TY - JOUR A1 - Breitenbach, Tim A1 - Lorenz, Kristina A1 - Dandekar, Thomas T1 - How to steer and control ERK and the ERK signaling cascade exemplified by looking at cardiac insufficiency JF - International Journal of Molecular Sciences N2 - Mathematical optimization framework allows the identification of certain nodes within a signaling network. In this work, we analyzed the complex extracellular-signal-regulated kinase 1 and 2 (ERK1/2) cascade in cardiomyocytes using the framework to find efficient adjustment screws for this cascade that is important for cardiomyocyte survival and maladaptive heart muscle growth. We modeled optimal pharmacological intervention points that are beneficial for the heart, but avoid the occurrence of a maladaptive ERK1/2 modification, the autophosphorylation of ERK at threonine 188 (ERK\(^{Thr188}\) phosphorylation), which causes cardiac hypertrophy. For this purpose, a network of a cardiomyocyte that was fitted to experimental data was equipped with external stimuli that model the pharmacological intervention points. Specifically, two situations were considered. In the first one, the cardiomyocyte was driven to a desired expression level with different treatment strategies. These strategies were quantified with respect to beneficial effects and maleficent side effects and then which one is the best treatment strategy was evaluated. In the second situation, it was shown how to model constitutively activated pathways and how to identify drug targets to obtain a desired activity level that is associated with a healthy state and in contrast to the maleficent expression pattern caused by the constitutively activated pathway. An implementation of the algorithms used for the calculations is also presented in this paper, which simplifies the application of the presented framework for drug targeting, optimal drug combinations and the systematic and automatic search for pharmacological intervention points. The codes were designed such that they can be combined with any mathematical model given by ordinary differential equations. KW - optimal pharmacological modulation KW - efficient intervention points KW - ERK signaling KW - optimal treatment strategies KW - optimal drug targeting KW - optimal drug combination Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-285164 SN - 1422-0067 VL - 20 IS - 9 ER - TY - JOUR A1 - Jochmann, Svenja A1 - Elkenani, Manar A1 - Mohamed, Belal A. A1 - Buchholz, Eric A1 - Lbik, Dawid A1 - Binder, Lutz A1 - Lorenz, Kristina A1 - Shah, Ajay M. A1 - Hasenfuß, Gerd A1 - Toischer, Karl A1 - Schnelle, Moritz T1 - Assessing the role of extracellular signal‐regulated kinases 1 and 2 in volume overload‐induced cardiac remodelling JF - ESC Heart Failure N2 - Aims Volume overload (VO) and pressure overload (PO) induce differential cardiac remodelling responses including distinct signalling pathways. Extracellular signal‐regulated kinases 1 and 2 (ERK1/2), key signalling components in the mitogen‐activated protein kinase (MAPK) pathways, modulate cardiac remodelling during pressure overload (PO). This study aimed to assess their role in VO‐induced cardiac remodelling as this was unknown. Methods and results Aortocaval fistula (Shunt) surgery was performed in mice to induce cardiac VO. Two weeks of Shunt caused a significant reduction of cardiac ERK1/2 activation in wild type (WT) mice as indicated by decreased phosphorylation of the TEY (Thr‐Glu‐Tyr) motif (−28% as compared with Sham controls, P < 0.05). Phosphorylation of other MAPKs was unaffected. For further assessment, transgenic mice with cardiomyocyte‐specific ERK2 overexpression (ERK2tg) were studied. At baseline, cardiac ERK1/2 phosphorylation in ERK2tg mice remained unchanged compared with WT littermates, and no overt cardiac phenotype was observed; however, cardiac expression of the atrial natriuretic peptide was increased on messenger RNA (3.6‐fold, P < 0.05) and protein level (3.1‐fold, P < 0.05). Following Shunt, left ventricular dilation and hypertrophy were similar in ERK2tg mice and WT littermates. Left ventricular function was maintained, and changes in gene expression indicated reactivation of the foetal gene program in both genotypes. No differences in cardiac fibrosis and kinase activation was found amongst all experimental groups, whereas apoptosis was similarly increased through Shunt in ERK2tg and WT mice. Conclusions VO‐induced eccentric hypertrophy is associated with reduced cardiac ERK1/2 activation in vivo. Cardiomyocyte‐specific overexpression of ERK2, however, does not alter cardiac remodelling during VO. Future studies need to define the pathophysiological relevance of decreased ERK1/2 signalling during VO. KW - ERK1/2 KW - volume overload KW - aortocaval fistula model KW - cardiac remodelling KW - eccentric hypertrophy Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-212735 VL - 6 IS - 5 SP - 1015 EP - 1026 ER - TY - JOUR A1 - Tan, Aaron A1 - Babak, Maria V. A1 - Venkatesan, Gopalakrishnan A1 - Lim, Clarissa A1 - Klotz, Karl-Norbert A1 - Herr, Deron Raymond A1 - Cheong, Siew Lee A1 - Federico, Stephanie A1 - Spalluto, Giampiero A1 - Ong, Wei-Yi A1 - Chen, Yu Zong A1 - Loo, Jason Siau Ee A1 - Pastorin, Giorgia T1 - Design, Synthesis and Evaluation of New Indolylpyrimidylpiperazines for Gastrointestinal Cancer Therapy JF - Molecules N2 - Human A3 adenosine receptor hA3AR has been implicated in gastrointestinal cancer, where its cellular expression has been found increased, thus suggesting its potential as a molecular target for novel anticancer compounds. Observation made in our previous work indicated the importance of the carbonyl group of amide in the indolylpyrimidylpiperazine (IPP) for its human A2A adenosine receptor (hA2AAR) subtype binding selectivity over the other AR subtypes. Taking this observation into account, we structurally modified an indolylpyrimidylpiperazine (IPP) scaffold, 1 (a non-selective adenosine receptors’ ligand) into a modified IPP (mIPP) scaffold by switching the position of the carbonyl group, resulting in the formation of both ketone and tertiary amine groups in the new scaffold. Results showed that such modification diminished the A2A activity and instead conferred hA3AR agonistic activity. Among the new mIPP derivatives (3–6), compound 4 showed potential as a hA3AR partial agonist, with an Emax of 30% and EC50 of 2.89 ± 0.55 μM. In the cytotoxicity assays, compound 4 also exhibited higher cytotoxicity against both colorectal and liver cancer cells as compared to normal cells. Overall, this new series of compounds provide a promising starting point for further development of potent and selective hA3AR partial agonists for the treatment of gastrointestinal cancers. KW - gastrointestinal cancer KW - hA3AR KW - partial agonists KW - indolylpyrimidylpiperazines Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-193271 SN - 1420-3049 VL - 24 IS - 20 ER - TY - JOUR A1 - Fathy, Moustafa A1 - Fawzy, Michael Atef A1 - Hintzsche, Henning A1 - Nikaido, Toshio A1 - Dandekar, Thomas A1 - Othman, Eman M. T1 - Eugenol exerts apoptotic effect and modulates the sensitivity of HeLa cells to cisplatin and radiation JF - Molecules N2 - Eugenol is a phytochemical present in different plant products, e.g., clove oil. Traditionally, it is used against a number of different disorders and it was suggested to have anticancer activity. In this study, the activity of eugenol was evaluated in a human cervical cancer (HeLa) cell line and cell proliferation was examined after treatment with various concentrations of eugenol and different treatment durations. Cytotoxicity was tested using lactate dehydrogenase (LDH) enzyme leakage. In order to assess eugenol’s potential to act synergistically with chemotherapy and radiotherapy, cell survival was calculated after eugenol treatment in combination with cisplatin and X-rays. To elucidate its mechanism of action, caspase-3 activity was analyzed and the expression of various genes and proteins was checked by RT-PCR and western blot analyses. Eugenol clearly decreased the proliferation rate and increased LDH release in a concentration- and time-dependent manner. It showed synergistic effects with cisplatin and X-rays. Eugenol increased caspase-3 activity and the expression of Bax, cytochrome c (Cyt-c), caspase-3, and caspase-9 and decreased the expression of B-cell lymphoma (Bcl)-2, cyclooxygenase-2 (Cox-2), and interleukin-1 beta (IL-1β) indicating that eugenol mainly induced cell death by apoptosis. In conclusion, eugenol showed antiproliferative and cytotoxic effects via apoptosis and also synergism with cisplatin and ionizing radiation in the human cervical cancer cell line. KW - eugenol KW - HeLa cells KW - cisplatin KW - radiation KW - apoptosis Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-193227 SN - 1420-3049 VL - 24 IS - 21 ER -