines directly, we included HBEC3-KT in our studies. In comparative analyses, we studied the impact of both the toxin and the toxoid on cell viability, intracellular cAMP concentration and IL-6 secretion. We found that the selected hAEC, which lack CD11b, were differentially susceptible to both CyaA and CyaA-AC–. HBEC3-KT appeared not to be suitable for subsequent analyses. Since the nasal epithelium first gets in contact with airborne pathogens, we further studied the effect of CyaA and its toxoid on the innate immunity of three-dimensional tissue models of the human nasal mucosa. The present study reveals first insights in toxin–cell interaction using primary hAEC. KW - Adenylate cyclase toxin KW - cyclic adenosine monophosphate KW - human respiratory epithelial cells KW - IL-6 KW - Bordetella pertussis Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-219849 SN - 1753-4259 SN - 1753-4267 VL - 27 IS - 1 SP - 89-98 ER - TY - JOUR A1 - Kessie, David K. A1 - Lodes, Nina A1 - Oberwinkler, Heike A1 - Goldman, William E. A1 - Walles, Thorsten A1 - Steinke, Maria A1 - Gross, Roy T1 - Activity of Tracheal Cytotoxin of Bordetella pertussis in a Human Tracheobronchial 3D Tissue Model JF - Frontiers in Cellular and Infection Microbiology N2 - Bordetella pertussis is a highly contagious pathogen which causes whooping cough in humans. A major pathophysiology of infection is the extrusion of ciliated cells and subsequent disruption of the respiratory mucosa. Tracheal cytotoxin (TCT) is the only virulence factor produced by B. pertussis that has been able to recapitulate this pathology in animal models. This pathophysiology is well characterized in a hamster tracheal model, but human data are lacking due to scarcity of donor material. We assessed the impact of TCT and lipopolysaccharide (LPS) on the functional integrity of the human airway mucosa by using in vitro airway mucosa models developed by co-culturing human tracheobronchial epithelial cells and human tracheobronchial fibroblasts on porcine small intestinal submucosa scaffold under airlift conditions. TCT and LPS either alone and in combination induced blebbing and necrosis of the ciliated epithelia. TCT and LPS induced loss of ciliated epithelial cells and hyper-mucus production which interfered with mucociliary clearance. In addition, the toxins had a disruptive effect on the tight junction organization, significantly reduced transepithelial electrical resistance and increased FITC-Dextran permeability after toxin incubation. In summary, the results indicate that TCT collaborates with LPS to induce the disruption of the human airway mucosa as reported for the hamster tracheal model. KW - tracheal cytotoxin KW - airway epithelia KW - tissue model KW - ciliostasis KW - tight junction KW - Bordetella pertussis Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-222736 SN - 2235-2988 VL - 10 ER -