TY - THES A1 - Richter, Rolf Ingo T1 - Beiträge zur Chemie des höherkoordinierten Siliciums: Synthese, Struktur und Eigenschaften neuer Silicate mit SiO 3 C 2 -, SiO 4 C -, SiO 5 - und SiO 6 -Gerüst, Beiträge zur Chemie des tetrakoordinierten Siliciiums: Synthese, Struktur und Eigenschaften von Silanen, Silanolen und Siloxanen T1 - Contributions to the field of penta- and hexacoordinate silicon chemistry: syntheses, structures, and properties of new silicates with SiO3C2-, SiO4C-, SiO5-, and SiO6-skeletons N2 - Die vorliegende Arbeit stellt einen Beitrag zur Siliciumchemie dar — mit einem Schwerpunkt in der Chemie des penta- und hexakoordinierten Siliciums. Die Ergebnisse werden im Folgenden aufgegliedert in vier Themenkomplexe vorgestellt. 7.1 Synthese und Charakterisierung zwitterionischer l5Si-Silicate Im Rahmen der hier vorgestellten Untersuchungen wurden die bisher unbekannten zwitterionischen l5Si-Silicate 3–8 — lösungsmittelfrei oder in Form wohldefinierter Solvate — dargestellt. Erstmals konnte für die Substanzklasse der zwitterionischen l5Si-Spirosilicate an dem bereits bekannten l5Si-Silicat 1 durch 1H-VT-NMR-Experimente die Energiebarriere für die Enantiomerisierung im Sinne einer Berry-Pseudorotation in Lösung bestimmt werden. Durch Hydrolyse von 1 — gefolgt von Kondensationsreaktionen — wurde das neuartige Oktasilsesquioxan 2 dargestellt. Die Charakterisierung aller Verbindungen erfolgte durch Elementaranalysen, 1H-, 13C- und 29Si-NMR-Spektroskopie an Lösungen (außer 2), 29Si-VACP/MAS-NMR-Spektroskopie an Feststoffen und im Fall der Verbindungen 2, 3×½HO(CH2)2OH, 4×HO(CH2)2OH, 6, 7×3/2C4H8O2 und 8×2CH2Cl2 durch Einkristall-Röntgenstrukturanalysen. Anhand der Synthese von 1 durch Umsetzung von Dimethoxy(methyl)[(2,2,6,6-tetramethylpiperidino)methyl]silan mit Ethan-1,2-diol wurde gezeigt, das Ethan-1,2-diol zu einer selektiven Si–C-Spaltungsreaktion (Abspaltung eines Moläquivalents Methan) in der Synthese zwitterionischer l5Si-Spirosilicate in der Lage ist. Durch 1H-VT-NMR-Experimente wurde die Barriere des Enantiomerisierungsprozesses am Silicium-Zentrum von 1 zu 35.3(5) kJ mol–1 bestimmt. Durch Umsetzung von 1 mit Wasser in Methylenchlorid bei Raumtemperatur gelang die Synthese des Aminomethylsubstituierten Octasilsesquioxans 2. Die Synthese der Verbindungen 3–5 erfolgte durch Umsetzung der entsprechenden Trialkoxy[(amino)alkyl]silane mit Ethan-1,2-diol in Substanz (3) oder in Acetonitril (4 und 5). Die bereits bekannte Verbindung 6 wurde zwecks struktureller Charakterisierung resynthetisiert. Durch Umsetzung von Trimethoxy[(2,2,6,6-tetramethylpiperidino)methyl]-silan mit Benzoin gelang die Synthese von 7. Mit Verbindung 8 — dargestellt durch Umsetzung von Dimethoxy(methyl)[(2,2,6,6-tetramethylpiperidino)methyl]silan mit Brenzkatechin — gelang erstmals die Synthese eines zwitterionischen l5Si-Silicates mit SiO3C2-Gerüst. In siedendem Acetonitril konnte 8 unter Methan-Abspaltung zum bekannten zwitterionischen l5Si-Spirosilicat 9 umgesetzt werden. 7.2 Synthese und Charakterisierung anionischer l5Si-Silicate und dianionischer l5Si,l5Si’-Disilicate mit SiO5-Gerüst Im Rahmen der hier vorgestellten Untersuchungen wurden erstmals die anionischen l5Si-Silicate 11 und 13–15 sowie die dianionischen l5Si,l5Si’-Disilicate 10, 12 und 16 mit SiO5-Gerüst — lösungsmittelfrei oder in Form wohldefinierter Solvate — dargestellt. Die Charakterisierung dieser Verbindungen erfolgte durch Elementaranalysen, 1H-, 13C- und 29Si-NMR-Spektroskopie an Lösungen, 29Si-VACP/MAS-NMR-Spektroskopie am Festkörper sowie durch Kristallstrukturanalysen [(Δ,Δ/Λ,Λ)-10×2CH3CN, (Λ)-11×THF, meso-12×2CHCl3, 13, 14, 15×2THF und meso-16]. Die Synthesen der l5Si-Silicate 10–13 und 16 erfolgten in aprotischen organischen Lösungsmitteln durch Umsetzung von Tetramethoxysilan mit Benzilsäure, dem entsprechenden Amin und Wasser in dem erforderlichen stöchiometrischen Verhältnis. Das l5Si-[Trimethylsilanolato(1–)]silicat 14 wurde ausgehend von dem Hydroxosilicat 13, Chlortrimethylsilan und Triethylamin in Acetonitril erhalten. Das l5Si-[Methanolato- (1–)]silicat 15 wurde durch die Umsetzung von Tetramethoxysilan mit Benzilsäure und Lithiummethanolat in Tetrahydrofuran dargestellt. Die l5Si,l5Si’-μ-Oxo-disilicate 10, 12 und 16 sind die ersten strukturell charakterisierten Verbindungen, in denen zwei pentakoordinierte Silicium-Atome mit SiO5-Skelett über ein gemeinsames Sauerstoff-Atom miteinander verbrückt sind. Sowohl ihre Reaktivität gegenüber Wasser, als auch ihr stereodynamisches Verhalten in Lösung, das mit 1H- und 13C-VT-NMR-Experimenten untersucht werden konnte, machen diese Verbindungen zu sehr lohnenden Studienobjekten für das Verständnis der Chemie des pentakoordinierten Siliciums. Mit den Verbindungen 11 und 13 wurden erstmals l5Si-Hydroxosilicate zugänglich gemacht und strukturell charakterisiert (unabhängig von einem kürzlich von P. Klüfers et al. veröffentlichten l5Si-Hydroxosilicat). Das l5Si-[Trimethylsilanolato(1–)]silicat 14 ist das erste Beispiel für die Verknüpfung eines pentakoordinierten und tetrakoordinierten Silicium-Atoms durch ein Sauerstoff-Atom und demonstriert die Zugänglichkeit der HO-Funktionaliät des l5Si-Hydroxosilicates 13 für Derivatisierungen. Das l5Si-[Methanolato(1–)]silicat 15 ist als Modellverbindung für die Bildung der l5Si-Hydroxosilicate 11 und 13 von mechanistischem und auch präparativem Interesse. 7.3 Synthese und Charakterisierung dianionischer l6Si-Silicate mit SiO6-Gerüst Im Rahmen der hier vorgestellten Untersuchungen wurden die bisher unbekannten dianionischen l6Si-Silicate 19–21 mit SiO6-Gerüst — lösungsmittelfrei oder in Form wohldefinierter Solvate — dargestellt. Die bereits bekannte Verbindung 18 wurde zwecks Kristallstrukturanalyse resynthetisiert. Die Charakterisierung aller synthetisierten Verbindungen erfolgte durch Elementaranalysen 1H-, 13C- und 29Si-NMR-Spektroskopie an Lösungen (mit Ausnahme von 19 und 21 [nur 1H- und 13C-NMR-Messungen]), 29Si-VACP/MAS-NMR-Spektroskopie am Festkörper sowie durch Röntgenbeugungs-Experimente an Einkristallen [18·2NH3·2H2O , mer-19, fac-20·½C4H8O2, (R,R/S,S)-21]. Die l6Si-Silicate 19–21 wurden durch Umsetzung von Tetramethoxysilan bzw. Tetrachlorsilan mit drei bzw. zwei Moläquivalenten des entsprechenden Amins dargestellt. Diese Verbindungen stellen die ersten l6Si-Silicate mit deprotonierten α-Hydroxycarbonsäuren als Liganden dar. Verbindung 21 ist darüber hinaus die erste Silicium-Verbindung mit dreizähnigen Citrato(3–)-Liganden. Neben einem allgemein erweiterten Verständnis der Chemie von l6Si-Silicaten mit SiO6-Gerüst geben die untersuchten Verbindungen insbesondere auch neue stereochemische Einblicke in die Koordinationschemie des Siliciums. In wieweit diese hier genannten l6Si-Silicate einen Beitrag zum Verständnis der Siliciumdioxid-Biomineralisation leisten können, bleibt abzuwarten. 7.4 Synthese und Charakterisierung von Verbindungen des tetrakoordinierten Siliciums Im Rahmen der hier vorgestellten Untersuchungen wurden erstmals die Silane 25 und 27 dargestellt, und die Synthesen der bereits bekannten Silicium-Verbindungen 22–24 konnten verbessert werden. Die Charakterisierung von 22–27 erfolgte durch Elementaranalysen 1H-, 13C- und 29Si-NMR-Spektroskopie an Lösungen, 29Si-VACP/MAS-NMR-Spektroskopie am Festkörper (nur 23×EtOAc), sowie durch Röntgenbeugung an Einkristallen (23×EtOAc, 25–27). Eine Verbesserung der Synthese von 22 gelang durch die Umsetzung von 1,2-Bis(diethylamino)-1,1,2,2-tetraphenyldisilan mit Acetylchlorid zum 1,2-Dichlor-1,1,2,2-tetraphenyldisilan und dessen nachfolgende Hydrolyse. Die Kristallisation des macrocyclischen Siloxans 23 konnte verbessert und das Solvat 23×EtOAc durch Röntgenbeugung strukturell charakterisiert werden. Bei der Umkristallisation von 22 wurden auch einzelne Kristalle des entsprechenden Disiloxans 26 erhalten, welches erstmals durch Kristallstrukturanalyse charakterisiert werden konnte. Das Silan 24 wurde auf zwei neuen Synthesewegen dargestellt: zum einen durch Umsetzung von Bis(chlormethyl)diphenylsilan mit Trifuormethansulfonsäure und anschließende Aufarbeitung mit Triethylammoniumchlorid, zum anderen durch Chlormethylierung von Chlor(chlormethyl)bis(diethylamino)silan mittels der Reagenzkombination BrCH2Cl/n-BuLi und anschließende Umsetzung mit Benzoylchlorid. Das Silan 25 wurde ausgehend von Trimethoxy[(2,2,6,6-tetramethylpiperidino)methyl]silan durch wiederholte Umsetzung mit Tetrachlorsilan erhalten, und das Silan 27 wurde ausgehend von Tetrachlorsilan durch vierfache Chlormethylierung mittels der Reagenzkombination BrCH2Cl/n-BuLi erhalten. N2 - This Thesis contributes to the field of silicon chemistry, with a special emphasis on the chemistry of penta- and hexacoordinate silicon. The results are summarized in the following four chapters. 8.1 Synthesis and characterization of zwitterionic l5Si-silicates In the course of these investigations, the hitherto unknown zwitterionic l5Si-silicates 3–8 were synthesized — solvent-free or as well-defined solvates. For the first time, the energy barrier for the enantiomerization of zwitterionic l5Si-spirosilicates in terms of a Berry-pseudorotation process could be determined by VT 1H NMR experiments using the already known l5Si-silicate 1. The hydrolysis of 1, followed by condensation reactions, yielded the novel octasilsesquioxane 2. The identities of all compounds were established by elemental analyses (C, H, N), solution NMR studies (1H, 13C, and 29Si; except for 2), and solid-state 29Si VACP/MAS NMR experiments. In addition, compounds 2, 3×½HO(CH2)2OH, 4×HO(CH2)2OH, 6, 7×3/2C4H8O2, and 8×2CH2Cl2 were structurally characterized by single-crystal X-ray diffraction. By means of the synthesis of 1 [obtained by treatment of dimethoxy(methyl)[(2,2,6,6-tetramethylpiperidino)methyl]silane with ethane-1,2-diol] it was demonstrated that ethane-1,2-diol can be used for the synthesis of zwitterionic l5Si-silicates via selective Si–C cleavage reactions (elimination of one molar equivalent of methane). For compound 1 the energy barrier for the enantiomerization process at the silicon atom was determined to be 35.3(5) kJ mol–1 (VT 1H NMR experiments). Treatment of 1 with water in dichloromethane at room temperature gave the aminomethyl-substituted octasilsesquioxane 2. Compounds 3–5 were synthesized by reaction of the respective trialkoxy[(amino)alkyl]silane with ethane-1,2-diol using no solvent (3) or using acetonitrile as solvent (4 and 5). The already known compound 6 was resynthesized to characterize it by single-crystal X-ray diffraction. Treatment of trimethoxy[(2,2,6,6-tetramethylpiperidino)methyl]silane with benzoin yielded compound 7. Treatment of dimethoxy(methyl)[(2,2,6,6-tetramethylpiperidino)methyl]silan with pyrocatechol gave the first zwitterionic l5Si-silicate with an SiO3C2 skeleton, compound 8. In boiling acetonitrile, 8 undergoes an elimination reaction (formation of methane) to yield the known l5Si-spirosilicate 9. 8.2 Synthesis and characterization of anionic l5Si-silicates and dianionic l5Si,l5Si’-disilicates with SiO5 skeletons In the course of these investigations, the anionic l5Si-silicates 11 and 13–15 and the dianionic l5Si,l5Si’-disilicates 10, 12, and 16 with SiO5 skeletons were synthesized for the first time — solvent-free or as well-defined solvates. The identities of these compounds were established by elemental analyses (C, H, N), solution NMR studies (1H, 13C, and 29Si), and solid-state 29Si VACP/MAS NMR experiments. In addition, compounds (Δ,Δ/Λ,Λ)-10×2CH3CN, (Λ)-11×THF, meso-12×2CHCl3, 13, 14, 15×2THF, und meso-16 were structurally characterized by single-crystal X-ray diffraction. The syntheses of the l5Si-silicates 10–13 and 16 were performed in aprotic organic solvents by treatment of tetramethoxysilane with, benzilic acid, the respective amine, and water, using the required stoichiometry. The [trimethylsilanolato(1–)]silicate 14 was obtained from the hydroxosilicate 13, chlorotrimethylsilane, and triethylamine in acetonitrile. The [methanolato(1–)]silicate 15 was synthesized by treatment of tetramethoxysilane with benzilic acid and lithium methanolate in tetrahydrofuran. The μ-oxo-disilicates 10, 12, and 16 are the first compounds, with two pentacoordinate oxygen-bridged silicon atoms with SiO5 skeletons that could be structurally characterized by single-crystal X-ray diffraction. Both their reactivity toward water and their stereodynamics in solution (studied by VT 1H and 13C NMR experiments) make these compounds unique objects in the study of pentacoordinate silicon compounds. Compounds 11 and 13 are the first pentacoordinate l5Si-hydroxosilicates that have been synthesized and structurally characterized (independently from a l5Si-hydroxosilicate recently published by Klüfers et al.). The l5Si-[trimethylsilanolato(1–)]silicate 14 represents the first example of a compound containing an oxygen-bridged pentacoordinate and tetracoordinate silicon atom. With respect to mechanistic and preparative aspects, the l5Si-[methanolato(1–)]silicate 15 is a model system for the formation of the l5Si-hydroxosilicates 11 and 13. 8.3 Synthesis and characterization of dianionic l6Si-silicates with SiO6 skeletons In the course of these investigations, the dianionic l6Si-silicates 19–21 with SiO6 skeletons were synthesized for the first time — solvent-free or as well-defined solvates. The already known compound 18 was resynthesized for its characterization by crystal structure analysis. The identities of all compounds were established by elemental analyses (C, H, N), solution NMR studies (1H, 13C, and 29Si except for 18, only 29Si NMR for 20), and solid-state 29Si VACP/MAS NMR experiments. In addition, compounds 18·2NH3·2H2O, mer-19, fac-20·½C4H8O2, and (R,R/S,S)-21 were structurally characterized by single-crystal X-ray diffraction. The l6Si-silicates 19–21 were synthesized by reaction of tetramethoxysilane or tetrachlorosilane with two or three molar equivalents of the respective α-hydroxy carboxylic acid and two molar equivalents of the respective amine. Compounds 19–21 represent the first l6Si-silicates with ligands derived from α-hydroxycarboxylic acids. In addition, 21 is the first silicon compound containing tridentate citrato(3–) ligands. Apart from the expanded knowledge about l6Si-silicates with SiO6 skeletons, the compounds studied allow some insight into the stereochemistry of such compounds. It remains an open question as to whether or not l6Si-silicates of this particular formula type have any potential relevance for silicon biochemistry (SiO2 biomineralization). 8.4 Synthesis and characterization of tetracoordinate silicon compounds In the course of these investigations, the silanes 25 and 27 were synthesized for the first time, and the syntheses of the already known compounds 22–24 could be improved. The identities of all compounds were established by elemental analyses (C, H, N), solution NMR studies (1H, 13C, and 29Si), and solid-state 29Si VACP/MAS NMR experiments (23×EtOAc only). In addition, compounds 23×EtOAc and 25–27 were structurally characterized by single-crystal X-ray diffraction. The improved synthesis of 22 was achieved by the reaction of 1,2-bis(diethylamino)-1,1,2,2-tetraphenyldisilane with acetyl chloride to give 1,2-dichloro-1,1,2,2-tetraphenyldisilane, followed by its hydrolysis. The crystallization of the macrocyclic siloxane 23 could be improved, and the solvate 23×EtOAc was structurally characterized by X-ray diffraction. In the course of the crystallization of 22, also crystals of the corresponding disiloxane 26 were obtained that allowed a structural characterization by single-crystal X-ray diffraction. The silane 24 was synthesized by using two novel strategies, (i) the reaction of bis(chloromethyl)diphenylsilane with trifluoromethanesulfonic acid, followed by triethylammonium chloride, and (ii) the chloromethylation of chloro(chloromethyl)bis(diethylamino)silane with BrCH2Cl/n-BuLi, followed by reaction with benzoyl chloride. The silane 27 was synthesized from tetrachlorosilane by a four-fold chloromethylation with BrCH2Cl/n-BuLi. The silane 25 was synthesized from trimethoxy[(2,2,6,6-tetramethylpiperidino)methyl]silane by repeated treatment with tetrachlorosilane. KW - Silicate KW - Silicium KW - Pentakoordination KW - Tetrakoordinierte Verbindungen KW - Chemische Synthese KW - Silicium KW - Pentakoordination KW - Hexakoordination KW - Silane KW - Siloxane KW - silicon KW - pentacoordination KW - hexacoordination KW - silanes KW - siloxanes Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-2972 ER - TY - THES A1 - Schildbach, Daniel T1 - Metallierte stereogene Kohlenstoff-Zentren: Beziehungen zwischen Struktur und Reaktivität spezieller Organometall-Verbindungen der Haupt- und Nebengruppen T1 - Metalated Stereogenic Carbon Centres: Correlations Between the Structure and Reactivity of Special Main Group- and Transition Organometallic Compounds N2 - Die vorliegende Arbeit stellt einen Beitrag dar zum Verstaendnis der Synthese, der Eigenschaften und der Transformationen hochgradig diastereomerenangereicherter Lithiumalkyle. Dabei spielten vier Punkte eine grosse Rolle: die Aufklaerung der Struktur im Festkoerper, die Untersuchung der Reaktivitaet, die Bestimmung von Selektivitaeten sowie die Aufklaerung des stereochemischen Verlaufs der Transformationen dieser Alkyllithium-Verbindungen. In Ergaenzung zu den experimentellen Resultaten hatte das Wechselspiel zwischen Theorie und Experiment in Form quantenchemischer Studien der untersuchten Lithium-Verbindungen einen hohen Stellenwert. Im Mittelpunkt der Untersuchungen standen dabei lithiierte (Aminomethyl)benzylsilane. Am achiralen Benzyldimethyl(piperidinomethyl)silan Me2Si(CH2Ph)(CH2C5H10) (CH2C5H10 = Piperidinomethyl) wurden Fragestellungen zur Regioselektivitaet beantwortet. Durch eine sukzessive zweifache Lithiierung von Me2Si(CH2Ph)(CH2C5H10) konnte eine interessante 1,3-Dilithium-Verbindung dargestellt werden. Durch Lithiierung von enantiomerenreinem Me2Si(CH2Ph)(CH2SMP) [CH2SMP = (S)-2-(Methoxymethyl)pyrrolidinomethyl in n-Pentan in Gegenwart von TMEDA bzw. DABCO und das Zuechten von Einkristallen der resultierenden Lithium-Verbindungen konnten zwei Festkoerperstrukturen dieser Verbindung aus polarem Solvens erhalten werden. Sowohl das TMEDA- als auch das DABCO-Addukt liegen, wie das solvensfreie Lithiumalkyl, in der (R,S)-Konfiguration vor. In Umsetzungen der aus Toluol gewonnenen solvensfreien Lithium-Verbindung Me2Si[(R)-CHLiPh](CH2SMP) mit elektrophilen Verbindungen, wie Methyliodid unter Bildung von Me2Si[(S)-CHMePh](CH2SMP), wurden in Abfangreaktionen hohe Selektivitaeten mit einem d. r.-Wert zwischen 96:4 und 98:2 beobachtet. Gleiches wurde fuer Abfangreaktionen mit Chlortrimethylstannan beobachtet, die, wenn die Deprotonierung ohne Zusatz von THF ausgefuehrt wurde, ausschliesslich hohe Diastereoselektivitaeten zeigten. Durch die Ueberfuehrung des methylierten Silans Me2Si[(S)-CHMePh](CH2SMP) in ein einkristallines Ammoniumiodid konnte dessen absolute Konfiguration durch die Einkristall-Roentgenstrukturanalyse aufgeklaert werden. Durch die Silicium-Kohlenstoff-Bindungsspaltung (Tamao-Reaktion) an der Verbindung Me2Si[(S)-CHMePh](CH2SMP) konnte sehr selektiv chirales (S)-1-Phenylethanol in hoch enantiomerenangereicherter Form dargestellt werden. Der Transfer der "carbanionischen" Einheit des stereogenen metallierten Kohlenstoff-Zentrums der Lithium-Verbindung Me2Si[(R)-CHLiPh](CH2SMP) auf Metallfragmente des Quecksilbers und des Palladiums mit dem Ziel, Verbindungen des Typs Me2Si(CH2SMP)[CH(Ph)MCl] (M = Hg, Pd) zu erhalten, wurde durchgefuehrt. Im Falle des Metalls Quecksilber gelang die Metathesereaktion mit verschiedenen Stereoselektivitaeten in Abhaengigkeit des gewaehlten Loesungsmittels. Die erhaltenen d. r.-Werte [(S,S):(R,S)] lagen dabei zwischen 59:41 und 90:10. Durch die Uebertragung des stereogenen Kohlenstoff-Zentrums auf das Metall Palladium konnten zwei interessante reaktive Palladiumalkyle vom Typ Me2Si(CH2SMP)[CH(Ph)PdCl] in hohen Diastereomerenverhaeltnissen isoliert werden, die ein stereogenes Kohlenstoff-Zentrum direkt benachbart zu einem reaktiven Palladium-Metallfragment tragen. Einige achirale (Aminomethyl)(chlorpalladiomethyl)silane vom Typ Ph2Si(CH2C5H10)[CH2PdCl] wurden dargestellt und im Festkoerper strukturell untersucht. Dabei konnte ebenfalls das vorherrschende Strukturprinzip des fuenfgliedrigen Palladacyclus beobachtet werden. Durch erste Untersuchungen dieser Verbindungen hinsichtlich Insertionsreaktionen von Isonitrilen in die Palladium-Kohlenstoff-Bindung wurde bereits ein interessantes Derivat erhalten. Der Quecksilber-Lithium-Austausch an definierten Diastereomerengemischen des (Aminomethyl)(chlormercuriomethyl)silans Me2Si(CH2SMP)[CH(Ph)HgCl] lieferte die Lithium-Verbindung Me2Si[(R)-CHLiPh](CH2SMP) und Me2Si[(S)-CHLiPh](CH2SMP) in Diastereomerenverhaeltnissen, die sich unterschieden von denen der selektiven Deprotonierung, die ausschliesslich Me2Si[(R)-CHLiPh](CH2SMP) erzeugt. Anhand von Abfangreaktionen mit verschiedenen Elektrophilen wurde unter verschiedenen Reaktionsbedingungen der Epimerisierungsprozess der Lithium-Verbindung beobachtet. Um einen Einblick in die Selektivitaet einer Deprotonierungsreaktion seitens der Alkyllithiumbase zu erhalten, wurde das hoch diastereomerenangereicherte lithiierte (Aminomethyl)benzylsilan Me2Si[(R)-CHLiPh](CH2SMP) mit Methanol-d4 umgesetzt (stereochemische Sonde auf der Seite der Base). Dabei wurden in Abhaengigkeit des Loesungsmittels Diastereomerenverhaeltnisse zwischen 51:49 und 89:11 erreicht. Durch quantenchemische Studien am Lithiumalkyl Me2Si[(R)-CHLiPh](CH2SMP) konnte ein Eindruck der relativen Energien der an der Bildung und der Epimerisierung beteiligten Grund- und Uebergangszustaende gewonnen werden. N2 - This work contributes to the understanding of the synthesis, the properties and the reactivity of highly diastereomerically enriched lithium alkyls. Four crucial points played an important role: the determination of the solid state structures, the examination of the reactivity, the determination of selectivities and the clarification of the stereochemical courses of the transformations of these alkyllithium compounds. In addition to the experimental results, quantum chemical studies on the observed lithium compounds also yielded important information. Lithiated (aminomethyl)(benzyl)silanes were the focus of interest in these studies. The regiochemistry was investigated with the non-chiral benzyldimethyl(piperidinomethyl)silane Me2Si(CH2Ph)(CH2C5H10) (CH2C5H10 = piperidinomethyl). A twofold lithiation of Me2Si(CH2Ph)(CH2C5H10) yielded an interesting 1,3-dilithiated compound. By lithiation of the enantiomerically pure (aminomethyl)benzylsilane Me2Si(CH2Ph)(CH2SMP) [CH2SMP = (S)-2-(methoxymethyl)pyrrolidinomethyl] in n-pentane in the presence of TMEDA and DABCO and the growth of single-crystals of the resulting lithium compounds, two solid-state structures of the resulting lithium compound were obtained from polar solution. The TMEDA- as well as the DABCO adduct both displayed an (R) configuration at the stereogenic metalated carbon centre, just like the solvent free lithium compound. High stereoselectivities, with d. r. values between 96:4 and 98:2, were observed for the reactions of solvent free Me2Si[(R)-CHLiPh](CH2SMP) (obtained from toluene) with electrophiles like iodomethane {yielding Me2Si[(S)-CHMePh](CH2SMP)}. Trapping reactions with chlorotrimethylstannane also showed high d. r. values when done without the presence of THF. The absolute configuration of methylated silane Me2Si[(S)-CHMePh](CH2SMP) was determined by protonation with anhydrous HI, converting the compound into a tertiary ammonium iodide which could be crystallised and analysed by X-ray diffraction. By way of the silicon-carbon bond cleavage reaction (the Tamao reaction), the chiral benzyl alcohol (S)-1-phenylethanol could be obtained from Me2Si[(S)-CHMePh](CH2SMP) with a high enantiomeric ratio. The transfer of the "carbanionic" moiety of the stereogenic metalated carbon centre of the lithium compound Me2Si[(R)-CHLiPh](CH2SMP) onto complex fragments of mercury and palladium to give the compounds Me2Si(CH2SMP)[CH(Ph)MCl] (M = Hg, Pd) was successfully effected. In the case of mercury, the metathesis reaction could be effected with different stereoselectivities, depending on the choice of solvent. The observed d. r. values [(S,S):(R,S)] were in the range of 59:41 and 90:10. By transferring the stereogenic carbon centre onto palladium, two interesting and reactive palladium compounds of the type Me2Si(CH2SMP)[CH(Ph)PdCl] could be produced and isolated in high diastereomeric ratios. In both compounds the active metal centre is directly bonded to the stereogenic carbon centre. Various non-chiral (aminomethyl)(chloropalladiomethyl)silanes of the type Ph2Si(CH2C5H10)(CH2PdCl) were synthesised and characterised in the solid state. The five-membered palladacycle was found as a common structural feature in these systems. Initial studies of these molecules with regard to isonitrile insertion into the palladium-carbon bond have already yielded an interesting derivative of the basic palladium compound Ph2Si(CH2C5H10)(CH2PdCl). The mercury-lithium exchange of defined diastereomeric mixtures of the (aminomethyl)(chloromercuriomethyl)silane Me2Si(CH2SMP)[CH(Ph)HgCl] yielded lithium compounds Me2Si[(R)-CHLiPh](CH2SMP) and Me2Si[(S)-CHLiPh](CH2SMP) in diastereomeric ratios different from those obtained by the selective deprotonation reaction, which yields entirely Me2Si[(R)-CHLiPh](CH2SMP). The equilibration of both stereoisomers was investigated by way of trapping reactions with various electrophiles. To probe the stereochemical course of the reactions of Me2Si[(R)-CHLiPh](CH2SMP) as a carbanionic base, it was treated with methanol-d4. Depending on the solvent used, diastereomeric ratios in the range of 51:49 and 89:11 were achieved. Quantum chemical studies of Me2Si[(R)-CHLiPh](CH2SMP) gave insight into the relative energies of the ground and transition states of the deprotonation and epimerisation reactions. KW - lithium KW - silicium KW - carbanion KW - stereogen KW - diastereomer KW - lithium KW - silicon KW - carbanion KW - stereogenic KW - diastereomer Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-5351 ER - TY - THES A1 - Brandt, Carsten D. T1 - Tripyrrine - Koordinationschemie an einem Porphyrinfragment ; Kristallstrukturanalysen metallorganischer und koordinationschemischer Verbindungen T1 - Tripyrrins - Coordinationchemistry with a porphyrin fragment ; X-ray crystal structural analysis of metallorganic and coordination compounds N2 - Gegenstand der vorliegenden Arbeit ist die Darstellung und Untersuchung von einfachen Triyrrinen. Dabei wurde ein besonderer Schwerpunkt auf die Entwicklung der Koordinationschemie dieses Liganden gelegt. Der zweite Teil der Arbeit beschäftigt sich mit der Durchführung von Röntgenstrukturanalysen metallorganischer und koordinationschemischer Verbindungen. Den Hintergrund für den ersten Teil bilden die jüngsten Versuche anderer Forschergruppen, mit den innerhalb der Porphyrinchemie kaum beachteten offenkettigen Tetrapyrrolen vom Bilen-Typ Phänomene der molekularen Erkennung, der supramolekularen Chemie und der Bioanorganik koordinationschemisch zu bearbeiten. Die Thematik ist zudem von Interesse, da anders als bei tetrapyrrolischen Liganden kaum etwas über das koordinationschemische Verhalten tripyrrolischer Spezies bekannt ist. Gerade das Tripyrrin erscheint hier als interessanter Modellligand, denn durch Wegnahme einer Pyrroleinheit wird eine neue, freie Koordinationsstelle geschaffen, deren Einfluß die Chemie der Tripyrrinate bestimmen sollte. In Kapitel 1 wird die Synthese der Tripyrrine aus pyrrolischen Vorstufen durch eine Kondensationsreaktion in Trifluoressigsäure beschrieben. Der Tripyrrin-Ligand erweist sich gegenüber Nukleophilen als höchst reaktiv, was wahrscheinlich der Grund dafür ist, daß dieser Ligand bislang nur in einer Arbeit beschrieben wurde. Eine Isolierung gelingt zwar nicht, wohl aber eine spektroskopische in situ-Charakterisierung mit Hilfe von NMR- und MS-Methoden. Die direkte Umsetzung der erhaltenen Rohprodukte mit überschüssigen Metall(II)acetaten (M = Fe, Mn, Co, Ni, Pd, Cu, Zn) führt in allen Fällen zu grün gefärbten Lösungen, aus denen sich für M = Co, Pd, Cu und Zn Tripyrrinkomplexe mit zweiwertigem, tetrakoordinierten Metallion und Trifluoracetat als viertem Donor isolieren lassen. Strukturell werden drei unterschiedliche Geometrien beobachtet. Das bevorzugt planar koordinierende Ion Pd(II) liefert Beispiele für den helikalen und den pseudoplanaren Strukturtyp, da aus sterischen Gründen die Ausbildung einer spannungsfreien planaren Molekültopologie unmöglich ist. Auch Cu(II) koordiniert als Trifluoracetat in der pseudoplanaren Variante, während Zn(II) in der nicht gespannten pseudotetraedrischen Form gebunden wird. Die in den Palladium-Komplexen vorhandenen Spannungen bewirken schnelle Ligandenaustauschreaktionen mit Halogeniden und Pseudohalogeniden. Bei den Strukturen der so zugänglichen TrpyPdX-Komplexe mit X = Cl, Br, I, N3, NCO, NCS, NO3, CN und StBu zeigt sich, daß mit zunehmender Größe des anionischen Donors die pseudoplanare Geometrie gegenüber der helikalen zunehmend begünstigt wird. Für Kupfer(II)-Komplexe wird beim Übergang vom Trifluoracetat zum Chlorid ein Wechsel von der gespannten pseudoplanaren zur wenig gespannten pseudotetraedrischen Koordination beobachtet. Die sterisch gespeicherte Spannungsenergie der Tripyrrine läßt tetrakoordinierte Pd(II)-Komplexe wie eine gespannte Feder erscheinen und unterstützt den Austritt des anionischen Liganden unter Bildung eines koordinativ und elektronisch ungesättigten 14 VE-Komplexes. Entscheidend für die Stabilisierung dieser Spezies ist die Verwendung des schwachkoordinierenden Tetrakis[3,5-bis(trifluormethyl)-phenyl]borats [B(Arf)4] als Anion. Der ungesättigte Komplex erweist sich als sehr reaktiv. So koordiniert er bereitwillig an eine Vielzahl von Donoren. Die Umsetzung des Trifluoracetato-Komplexes mit einem halben Äquivalent NaB(Arf)4 führt zu dinuklearen Komplexen, in denen zwei kationische Tripyrrinatopalladium-Fragmente durch ein Trifluoracetat verbunden sind. Mit Trialkylphosphanen bilden sich stabile Komplexe. Eine Besonderheit stellt dabei die Reaktion mit Trimethylphosphan dar. Bei Verwendung überschüssiger Mengen PMe3 beobachtet man die Bildung pentakoordinierter Komplexe. Im Gegensatz dazu führen die Umsetzungen mit Triethyl- und Tri-iso-propylphosphan ausschließlich zur Bildung von Monophosphankomplexen. Die ungewöhnliche Reaktivität des Tripyrrinatopalladium-Kations zeigt sich insbesondere bei der Umsetzung mit Diazoalkanen. So konnten erstmals Carbenpalladium-Komplexe mit nicht-heteroatomstabilisierten Carbenliganden synthetisiert werden. Kapitel 5 beschreibt einen präparativen Einstieg in die Chemie kationischer Kobalt- und Zinkkomplexe von Tripyrrinen. Die Reaktivität und Stabilität des Tripyrrinatokobalt-Kations, die an die Verhältnisse des TrpyPd-Kations erinnern, erlauben dabei die Isolierung von kationischen Phosphan- und Isonitril-Komplexen. Das entsprechende kationische Zink-Chelat konnte isoliert und NMR-spektroskopisch charakterisiert werden. N2 - Part I of the presented work describes the preparation and investigation of simple tripyrrin ligands, with a special emphasis on the development of a functional coordination chemistry of this ligand. Part II deals with x-ray crystallographic work performed on organometallic and classical coordination compounds. The recent attempts from other research groups to use open-chain oligopyrroles related to the bile pigments as ligands for novel developments in the fields of molecular recognition, supramolecular and bioinorganic chemistry provided the motivation for the first part of this work. Since almost nothing was known about the coordination behaviour of open-chain oligopyrroles, especially of those with three pyrrolic subunits, a first principal investigation towards the properties of metallotripyrrins appeared as a suitable entry into this field. With respect to the porphyrins, the formal withdrawal of one of the pyrrolic units should create a new, free coordination site at a bound metal ion. This free site is expected to determine the chemistry of metallotripyrrins largely. The synthesis of tripyrrins from pyrrolic precursors by a condensation reaction in trifluoroacetic acid is described in chapter 1. The tripyrrin ligand system is found to be unusually reactive towards even weak nucleophiles. Isolation of the ligand was not successful. However, tripyrrins could unambigously be characterised by a spectroscopic in situ-characterisation using NMR- and MS-techniques. When treating the raw tripyrrin ligands with excessive metal acetates of Fe, Mn, Co, Ni, Pd, Cu or Zn, green solutions are formed in all cases, from which the tripyrrinato complexes of M = Co, Pd, Cu and Zn with divalent tetracoordinated metal ions and trifluoroacetate as the fourth donor can be isolated. From a structural point of view, three different molecular geometries were observed. The Pd(II) ion with its pronounced tendency to establish a square-planar coordination mode yields examples for the strained helical and the pseudoplanar structures. A non strained square planar complex geometry is prevented for sterical arguments due to the presence of the two methyl termini in all new tripyrrin complexes. The trifluoroacetate derivatives of Cu(II) also are found to form pseudoplanar coordination geometries, while Zn(II) always prefers a non-strained pseudotetrahedral variant. The strain stored in the Pd(II) complexes is responsible for the fast ligand exchange reactions of the trifluoroacetate derivatives against halide and pseudohalide anions. In the group of TrpyPdX compounds with X = Cl, Br, I, N3, NCO, NCS, NO3, CN and StBu the pseudoplanar geometry becomes more important then the helical binding mode with an increasing radius of the donor atom of the fourth ligand. The strain energy stored in the Pd(II) tripyrrins was found to support the dissociation of the fourth ligand, yielding the coordinatively and electronically unsaturated 14 VE complex. In order to stabilise this highly reactive species the use of a weakly coordinating anion is of vital importance, and the well-known tetrakis[3,5-bis(trifluormethyl)phenyl]borat [B(Arf)4] was found to be sufficiently stable to fulfil this task. As expected, the coordinatively and electronically unsaturated Pd(II) complex proofs to be very reactive and binds tenaciously to a variety of different donor ligands. As a special case, the reaction of the cation with one equivalent of the tripyrrinatopalladium trifluoroacetate complex yields a dinuclear species, in which two cationic TrpyPd fragments are connected via one trifluoroacetato ligand. Trialkylphosphanes, however, are able to stabilise cationic tetracoordinated species. While usually only four coordinate PdN3P compounds are obtained, the action of trimethylphosphane is different. Pentacoordinate Pd(II) complexes are formed in the presence of excess PMe3. These species, which could be structurally characterised in this thesis, were found to be in a slow equilibrium with the respective mono PMe3 adducts. The unusual reactivity of the tripyrrinatopalladium cation is particularly well visible in its reactions towards diazoalkanes. When treated with the sterically demanding diaryldiazomethane, the first carbene palladium(II) complexes of non heteroatom stabilised carbene ligands were prepared and found to exist as stable compounds at room temperature. Chapter 5 finally describes a preparative entry into the chemistry of cationic cobalt(II)- and zinc(II) tripyrrins. The reactivity and stability of the tripyrrinatocobalt(II) cation is reminescent of the respective species in the palladium(II) series and allows the preparation and isolation of cationic phosphane- and isonitrile complexes. For zinc(II) as the metal a related tricoordinate cation could be isolated and investigated by nmr spectroscopy. KW - Oligopyrrole KW - Koordinationslehre KW - Metallorganische Verbindungen KW - Kristallstruktur KW - Tripyrrine KW - Oligopyrrole KW - Koordinationschemie KW - Tripyrrins KW - Oligopyrrols KW - coordination chemistry Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-5048 ER - TY - THES A1 - Klüpfel, Bernd T1 - P-chirale funktionelle Phosphane durch Hydrophosphinierung mit kationischen Phosphan-Eisenkomplexen T1 - P-chiral functional phosphines by hydrophosphination with cationic iron-phosphine complexes N2 - Chirale Phosphane besitzen als Liganden in Übergangsmetallkomplexen für die enantioselektive Synthese und Katalyse gesteigertes Interesse. Der Nobelpreis für Knowles im Jahre 2001 für die enantioselektive Synthese von L-Dopa, katalysiert durch einen optisch reinen DIPAMP-Rhodiumkomplex, zeigt die Bedeutung von chiralen Phosphanen als Katalysatorbausteine die stereochemische Information übertragen. Bei der Synthese von chiralen Phosphanen werden gewöhnlich teuere Verfahren angewandt, wie Einsatz chiraler Hilfsguppen oder die Trennung racemischer Gemische durch Enatiomerentrennung. Ein weiterer Zugang zur Knüpfung von P-C-Bindungen besteht in der Hydrophosphinierungsreaktion; eine Addition der P-H-Funktion an Alkene. In diesem Zusammenhang wurde gezeigt, dass z. B. die Reaktion von PH3 mit Acrylsäuremethylester in Gegenwart von AIBN keine Chemoselektivität aufweist, was zu einem Gemisch der primären, sekundären und tertiären Phosphane P(H)2-n[(CH2)2CO2Et]n+1 (n = 0, 1, 2), sowie zur Bildung des in der Seitenkette alkylierten Phosphans P[(CH2)2CO2Et]2{CH2C(H)(CO2Et)[(CH2)2CO2 Et]} führt. Eine Möglichkeit die Chemoselektivität des Hydrophosphinierungsprozesses zu erhöhen, ist die Aktivierung der P-H-Funktion durch Übergangsmetallfragmente, jedoch existiert zu diesem Thema ein nur begrenzter Kenntnisstand. In dieser Arbeit wurden P-chirale sekundäre Phosphane durch Insertion von organischen Mehrfachbindungssystemen wie substituierten Alkenen und Heterocumulenen in die P-H-Bindung der primär-Phosphan-Komplexe {C5R5(OC)2Fe[P(R’)H2]}BF4 (R = H, Me; R’ = Alkyl, Aryl) dargestellt. Im Falle von Acetylendicarbonsäuredimethylester beobachtet man eine doppelte Hydrophosphinierung, was zum diastereospezifischen Aufbau von der Zweikernkomplexe C5R5(OC)2Fe{P(H)(R’)[C(H)(CO2Me)]}}2(BF4)2 (R = H, Me; R’ = t-Bu, 2-py) mit vier stereogenen Zentren führt. Die Verwendung von p-Benzochinon bietet die Möglichkeit 2,5-Bis(hydroxy)arylphosphanliganden aufzubauen, die für weitere Transformationen geeignet sind. 1-Hydroxyalkylphosphankomplexe werden bei der Hydrophosphinerung von Aldehyden und Ketonen erhalten, ebenso wie 2-Hydroxycyclohexylphosphankomplexe durch Reaktion der primär-Phosphan-Eisenkomplexe mit Cyclohexenoxid. Umwandlung in hochfunktionalisierte tertiär-Phosphankomplexe wird durch einen weiteren Hydrophosphinierungsschritt der Alkene H2C=CHX (X = CN, 2-py), Diazoessigsäureethylester, p-Benzochinon oder Ethylisocyanat erreicht. In speziellen Fällen wird die Bildung von Azaphospholanliganden beobachtet. Freisetzung der Phosphane vom Metall wird durch photoinduzierten Ligandentausch ermöglicht. Weiterhin eigen sich die chiralen, chelatphosphansubstituierten primär-Phosphankomplexe {C5H5(diphos)Fe[P(R)H2]} BF4 (diphos = DIOP, CHIRAPHOS) eine Stereokontrolle auf den Prozess der Hydrophosphinierung einfach substituierter Alkene zu Übertragen. In diesem Zusammenhang wurde auch eine erfolgreiche katalytische Hydrophosphinierung durchgeführt, wobei [C5H5(DIOP)Fe(NCMe)]BF4 als Katalysator fungierte. N2 - Chiral phosphines attract increasing interest as ligands in transition metal complexes used in enantioselective synthesis and catalysis. The Nobel prize award for Knowles in 2001 for the enantioselective synthesis of L-Dopa catalyzed by an optically pure DIPAMP-Rhodium complex indicates the importance of chiral phosphines as catalyst building blocks introducing stereochemical information. The syntheses of chiral phosphines usually involve expensive procedures, including the use of chiral auxiliaries or the separation of racemic mixtures by resolving methods. Another approach to the formation of P-C-bonds is given by the hydrophosphination process, the addition of the P-H-function to alkenes. In this context, it has been shown, for example, the reaction of PH3 with ethylacrylate in the presence of AIBN exhibits no chemoselectivity, resulting in a mixture of the primary, secondary and tertiary phosphines P(H)2-n[(CH2)2CO2Et]n+1 (n = 0, 1, 2), as well as the side chain alkylated phosphine P[(CH2)2CO2Et]2{CH2C(H)(CO2Et)[(CH2)2CO2Et]}. One possibility to increase the chemoselectivity of the hydrophosphination process is the activation of the P-H-bond by transition metal fragments, but only limited information is available concerning this topic. In this work, the synthesis of P-chiral secondary phosphines, characterized by phosphorus and side chain chirality has been realized via insertion of various organic multiple bond systems like substituted alkenes or heterocummulenes into the P-H-bond of the primary phosphine complexes {C5R5(OC)2Fe[P(R’)H2]}BF4 (R = H, Me; R’ = alkyl, aryl). In the case of acetylenedicarboxylic acid dimethylester a double hydrophosphination is observed, leading diastereospecifically to the dinuclear complexes {C5R5(OC)2Fe{P(H)(R’) [C(H)(CO2Me)]}}2(BF4)2 (R = H, Me; R’ = t-Bu, 2-py), bearing four stereogenic centres. The use of p-benzoquinone gives access to secondary 2,5-bis(hydroxy)aryl phosphine ligands, suitable for further derivatizations. a-Hydroxyalkyl phosphine iron complexes can be obtained by hydrophosphination of aldehydes and ketones, as well as b-hydroxycyclohexylphosphine complexes by reaction of the primary phosphine iron complexes with cyclohexenoxide. Transformation into highly functionalized tertiary phosphine complexes is performed by a further hydrophosphination step using the alkenes H2C=CHX (X = CN, 2-py), diazoacetic ethylester, p-benzoquinone or ethylisocyanate, respectively. In special cases formation of functionalized azaphospholane ligands is observed. Release of the phosphines from the metal is achieved by photo induced ligand exchange. In addition, primary phosphine iron complexes {C5H5(diphos)Fe[P(R)H2]}BF4 (diphos = DIOP, CHIRAPHOS) bearing chiral bis(phosphine) ligands have been used to provide the stereocontrol of the hydrophosphination process of simple substituted alkenes. In this context, a succesful catalytic hydrohosphination has been carried out, using the [C5H5(DIOP)Fe(NCMe)]BF4-complex as catalyst. KW - Phosphane KW - Metallierte Verbindungen KW - Stereoselektivität KW - Katalyse KW - Metallassistierte Hydrophosphinierung KW - Chirale sekundäre und tertiäre Phosphane KW - Stereoselektivität KW - Katalyse KW - Metal-assisted Hydrophosphination KW - Chiral secondary and teriary phosphines KW - Stereoselectivity KW - Catalysis Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-3149 ER - TY - THES A1 - Boras, Mihael T1 - Primär-Phosphankomplexe und sekundäre Metallo-phosphane des Molybdäns und Wolframs T1 - Primary phospine complexes of molybdenum and tungsten N2 - Cyclopentadienyl-Triscarbonyl-Primärphosphankomplexe des Molybdäns und Wolframs lassen sich leicht aus den komplexen Metallhydriden mittels Hydridabstraktion und Zugabe des entsprechenden primären Phosphans synthetisieren. Die so erzeugten primären Phosphankomplexe lassen sich mit Triethylamin in die entsprechenden sekundären Metallo-phosphane überführen. Aufgrund ihrer ausgeprägten Nukleophilie können die Metallo-phosphane einer Vielzahl an Oxidationsreaktionen unterworfen werden und reagieren mit sanften Oxygenierungsmitteln wie 1,1-Dimethyldioxiran zu den entsprechenden Metallo-phosphanoxiden oder mit elementarem Schwefel bzw. Selen zu Chalkogen-phosphoranen und verwandten Verbindungen. Die oben beschriebenen Primärphosphankomplexe stellen Ausgangsverbindungen für die Reaktion mit elektronenarmen organischen Mehrfachbindungssystemen dar. Dabei wird durch die Zugabe katalytischer Mengen einer Base wie z.B. Triethylamin intermediär das korrespondierende Metallo-phosphan generiert das als Nukleophil an der Mehrfachbindung angreift. Abschließende Reprotonierung führt zur Ausbildung eines sekundären Phosphankomplexes, wobei formal eine Insertion des ungesättigten Systems (z.B. Maleinsäuredimethylester) in eine P-H-Bindung erfolgt. Auch Metallo-phosphane können für Insertionsreaktionen genutzt werden, wobei mit elektronenarmen Alkinen der Aufbau von Phosphabenzolderivaten gelingt. N2 - Cyclopentadienyl-triscarbonyl-primary-phosphine complexes of molybdenum and tungsten can be easily prepared by hydride abstraction and addition of the corresponding phosphine starting with the metal hydrides. The thus formed primary phosphine complexes can be converted into the corresponding secondary metallo-phosphines using triethylamine. Due to their nucleophilic behaviour the metallo-phosphines can be used for oxygenation reactions. They react with 1,1-dimethyldioxirane to the corresponding metallo-phosphine-oxides or with elemental sulfur or selen to chalkogene-phosphoranes and related compounds. The primary phosphine complexes are starting materials for the reaction of electron deficient organic multiple bond systems. Addition of catalytic amounts of a base e.g. triethylamine leads to the generation of metallo-phosphines, a nucleophilic compounds that attacks the multiple bond. Reprotonation generates a secondary phosphine complexe as a result of an insertion of the unsaturated system (e.g. maleinic acid dimethylester) into a P-H bond. Metallo-phosphines can also be used for insertion reactions. Thus the use of electron deficient alkynes leads to the formation of phosphabenzene derivatives. KW - Übergangsmetallkomplexe KW - Sechste Nebengruppe KW - Phosphine KW - Molybdän KW - Phosphane KW - Wolfram KW - Metallkomplexe KW - Primärphosphankomplexe KW - Metallo-phosphan KW - Hydrophosphinierung KW - Wolfram KW - Molybdän KW - primary phosphine complexes KW - metallo-phosphines KW - hydrophosphination KW - tungsten KW - molybdenum Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-1281 ER - TY - THES A1 - Handmann, Vera Iris T1 - Studien zur C/Si-Bioisosterie T1 - Studies on C/Si Bioisosterism N2 - Im Rahmen der vorliegenden Arbeit wurden Beiträge zur C/Si-Bioisosterie und zur asymmetrischen Synthese neuer siliciumhaltiger alpha-Aminosäuren geleistet. Im Vordergrund der Untersuchungen stand die Entwicklung neuer präparativer Methoden zur Darstellung siliciumhaltiger Wirkstoffe und die Untersuchung ihrer pharmakologischen Wirksamkeit sowie die Synthese racemischer und enantiomerenreiner siliciumhaltiger alpha-Aminosäuren des beta-(Trimethylsilyl)alanin-Typs. N2 - This work describes contributions to the field of C/Si bioisosterism and to the asymmetric synthesis of novel silicon-containing alpha-amino acids. The aim of these investigations was the development of new preparative methods for the synthesis of silicon-containing drugs and their pharmacological evaluation as well as the synthesis of racemic and enantiomerically pure silicon-containing alpha-amino acids of the beta-(trimethylsilyl)alanine type. KW - Kohlenstoff KW - Silicium KW - Bioisosterie KW - Muscarin KW - Antagonist KW - Aminosäurederivate KW - Aminosäuren KW - Antipsychotika KW - Bioanorganik KW - Kristallstrukturanalyse KW - Muscarin Antagonisten KW - pharmakologisches Profil KW - Silicium KW - Synthese KW - amino acids KW - antipsychotics KW - bioinorganic chemistry KW - C/Si bioisosterism KW - crystal structure analysis KW - muscarinic antagonists Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-4719 ER - TY - THES A1 - Callejas-Gaspar, Berta T1 - Ein- und mehrkernige Rhodium- und Iridiumkomplexe mit konjugierten organischen Ketten als Brückenliganden T1 - Mono- and oligonucleare rhodium- and iridium complexes with conjugated organic chains as bridging ligands N2 - Die metallorganische Chemie spielt eine große Rolle in der Materialwissenschaft. Als besonders interessant hat sich die Einführung von Übergangsmetallen in organischen Polymer-Ketten bewährt, da man damit die physikalischen Eigenschaften dieser neuartigen Polymere verändern kann. Die große Variationsbreite an Strukturen und Oxidations-Stufen der metallorganischen Fragmente hat zur Entwicklung von Flüssigkristallen sowie von Kunststoffen mit magnetischen oder nicht-lineare optischen Eigenschaften geführt. In dieser Arbeit wird über die Synthese von zwei- und mehrkernigen Komplexen mit konjugierten Kohlenstoffbrücken und Vinyliden- oder Acetylenliganden als Endgruppen des Typs R1CºC-[M]=C=C(H)-R-(H)C=C=[M]-CºCR2 (A) und R1(H)C=C=[M]-CºC-R-CºC-[M]=C=C(H)R2 (B) (R1 = Akzeptorgruppe, R2 = Donorgruppe, R = Arylgruppe, [M] = Übergangsmetall-Komplexfragment) berichtet. Eine Synthesestrategie dafür wurde zuerst die Darstellung von eins- und mehrkernigen Fluoro- und Hydroxokomplexen der allgemeinen Zusammensetzung trans-[MX(L)(PiPr3)2] (M = Rh, Ir; X = OH, F; L = C=CHR’, CO, CNC6H3-2,6-Me2), trans-[{MX(PiPr3)2}n{µ-C6H(6-n) (CH=C=)n}] (n = 2, 3) und zweitens ihre Reaktivität gegenüber stannylierten 1-Alkinen und Dialkinen. Die Bedeutung der Hydroxo- und Fluoro-Komplexe liegt in ihrer erhöhten Reaktivität gegenüber Brönsted-Säuren und stannylierten Alkinen im Vergleich zu den Chloro-, Bromo und Iodo-Analoga. Solche Komplexe wurden auch mit Diisocyaniden als Brücken-Ligand synthetisiert. Wegen der Neuartigkeit von Alkinyl(isocyanid)rhodium(I)-Komplexen sollten verschiedene Syntheserouten zu diesen Verbindungen erkundet werden. Ihre Reaktivität wurde auch untersucht. Vor diesem Hintergrund war das Ziel der vorliegenden Arbeit, zunächst den Kreis der bekannten Alkinyl- und Vinyliden-Übergangsmetallkomplexe mit einem, zwei oder drei Metallzentren zu erweitern, in denen die Metalle durch ein konjugiertes p-Elektronensystem verbunden sind. An solchen Systemen sollte im Hinblick auf ihre Anwendungen als NLO-Materialien der Einfluss von Ligandsubstitution systematisch untersucht werden. In diesem Zusammenhang wurde eine Untersuchung mit Hilfe von IR- und RAMAN-Spektroskopie sowie quantenchemische Berechnungen des trans-Einflusses der Halogenliganden in quadratisch-planaren Rhodium(I)-Komplexe des Typs trans-[MX(L)(PiPr3)2] (X = F, Cl, Br, I; L = CO, =C=CH2, CNC6H3-2,6-Me2) in Kooperation mit D. Moigno am Institut für Physikalische Chemie am Lehrstuhl von Prof. W. Kiefer durchgeführt. N2 - The organometallic chemistry is very significant in the materials research. Particularly, is interesting the insertion of transition metals in organic polymer chains due their potential to chain the physical properties of the new polymers. The variation of the structures and oxidation states of the organometallic fragments has carried to development of liquid crystals and nonlinear optic materials. In this work were studied the synthesis of mono- and oligonuclear complexes in which the metals centres are linked through unsaturated carbon chains and as end groups vinylidene or acetyl ligands of the types R1CºC-[M]=C=C(H)-R-(H)C=C=[M]-CºCR2 (A) and R1(H)C=C=[M]-CºC-R-CºC-[M]=C=C(H)R2 (B) (R1 = acceptor group, R2 = donor group, R = aryl group, [M] = transition metal complex fragment). A convenient method for the synthesis of these compounds was in first place the synthesis of mono- and oligonuclear fluoro and hydroxo complexes of the general composition trans-[MX(L)(PiPr3)2] (M = Rh, Ir; X = OH, F; L = C=CHR’, CO, CNC6H3-2,6-Me2), trans-[{MX(PiPr3)2}n{µ-C6H(6-n) (CH=C=)n}] (n = 2, 3) and in second place their reactivity towards stannylated 1-alkynes and Dialkynes. Fluoro and hydroxo complexes are showing a higher reactivity towards Brönsted acids and stannylated alkins than the analogues chloro, bromo and iodo complexes. Similar compounds with a diisocyanide as bridging unit were also synthesised. Different preparative routes were investigated for the synthesis of these new alkinyl(isocyanide)rhodium(I) complexes, such as their reactivity. Therefore, the aim of this thesis was, to increase the circle of the famous acetylide and vinylidene transition metal complexes with one, two or three metals, in which the metals centres are linked through conjugate p-electron systems. The trans influence of halide ligands on square-planar rhodium(I) complexes of type trans-[RhX(L)(PiPr3)2] (X = F, Cl, Br, I; L = CO, =C=CH2, CNC6H3-2,6-Me2) was studied though IR- and RAMAN-Spectroscopy as quanten-chemical measures. This is interesting in order to improve the applications of this influence. The last mentioned work was carried in collaboration with D. Moigno (institute for physical chemistry: Prof. W. Kiefer). KW - Rhodiumkomplexe KW - Iridiumkomplexe KW - NLO-Polymere KW - Rhodium KW - Iridium KW - trans-Einfluss KW - NLO-Eigenschaften KW - rhodium KW - iridiun KW - trans influence KW - NLO properties Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-3040 ER - TY - THES A1 - Schumacher, Dirk T1 - Eisenfragment-substituierte Silanole, Silylamine und Heterosiloxane von Aluminium, Gallium und Indium T1 - Iron fragment-substituted Silanols, Silylamines and Heterosiloxanes of Aluminium, Gallium and Indium N2 - A. Eisenfragment-substituierte Heterosiloxane von Aluminium, Gallium und Indium Die Umsetzung der Ferrio-silanole 5a-c mit Trimethylaluminium, Triisobutylaluminium, Trimethylgallium bzw. Trimethylindium liefert unter Alkaneliminierung die Ferrio-siloxyalane, -gallane bzw. -indane 7a-d, 8a,b und 9a,b in Form von dimeren Aggregaten, welche im Fall von 7b,8b,9a sowie 9b auch röntgenstrukturanalytisch charakterisiert sind. Durch Reaktion der chiralen Ferrio-silanole Cp(OC)2Fe-Si(Me)(R)OH bzw. Cp(OC)(Ph3P)Fe-Si(Me)(R)OH mit AlMe3, GaMe3 bzw. InMe3 erhält man die diastereomeren Ferrio-siloxyalane, -gallane bzw. -indane 8c,9c,11a,b und 12a-c in Form von Dimeren, bei denen man die Aggregation auch NMR-spektroskopisch nachweisen kann. Die Reaktion der Ferrio-silandiole Cp(OC)2Fe-SiR(OH)2 (13a-c) mit einem bzw. zwei Äquivalenten Trimethylgallium (6c) bzw. Trimethylindium (6e) liefert unter Methaneliminierung die dimeren Eisen-substituierten Gallium- bzw. Indiumsiloxanole 14a-e in einem Diastereomerenverhältnis von 50 : 50. 14a-e, die über eine freie Silanolfunktion verfügen, zersetzen sich in Lösung infolge Übertragung des Wasserstoffs vom Sauerstoff auf das Eisenatom. Als Zersetzungsprodukte werden die Eisenhydrid-Verbindung Cp(OC)2Fe-H und Polyheterosiloxane des Typs [RSi(OEMe2)O]n erhalten. Bei der Umsetzung von Cp(OC)2Fe-Si(OH)3 (17) mit Trimethylgallium (6c) bzw. Trimethylindium (6e) erhält man unter Methanabspaltung das Eisen-substituierte Gallium- bzw. Indiumsiloxandiol (18a,b). Setzt man das Ferrio-silantriol 17 mit zwei Äquivalenten Trimethylgallium (6c) in siedendem n-Hexan in Anwesenheit von vier Äquivalenten Tetrahydrofuran um, so resultiert das auch röntgenstrukturanalytisch gesicherte Käfigheterosiloxan 19. Die Umsetzung des Ferriomethyl-silanols Cp(OC)2Fe-CH2-SiMe2OH (20) mit den Trialkylverbindungen der Gruppe 13 (6b-e) liefert unter Alkaneliminierung glatt die Ferriomethyl-substituierten Heterosiloxane 21a-d. Die Aggregation zu Dimeren ist für 21b-d sowohl durch Röntgenstrukturanalyse als auch durch Molgewichtsbestimmung gesichert. B. Phosphan-substituierte Ferrio-silanole und -silantriole: Synthese und Kondensation mit Dimethylchlorsilan Die zweifach Phosphan-substituierten Ferrio-silanole 4a,b können über die Hydrolyse der Ferrio-chlorsilane 2a,b in Anwesenheit von Al2O3 und Triethylamin dargestellt werden. Als alternativer Zugang findet sich der Co2(CO)8-katalysierte H/OH-Austausch an den Ferrio-silanen 3a,b in Gegenwart von Wasser. Der als Zwischenstufe postulierte, zweikernige Komplex Cp(Me3P)2Fe- Si(Me)(p-Tol)Co(CO)4 (5) kann durch Reaktion des Ferrio-silans 3b mit Co2(CO)8 erhalten werden. Das Triphenylphosphan-substituierte Ferrio-trichlorsilan Cp(OC)(Ph3P)Fe-SiCl3 (9) kann im Zweiphasensystem THF/H2O zum Phosphan-substituierten Ferrio-silantriol 10 hydrolysiert werden. Die entsprechende Hydrolyse des kinetisch deaktiverten Cp(Me3P)2Fe-SiCl3 (8b) muß durch Al2O3-Zusatz aktiviert werden. Die Umsetzung der Ferrio-silantriole 10, 11 mit drei Äquivalenten Dimethylchlorsilan und Triethylamin als Hilfsbase führt glatt zu den entsprechenden Ferrio-tetrasiloxanen 12a,b. C. Polychlorierte Metallo-siloxane: Synthese und Austausch- reaktionen mit Methanol und Wasser Die Synthese der polychlorierten Metallo-siloxane 3-5 gelingt durch Umsetzung der Metallate Na[Fe(CO)2Cp] (1a) bzw. Li[W(CO)2(PMe3)Cp] (1b) mit Hexachloro-disiloxan (2a) bzw. Octachlorotetrasiloxan (2b). Das Ferrio-disiloxan 3 kann durch Reaktion mit einem weiteren Äquivalent des Natriumferrats 1a in die Bis(ferrio)-Spezies 6 überführt werden. Die NEt3-assistierte Methanolyse des Ferrio-disiloxans 3 mit drei Äquivalenten MeOH führt unter regiospezifischem Cl/OMe-Austausch am g-Si-Atom zum Trimethoxy-substituierten Ferrio-disiloxan 7, das durch Lösen in Methanol oder Zugabe eines Überschusses an MeOH in eine etherische Lösung von 7 in das vollständig Methoxy-substituierte Derivat 8 umgewandelt werden kann. Bei der Umsetzung des Bis(ferrio)-siloxans 6 mit Methanol bzw. H2O als Nucleophil erhält man sowohl das Tetramethoxy- (10a) als auch das eigenkondensationsstabile Tetrahydroxy-disiloxan 10b, welches mit vier Äquivalenten Dimethylchlorsilan zum entsprechenden Hexasiloxan 11 umgesetzt werden kann. D. Primäre Ferrio-silylamine: Synthese und strukturelle Charakterisierung Die Einwirkung von Natriumamid auf die Phosphan-substituierten Ferrio-chlorsilane 2a-c führt zu den entsprechenden primären Ferrio-silylaminen 3a-c, welche die ersten Übergangsmetall-substituierten primären Silylamine darstellen. Die Molekülstruktur von 3b zeigt im Vergleich zu Organosilylaminen eine signifikante Verlängerung für die Si-N-Bindungslänge mit 1.751(4) Å an. N2 - A. Ironfragment-substituted Heterosiloxanes of Aluminium, Gallium and Indium The reaction of the ferrio-silanols 5a-c with trimethylaluminium, triisobutylaluminium, trimethylgallium and trimethylindium, respectively, yields the corresponding ferrio-siloxyalanes, -gallanes and -indanes 7a-d, 8a,b and 9a,b via elimination of alkane as dimeric aggregates. This molecular arrangement is in addition proved by X-ray analysis for 7b,8b,9a and 9b. The diastereomeric ferrio-siloxyalanes, -gallanes and -indanes 8c,9c,11a,b and 12a-c are obtained by reaction of the chiral ferrio-silanols Cp(OC)2Fe-Si(Me)(R)OH and Cp(OC)(Ph3P)Fe-Si(Me)(R)OH with AlMe3, GaMe3 and InMe3, respectively. The aggregation to dimers can be proved directly by NMR-spectroscopy. The alkane eliminiation reaction of the ferrio-silanediols Cp(OC)2Fe-SiR(OH)2 (13a-c) with one or two equivalents of trimethylgallium (6c) or trimethylindium (6e) generates the dimeric ferrio-substituted gallium- and indiumsiloxanols 14a-e (d.r. 50 : 50). The decomposition of 14a-e in solution proceeds via hydrogen transfer from the oxygen to the iron atom with the formation of the polymeric heterosiloxanes [RSi(OEMe2)O]n and iron hydride Cp(OC)2Fe-H. The iron-substituted galliumsiloxanediol 18a, and indiumsiloxanediol 18b are obtained from the ferrio-silanetriol Cp(OC)2Fe-Si(OH)3 (17) via the alkane elimination process with trimethylgallium (6c) or trimethylindium (6e), respectively. The reaction of the ferrio-silanetriol 17 with two equivalents of trimethylgallium (6c) in boiling n-hexane in the presence of four equivalents of THF yields the cage-like heterosiloxane 19. The molecular structure of 19 is also proved by X-ray analysis. The ferriomethyl-substituted heterosiloxanes 21a-d can be easily generated by reaction of the ferriomethyl-silanol Cp(OC)2Fe-CH2-SiMe2OH (20) with the group 13 triorganyls 6b-e. The aggregation to dimers is proved for 21b-d by X-ray analyses and molecular weight determination. B. Phosphine-Substituted Ferrio-Silanols and -Silanetriols: Synthesis and Condensation with Dimethylchlorosilane The double phosphine-substituted ferrio-silanols 4a,b can be generated by hydrolysis of the corresponding ferrio-chlorosilanes 2a,b in the presence of Al2O3 and triethylamine. An alternative approach is offered by the Co2(CO)8-catalyzed H/OH-exchange reaction of the ferrio-silanes 3a,b with water. The confirmation of the intermediate dinuclear species Cp(Me3P)2Fe-Si(Me)(p-Tol)Co(CO)4 (5) is proved by independent synthesis starting from the ferrio-silane 3b and Co2(CO)8. The hydrolysis of the phosphine-substituted ferrio-trichlorosilanes Cp(OC)(Ph3P)Fe-SiCl3 (9) and Cp(Me3P)2Fe-SiCl3 (8b) is achieved either in the two-phase system THF/H2O, or assisted by Al2O3, yielding the ferrio-silanetriols 10 and 11. The ferrio-silanetriols 10,11 are transformed into the corresponding ferrio-tetrasiloxanes 12a,b by the Et3N-assisted condensation with three equivalents of dimethylchlorosilane. C. Polychlorinated Metallo-Siloxanes: Synthesis and Exchange Reaction with Methanol and Water The synthesis of polychlorinated metallo-siloxanes 3-5 can be achieved by reaction of the metalates Na[Fe(CO)2Cp] (1a) and Li[W(CO)2(PMe3)Cp] (1b) with hexachloro-disiloxane (2a) and octachlorotetrasiloxane (2b), respectively. The ferrio-disiloxane 3 can be transformed into the bis(ferrio) species 6 by substitution of a chlorine by another equivalent of sodium ferrate 1a. The NEt3-assisted methanolysis of the ferrio-disiloxane 3 with three equivalents of MeOH yields the trimethoxy-substituted ferrio-disiloxane 7 provided by regiospecific Cl/OMe-exchange at the g-Si-atom. The completely methoxy-substituted derivative 8 is obtained by dissolving 7 in methanol or addition of an excess of MeOH to an ethereal solution of 7. Using methanol or water in a nucleophilic substitution reaction with the bis(ferrio)-siloxane 6 leads to the tetramethoxy- (10a) or the tetrahydroxy-disiloxane 10b, which is stable towards self-condensation and can be converted to the hexasiloxane 11 by addition of four equivalents of dimethylchlorosilane. Reaction of the ferrio-dimethylsilanol Cp(OC)2Fe-SiMe2OH (12) with hexachloro-disiloxane (2a) generates the monometalated trisiloxane 13, which reacts with another equivalent of 12 to the bismetalated tetrasiloxane 14. 13 and 14 can be converted into the fully methoxy-substituted derivatives 15 and 16 by methanolysis in the presence of NEt3. D. Primary Ferrio-Silylamines: Synthesis and Structural Characterization The phosphine-substituted ferrio-chlorosilanes 2a-c react with sodium amide to yield the primary ferrio-silylamines 3a-c, which represent the first transition metal substituted primary silylamines. The molecular structure of 3b reveals a significant elongation of the Si-N-bond length [1.751(4) Å], compared to organosilylamines. The NEt3-assisted reaction of 3a with dimethylchlorosilane yields the ferrio-silazane 4. KW - Silanole KW - Silylamine KW - Siloxane KW - Eisenorganische Verbindungen KW - Silanole KW - Heterosiloxane KW - Eisen KW - Silylamine KW - Gruppe13 KW - Silanols KW - Heterosiloxanes KW - Iron KW - Silylamines KW - Group13 Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-4897 ER - TY - THES A1 - Pechmann, Thomas T1 - Der Weg zu Phosphan-verbrückten Übergangsmetall-Komplexen T1 - The synthesis of phosphine-bridged transition metal complexes N2 - Das Ziel der vorliegenden Arbeit war es, erstmals einen Komplex mit einem verbrückenden Phosphanliganden darzustellen. Dies sollte ausgehend von den zweikernigen Rhodiumkomplexen des Typs [Rh2XX’(CPh2)2(SbR3)] und geeigneten Phosphanen erreicht werden. Es galt zunächst, eine möglichst große Palette von Stiban-verbrückten Verbindungen zu synthetisieren und ihr chemisches Verhalten im Allgemeinen und im Hinblick auf das gesteckte Ziel insbesondere ihre Reaktivität gegenüber Phosphanen zu studieren. Die im eigenen Arbeitkreis synthetisierten Komplexe [Rh2XX’(CPh2)2(SbiPr3)] (X, X’ = Cl, acac) reagieren mit CNtBu, SbEt3 oder Sb(CH2Ph)3 unter Substitution des SbiPr3-Liganden, wobei die Zweikernstruktur erhalten bleibt. Die Verbindungen [Rh2XX’(CPh2)2(SbiPr3)] [X = Cl, X’ = acac (7), acac-f3 (8), dpm (9); X = X’ = -acac (10), -dpm (11), Br (12), I (13)] können ausgehend von [Rh2Cl2(CPh2)2(SbiPr3)] und Na(acac), Na(acac-f3), Na(dpm), NaBr bzw. NaI dargestellt werden. Der Komplex 11 ist nur NMR-spektroskopisch charakterisiert. Stiban-verbrückte Carboxylatokomplexe sind durch Umsetzung von 10 mit CR3COOH (R = F, H) erhältlich. Mit äquimolaren Mengen an Säure bilden sich die gemischten Komplexe [Rh2(acac)X(CPh2)2(SbiPr3)] [X = O2CCF3 (14), O2CCH3 (15)]. Setzt man die Säure im Überschuß ein, so gelangt man zu den Bis(carboxylato)-Komplexen [Rh2X2(CPh2)2(SbiPr3)] [X = O2CCF3 (16), O2CCH3 (17)]. Die Struktur der Verbindung 17 ist röntgenographisch belegt. Ausgehend von den Verbindungen des Typs [Rh2XX’(CPh2)2(SbiPr3)], welche mindestens einen starken Chelatliganden wie acac, acac-f3 oder Acetat aufweisen, gelingt die Einführung der sterisch wenig anspruchsvollen Phosphane PMe3, PEt3 und PMe2Ph in eine semiverbrückende bzw. verbrückende Position. Die Verbindungen 18 und 21 sind kristallstrukturanalytisch charakterisiert. Während die PMe3- und PMe2Ph-Komplexe 21 und 40 in Lösung beständig sind und sich beim Erhitzen zersetzen, lagern sich die Komplexe [Rh2(acac)2(CPh2)2(PR3)] [R = Et (36), nBu (37)] in Lösung nahezu quantitativ in die gemischtvalenten Rh0-RhII-Verbindungen [(R3P)Rh(CPh2)2Rh(acac)2] [R = Et (38), nBu (39)] um. Der intramolekulare Reaktionsverlauf konnte durch kinetische Messungen bestätigt werden. Bei der Reaktion von 10 mit PMePh2 entsteht, ohne dass eine Phosphan-verbrückte Zwischenstufe nachweisbar ist, der Komplex [(MePh2P)Rh(CPh2)2Rh(acac)2] (41). Bei der Reaktion von 21 mit CO wird der PMe3-Ligand aus der verbrückenden auf eine terminale Position verdrängt und es bildet sich der Komplex 22, der einen verbrückenden Carbonylliganden aufweist. Analog zur Synthese der Stiban-verbrückten Carboxylatokomplexe 14 - 17 können auch die PMe3-Komplexe 26 - 28, die durch Stibansubstitution nicht zugänglich sind, ausgehend von 21 und einer äquimolaren Menge bzw. einem Überschuß CR3COOH (R = F, H) dargestellt werden. Bei der Umsetzung von 21 mit einem Äquivalent Essigsäure erhält man allerdings ein Gemisch, das den Komplex 27 als Hauptprodukt enthält. Im Unterschied zur Reaktion von 21 mit CR3COOH, wird bei der Umsetzung mit einem Überschuß Phenol nur ein acac-Ligand durch Phenolat ersetzt und die Verbindung 29 gebildet. Bei der Reaktion von 21 mit einem Moläquivalent Me3SiX (X = Cl, Br, I) erfolgt selektiv die Substitution eines acac-Liganden durch einen Halogenoliganden. Die Darstellung der Komplexe [{Rh2X2(CPh2)2(PMe3)}n] [X = Cl (32), Br (33), I (34)] gelingt durch Umsetzung von 21 mit einem großen Überschuß Me3SiCl bzw. mit 2 Äquivalenten Me3SiX (X = Br, I). Während der Dichloro-Komplex 32 im Kristall als dimere Einheit vorliegt besitzt der Diiodo-Komplex 34 eine zweikernige Struktur. Dies konnte kristallstrukturanalytisch belegt werden. Der PMe2Ph-Komplex 43 ist durch Umsetzung von 40 und der PEt3-Komplex 44 durch Umsetzung von 19 mit Me3SiCl im Überschuß erhältlich. Nicht nur sterisch wenig anspruchsvolle Trialkylphosphanliganden sind in der Lage, zwei Metallzentren zu verbrücken. So erhält man durch Umsetzung der Verbindungen [(R3P)Rh(CPh2)2Rh(acac)2] (R = iPr, Ph) mit HCl die Phosphan-verbrückten Komplexe [Rh2Cl2(CPh2)2(PR3)] [R = iPr (45), Ph (46)]. Die Darstellung des ersten Arsan-verbrückten Komplexes [Rh2(acac)2(CPh2)2(AsMe3)] (47) gelingt ausgehend von Verbindung 10 und AsMe3. Der verbrückende AsMe3-Ligand in 47 kann leicht durch SbiPr3, PEt3, PnBu3 oder PMe2Ph substituiert werden. Analog zum PMe3-Komplex 21 reagiert 47 mit einem Äquivalent Me3SiCl zum gemischten Komplex [Rh2(acac)Cl(CPh2)2(AsMe3)] (48) und mit einem großen Überschuss Me3SiCl zum Vierkernkomplex [{Rh2Cl2(CPh2)2(AsMe3)}2] (49). Die Struktur von 49 ist kristallographisch gesichert. N2 - The aim of this thesis was to prepare for the first time a complex containing a phosphane ligand in a bridging position. This should be achieved starting from dinuclear rhodium complexes of the general composition [Rh2XX’(CPh2)2(SbR3)] and suitable phosphanes. At first, a series of stibane-bridged compounds should be prepared to investigate their chemical properties and in particular their reactivity towards phosphanes. The complexes [Rh2XX’(CPh2)2(SbiPr3)] (X, X’ = Cl, acac), which were previously prepared, react with CNtBu, SbEt3 and Sb(CH2Ph)3 resulting in the substitution of the SbiPr3 ligand. The dinuclear structure, however, is maintained. The compounds [Rh2XX’(CPh2)2(SbiPr3)] [X = Cl, X’ = acac (7), acac-f3 (8), dpm (9); X = X’ = acac (10), dpm (11), Br (12), I (13)] were prepared starting from [Rh2Cl2(CPh2)2(SbiPr3)] and NaX (X = acac, acac-f3, dpm, Br, I). Complex 11 has been characterized only by NMR spectroscopy. Stibane-bridged complexes containing carboxylato ligands can be obtained from 10 and CR3COOH (R = F, H) as starting materials. With equimolar amounts of acid the mixed complexes [Rh2(acac)X(CPh2)2(SbiPr3)] [X = O2CCF3 (14), O2CCH3 (15)] are formed. If an excess of acid is used, the bis(carboxylato) complexes [Rh2X2(CPh2)2(SbiPr3)] [X = O2CCF3 (16), O2CCH3 (17)] are formed. The molecular structure of 17 was confirmed by a X-ray crystal structure analysis. By using compounds of the general composition [Rh2XX’(CPh2)2(SbiPr3)], which contain at least one strong chelating ligand like acac, acac-f3 or acetate, the coordination of sterically less hindered phosphanes such as PMe3, PEt3 and PMe2Ph in a semibridging or bridging position is possible. Compounds 18 and 21 were crystallographically characterized. While the PMe3 and PMe2Ph complexes 21 and 40 are stable in solution and decompose only at higher temperatures, the complexes [Rh2(acac)2(CPh2)2(PR3)] [R = Et (36), nBu (37)] rearrange in solution nearly quantitatively to form the mixed-valence Rh0-RhII-compounds [(R3P)Rh(CPh2)2Rh(acac)2] [R = Et (38), nBu (39)]. The intramolecular mechanism of the reaction was confirmed by kinetic measurements. The reaction of 10 with PMePh2 leads to the formation of the complex [(MePh2P)Rh(CPh2)2Rh(acac)2] (41). An intermediate with a bridging phosphane unit could not be detected. By treatment of 21 with CO, the PMe3 ligand migrates from the bridging to a terminal position and a product containing a bridging carbonyl ligand is formed. Following the synthesis of the stibane-bridged carboxylato complexes 14 – 17, the corresponding trimethylphosphane complexes 26 - 28, which are not accessible by bridge-ligand exchange, can be prepared from 21 and either an equimolar amount or an excess of CR3COOH (R = F, H), respectively. The reaction of 21 with acetic acid in the ratio of 1:1 gives a mixture containing 27 as the major component. In contrast to the reaction of 21 with CR3COOH, treatment of 21 with an excess phenol results in the replacement of only one acac ligand and affords the unsymmetrical compound 29. The reaction of 21 with Me3SiX (X = Cl, Br, I) in the molar ratio of 1:1 leads to the substitution of one acac by one halogeno ligand. The preparation of the complexes [{Rh2X2(CPh2)2(PMe3)}n] [X = Cl (32), Br (33), I (34)] succeeds if 21 is treated with two equivalents of Me3SiX (X = Br, I) or with a large excess of Me3SiCl, respectively. As the X-ray diffraction investigation confirms the dichloro complex 32 is a dimer in the crystal. In contrast to 32 the diiodo complex 34 is a monomer. The phosphane-bridged complexes 43 and 44 can be obtained by treatment of 40 and 19 with an excess of Me3SiCl. Not only sterically less hindered trialkylphosphane ligands are able to bridge two metal centers. The has been proved by the preparation of the complexes [Rh2Cl2(CPh2)2(PR3)] [R = iPr (45), Ph (46)] from the mixed-valence compounds [(R3P)Rh(CPh2)2Rh(acac)2] (R = iPr, Ph) and HCl. The synthesis of the first arsane-bridged complex [Rh2(acac)2(CPh2)2(AsMe3)] (47) has been performed using 10 and AsMe3 as the precursers. The bridging AsMe3 ligand in 47 is readily displaced by SbiPr3, PEt3, PnBu3 or PMe2Ph. Similarly to the corresponding PMe3 complex 21, compound 47 reacts with one equivalent of Me3SiCl to afford the mixed complex [Rh2(acac)Cl(CPh2)2(AsMe3)] (48) in good yield. With a large excess of Me3SiCl the tetranuclear complex [{Rh2Cl2(CPh2)2(AsMe3)}2] (49) has been obtained, the structure of which was confirmed by a single crystal X-ray diffraction study. KW - Übergangsmetallkomplexe KW - Zweikernige Komplexe KW - Phosphine KW - Rhodium KW - Phosphan KW - Arsan KW - Stiban KW - verbrückend KW - Rhodium KW - phosphine KW - arsine KW - stibine KW - bridging KW - rhodium Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-4930 ER - TY - THES A1 - Biller, Andreas T1 - Beiträge zur Chemie des penta- und hexakoordinierten Siliciums T1 - Contributions to the chemistry of penta- and hexacoordinate silicon: synthesis and stereochemistry of zwitterionic lamda5Si-silicates and dianionic lamda6Si-silicates N2 - Synthese und Charakterisierung (Einkristall-Röntgenstrukturanalyse, NMR-spektroskopische Untersuchung im Festkörper und/oder in Lösung, Elementaranalyse) von Verbindungen des fünffach- und sechsfach koordinierten Siliciums sowie einer Verbindung des sechsfach koordinierten Germaniums; Synthese und Charakterisierung (NMR-spektroskopische Untersuchung im Festkörper und/oder in Lösung, Massenspektrometrie, Elementaranalyse) von Silanen sowie Dihydroxamsäuren und deren Monokaliumsalzen. N2 - Synthesis and caracterization (X-ray diffraction, NMR-spektroscopic study in the solid state and/or in solution, elemental analysis) of compounds of fivefold- and sixfold coordinate silicon as well as of one compound of sixfold coordinate germanium; synthesis and caracterization (NMR-spektroskopic study in the solid state and/or in solution, mass spectrometry, elemental analysis) of silanes as well as of dihydroxamic acids and their respective monopotassium salts. KW - Silicate KW - Pentakoordination KW - Zwitterion KW - höherkoordiniertes Silicium KW - höherkoordiniertes Germanium KW - higher-coordinate silicon KW - higher-coordinate germanium Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-4861 ER -