TY - JOUR A1 - Schmitt, Andrea A1 - Tatsch, Laura A1 - Vollhardt, Alisa A1 - Schneider-Axmann, Thomas A1 - Raabe, Florian J. A1 - Roell, Lukas A1 - Heinsen, Helmut A1 - Hof, Patrick R. A1 - Falkai, Peter A1 - Schmitz, Christoph T1 - Decreased oligodendrocyte number in hippocampal subfield CA4 in schizophrenia: a replication study JF - Cells N2 - Hippocampus-related cognitive deficits in working and verbal memory are frequent in schizophrenia, and hippocampal volume loss, particularly in the cornu ammonis (CA) subregions, was shown by magnetic resonance imaging studies. However, the underlying cellular alterations remain elusive. By using unbiased design-based stereology, we reported a reduction in oligodendrocyte number in CA4 in schizophrenia and of granular neurons in the dentate gyrus (DG). Here, we aimed to replicate these findings in an independent sample. We used a stereological approach to investigate the numbers and densities of neurons, oligodendrocytes, and astrocytes in CA4 and of granular neurons in the DG of left and right hemispheres in 11 brains from men with schizophrenia and 11 brains from age- and sex-matched healthy controls. In schizophrenia, a decreased number and density of oligodendrocytes was detected in the left and right CA4, whereas mean volumes of CA4 and the DG and the numbers and density of neurons, astrocytes, and granular neurons were not different in patients and controls, even after adjustment of variables because of positive correlations with postmortem interval and age. Our results replicate the previously described decrease in oligodendrocytes bilaterally in CA4 in schizophrenia and point to a deficit in oligodendrocyte maturation or a loss of mature oligodendrocytes. These changes result in impaired myelination and neuronal decoupling, both of which are linked to altered functional connectivity and subsequent cognitive dysfunction in schizophrenia. KW - schizophrenia KW - hippocampus KW - CA4 KW - dentate gyrus KW - postmortem KW - stereology KW - oligodendrocyte KW - neuron Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-290360 SN - 2073-4409 VL - 11 IS - 20 ER - TY - JOUR A1 - Tiane, Assia A1 - Schepers, Melissa A1 - Rombaut, Ben A1 - Hupperts, Raymond A1 - Prickaerts, Jos A1 - Hellings, Niels A1 - van den Hove, Daniel A1 - Vanmierlo, Tim T1 - From OPC to oligodendrocyte: an epigenetic journey JF - Cells N2 - Oligodendrocytes provide metabolic and functional support to neuronal cells, rendering them key players in the functioning of the central nervous system. Oligodendrocytes need to be newly formed from a pool of oligodendrocyte precursor cells (OPCs). The differentiation of OPCs into mature and myelinating cells is a multistep process, tightly controlled by spatiotemporal activation and repression of specific growth and transcription factors. While oligodendrocyte turnover is rather slow under physiological conditions, a disruption in this balanced differentiation process, for example in case of a differentiation block, could have devastating consequences during ageing and in pathological conditions, such as multiple sclerosis. Over the recent years, increasing evidence has shown that epigenetic mechanisms, such as DNA methylation, histone modifications, and microRNAs, are major contributors to OPC differentiation. In this review, we discuss how these epigenetic mechanisms orchestrate and influence oligodendrocyte maturation. These insights are a crucial starting point for studies that aim to identify the contribution of epigenetics in demyelinating diseases and may thus provide new therapeutic targets to induce myelin repair in the long run. KW - oligodendrocyte KW - epigenetics KW - myelination Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-193267 SN - 2073-4409 VL - 8 IS - 10 ER -