TY - THES A1 - Basse-Lüsebrink, Thomas Christian T1 - Application of 19F MRI for in vivo detection of biological processes T1 - Anwendung der 19F MRT zur in-vivo Detektion von biologischen Prozessen N2 - This thesis focuses on various aspects and techniques of 19F magnetic resonance (MR). The first chapters provide an overview of the basic physical properties, 19F MR and MR sequences related to this work. Chapter 5 focuses on the application of 19F MR to visualize biological processes in vivo using two different animal models. The dissimilar models underlined the wide applicability of 19F MR in preclinical research. A subsection of Chapter 6 shows the application of compressed sensing (CS) to 19F turbo-spin-echo chemical shift imaging (TSE-CSI), which leads to reduced measurement time. CS, however, can only be successfully applied when a sufficient signal-to-noise ratio (SNR) is available. When the SNR is low, so-called spike artifacts occur with the CS algorithm used in the present work. However, it was shown in an additional subsection that these artifacts can be reduced using a CS-based post processing algorithm. Thus, CS might help overcome limitations with time consuming 19F CSI experiments. Chapter 7 deals with a novel technique to quantify the B+1 profile of an MR coil. It was shown that, using a specific application scheme of off resonant pulses, Bloch-Siegert (BS)-based B+1 mapping can be enabled using a Carr Purcell Meiboom Gill (CPMG)-based TSE sequence. A fast acquisition of the data necessary for B+1 mapping was thus enabled. In the future, the application of BS-CPMG-TSE B+1 mapping to improve quantification using 19F MR could therefore be possible. N2 - Diese Arbeit handelt von verschiedenen Aspekten und Techniken der 19F Magnet Resonanz Tomographie (MRT). In den ersten Kapiteln wird auf grundlegenden physikalischen Eigenschaften der MRT, die 19F MRT und MRT Sequenzen eingegangen. Kapitel 5 behandelt die Anwendung von 19F MRT zur in vivo Visualisierung von biologischen Prozessen. Dazu wurden zwei verschiedene Tiermodelle benützt. Diese stark unterschiedlichen Modelle markieren die breite Anwendungsmöglichkeit der 19F MR Bildgebung in der präklinischen Forschung. In einem Unterabschnitt des Kapitels 6 wurde gezeigt, dass Compressed Sensing (CS) zur Beschleunigung von 19F Turbo-Spin-Echo Chemical Shift Imaging (TSE-CSI) Experimenten beitragen kann. Allerdings kann CS nur erfolgreich angewendet werden, wenn ein ausreichendes Signal-Rausch-Verhältnis (SNR) vorhanden ist. Denn ist das nicht der Fall und wird der CS Algorithmus dieser Arbeit verwendet, dann entstehen sogenannte spike Artefakte. In einem weiteren Unterabschnitt wurde aber gezeigt, dass diese Artefakte mit einem CS basierten Algorithmus in der Nachbearbeitung der Daten reduziert werden. Zusammenfassend lässt sich sagen, dass CS, die Beschränkungen durch zeitaufwändigen 19F CSI Experimenten überwinden kann. Kapitel 7 handelt von einer neuartigen Technik um das B+1 Profil einer MR Spule quantitativ auszumessen. Es wurde gezeigt, dass mit einem bestimmten Anwendungsschema von offresonanten Pulsen das Bloch-Siegert (BS)-basiertes B+1 Mapping mit Hilfe einer Carr Purcell Meiboom Gill (CPMG) basierten TSE Sequenz betrieben werden kann. Somit wurde eine schnelle Aufnahme der Daten, die für das B+1 Mapping benötigt werden, erreicht. In der Zukunft könnte das BS-CPMG-TSE B+1 Mapping möglicherweise dazu beitragen, die Quantifizierung mittels 19F MRI zu verbessern. KW - Kernspintomografie KW - Fluor-19 KW - Bloch-Siegert KW - Compressed Sensig KW - 19F-MR KW - Rekonstruktion KW - NMR-Tomographie KW - NMR-Bildgebung Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-77188 ER - TY - THES A1 - Fischer, André T1 - On the Application of Compressed Sensing to Magnetic Resonance Imaging T1 - Über die Anwendung von Compressed Sensing in der Magnetresonanztomographie N2 - This thesis investigated the potential of Compressed Sensing (CS) applied to Magnetic Resonance Imaging (MRI). CS is a novel image reconstruction method that emerged from the field of information theory. The framework of CS was first published in technical reports in 2004 by Candès and Donoho. Two years later, the theory of CS was published in a conference abstract and two papers. Candès and Donoho proved that it is possible, with overwhelming probability, to reconstruct a noise-free sparse signal from incomplete frequency samples (e.g., Fourier coefficients). Hereby, it is assumed a priori that the desired signal for reconstruction is sparse. A signal is considered “sparse“ when the number of non-zero elements is significantly smaller than the number of all elements. Sparsity is the most important foundation of CS. When an ideal noise-free signal with few non-zero elements is given, it should be understandably possible to obtain the relevant information from fewer Fourier coefficients than dictated by the Nyquist-Shannon criterion. The theory of CS is based on noise-free sparse signals. As soon as noise is introduced, no exact sparsity can be specified since all elements have signal intensities that are non-zero. However, with the addition of little or moderate noise, an approximate sparsity that can be exploited using the CS framework will still be given. The ability to reconstruct noisy undersampled sparse MRI data using CS has been extensively demonstrated. Although most MR datasets are not sparse in image space, they can be efficiently sparsified by a sparsifying transform. In this thesis, the data are either sparse in the image domain, after Discrete Gradient transformation, or after subtraction of a temporally averaged dataset from the data to be reconstructed (dynamic imaging). The aim of this thesis was to identify possible applications of CS to MRI. Two different algorithms were considered for reconstructing the undersampled sparse data with the CS concept. The Nonlinear Conjugate Gradient based technique with a relaxed data consistency constraint as suggested by Lustig et al. is termed Relaxed DC method. An alternative represents the Gradient or Steepest Descent algorithm with strict data consistency and is, therefore, termed the Strict DC method. Chapter 3 presents simulations illustrating which of these two reconstruction algorithms is best suited to recover undersampled sparse MR datasets. The results lead to the decision for the Strict DC method as reconstruction technique in this thesis. After these simulations, different applications and extensions of CS are demonstrated. Chapter 4 shows how CS benefits spectroscopic 19F imaging at 7 T, allowing a significant reduction of measurement times during in vivo experiments. Furthermore, it allows highly resolved spectroscopic 3D imaging in acceptable measurement times for in vivo applications. Chapter 5 introduces an extension of the Strict DC method called CS-CC (CS on Combined Coils), which allows efficient processing of sparse undersampled multi-coil data. It takes advantage of a concept named “Joint Sparsity“, which exploits the fact that all channels of a coil array detect the same sparse object weighted with the coil sensitivity profiles. The practical use of this new algorithm is demonstrated in dynamic radial cardiac imaging. Accurate reconstructions of cardiac motion in free breathing without ECG triggering were obtained for high undersampling factors. An Iterative GRAPPA algorithm is introduced in Chapter 6 that can recover undersampled data from arbitrary (Non-Cartesian) trajectories and works solely in the Cartesian plane. This characteristic makes the proposed Iterative GRAPPA computationally more efficient than SPIRiT. Iterative GRAPPA was developed in a preceding step to combine parallel imaging with CS. Optimal parameters for Iterative GRAPPA (e.g. number of iterations, GRAPPA kernel size) were determined in phantom experiments and verified by retrospectively undersampling and reconstructing a radial cardiac cine dataset. The synergistic combination of the coil-by-coil Strict DC CS method and Iterative GRAPPA called CS-GRAPPA is presented in Chapter 7. CS-GRAPPA allows accurate reconstruction of undersampled data from even higher acceleration factors than each individual method. It is a formulation equivalent to L1-SPIRiT but computationally more efficient. Additionally, a comparison with CS-CC is given. Interestingly, exploiting joint sparsity in CS-CC is slightly more efficient than the proposed CS-GRAPPA, a hybrid of parallel imaging and CS. The last chapter of this thesis concludes the findings presented in this dissertation. Future applications expected to benefit from CS are discussed and possible synergistic combinations with other existing MR methodologies for accelerated imaging are also contemplated. N2 - In der vorliegenden Arbeit wurde untersucht, welches Potential die Anwendung von Compressed Sensing (CS) in der Magnetresonanztomographie (MRT) hat. CS ist eine neue Bildrekonstruktionsmethode aus der Informationstheorie. Das Grundgerüst für CS wurde zuerst in zwei technischen Berichten von Candès und Donoho aus dem Jahr 2004 vorgestellt. Zwei Jahre später wurde die CS-Theorie in einem Konferenzbeitrag und zwei wissenschaftlichen Artikeln veröffentlicht. Candés und Donoho zeigten, dass es mit überwältigender Wahrscheinlichkeit möglich ist, ein rauschfreies sparses Signal aus unvollständig vorliegender Frequenzinformation zu rekonstruieren. Hierfür ist eine wichtige A-priori-Annahme, dass das gewünschte Signal, welches rekonstruiert werden soll, sparse sein soll. Man spricht von sparsen Signalen, falls die Anzahl der Elemente mit Intensität größer Null signifikant kleiner als die Anzahl aller Elemente ist. Die CS-Theorie basiert auf rauschfreien, sparsen Signalen. Sobald Rauschen auftritt, kann keine exakte Sparsity mehr bestimmt werden, da alle Elemente Signalintensitäten größer Null haben. Falls jedoch nur wenig oder moderates Rauschen hinzugefügt wird ist immer noch näherungsweise eine Sparsity gegeben, die mit Hilfe von CS ausgenutzt werden kann. Die meisten MR-Datensätze sind nicht-sparse im Bildraum, können allerdings durch eine sog. Sparsifizierungstransformation effektiv sparsifiziert werden. In der vorliegenden Arbeit sind die Daten entweder im Bildraum sparse, nach einer Diskreten-Gradienten-Transformation oder nachdem bei dynamischen Daten ein zeitlich gemittelter Datensatz von den zu rekonstruierenden Daten abgezogen worden ist. Das Ziel dieser Arbeit war es, mögliche Anwendungen für CS in der MRT zu identifizieren. Zwei unterschiedliche Algorithmen wurden untersucht, um unterabgetastete sparse Daten mit dem CS-Konzept zu rekonstruieren. Eine Technik, die auf einer Nichtlinearen Methode der Konjugierten Gradienten basiert und eine gelockerte Datenkonsistenzbedingung beinhaltet, wird als Relaxed DC-Methode bezeichnet. Eine Alternative stellt der Gradienten- oder Steilster-Abstieg-Algorithmus dar, der strikte Datenkonsistenz fordert und daher als Strict-DC-Methode bezeichnet wird. Kapitel 3 zeigt Simulationen, die darlegen, dass die Strict-DC-Methode am besten zur Datenrekonstruktion in dieser Arbeit geeignet ist. Kapitel 4 zeigt, in wie fern die spektroskopische 19F-Bildgebung bei 7 T von CS profitieren kann, indem CS eine signifikante Reduktion der Messzeiten bei in vivo Experimenten erlaubt. Desweiteren ermöglicht CS hochaufgelöste spektroskopische 3D-Bildgebung in akzeptablen Messzeiten für in vivo Anwendungen. Kapitel 5 führt eine Erweiterung der Strict-DC-Methode ein, die CS-CC genannt wird, welche eine effiziente Bearbeitung von sparsen unterabgetasteten Multi-Empfänger-Datensätzen erlaubt. Hierbei profitiert CS-CC von einem Konzept namens "Joint Sparsity", welches ausnutzt, dass alle Empfangskanäle eines Spulenarrays dasselbe sparse Objekt detektieren, jeweils gewichtet mit den entsprechenden Spulensensitivitätsprofilen. Der praktische Nutzen dieses neuen Algorithmus wird an einem dynamischen radialen Herzdatensatz verdeutlicht. Akkurate Rekonstruktionen der Herzbewegung in freier Atmung und ohne EKG-Trigger konnten bei hohen Unterabtastfaktoren erreicht werden. Ein Iterativer-GRAPPA-Algorithmus, der unterabgetastete Daten beliebiger (nicht-kartesischer) Trajektorien rekonstruieren kann und ausschließlich auf einem kartesischen Gitter arbeitet, wird in Kapitel 6 vorgestellt. Das vorgeschlagene Iterative GRAPPA ist vom Rechenaufwand her effizienter als SPIRiT und wurde als ein vorhergehender Schritt zur Kombination von Paralleler Bildgebung und Compressed Sensing entwickelt. Optimale Parameter für Iteratives GRAPPA (z.B. Anzahl an Iterationen, GRAPPA-Kern-Größe) wurden in Phantom-Experimenten bestimmt und mittels Rekonstruktionen an einem retrospektiv unterabgetasteten radialen Herzdatensatz verifiziert. Die synergetische Kombination der spulenweise angewendeten Strict-DC-Methode und Iterativem GRAPPA genannt CS-GRAPPA wird in Kapitel 7 präsentiert. CS-GRAPPA erlaubt akkurate Rekonstruktionen unterabgetasteter Daten von höheren Beschleunigungsfaktoren, als mit den jeweiligen Einzelmethoden möglich gewesen wäre. Die Formulierung ist äquivalent zu L1-SPIRiT, allerdings vom Rechenaufwand effizienter. Es wurde zusätzlich ein Vergleich zu CS-CC durchgeführt. Interessanterweise hat sich gezeigt, dass das Ausnutzen der Joint Sparsity in CS-CC etwas effizienter ist als das vorgeschlagene CS-GRAPPA, das ein Hybrid aus Compressed Sensing und Paralleler Bildgebung ist. Im abschließenden Kapitel dieser Dissertation werden die Ergebnisse zusammengefasst und Schlussfolgerungen daraus gezogen. Zukünftige Anwendungen werden diskutiert, die von CS profitieren und mögliche synergetische Kombinationen mit anderen existierenden MR-Methoden für beschleunigte Bildgebung werden angesprochen. KW - NMR-Tomographie KW - Rekonstruktion KW - NMR-Bildgebung KW - Compressed Sensing KW - Unterabtastung KW - Compressed Sensing KW - Undersampling Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-72496 ER - TY - THES A1 - Purea, Edmund Armin T1 - New Methods and Applications in Nuclear Magnetic Resonance Microscopy using small RF Coils T1 - Neue Methoden und Anwendungen kleiner HF-Spulen in der NMR-Mikroskopie N2 - Nuclear magnetic resonance (NMR) imaging is a well-established imaging technique. If the achieved spatial resolution is below 100 um, it is usually denoted as magnetic resonance microscopy (MRM). The spatial resolution limit is on the order of a few um. As a downside, high resolution imaging is usually time-consuming and technological requirements are very sumptuous. Furthermore, miniaturization of the radiofrequency (RF) coil leading to a so-called microcoil is necessary; it also brings along detrimental effects. Therefore, there is a high potential for optimizing present MRM methods. Hence it is the aim of this work to improve and further develop present methods in MRM with focus on the RF coil and to apply those methods on new biological applications. All experiments were conducted on a Bruker 17.6 T system with a maximum gradient strength of 1 T/m and four RF receiver channels. Minimizing the RF coil dimensions, leads to increased artefacts due to differences in magnetic susceptibility of the coil wire and surrounding air. Susceptibility matching by immersing the coil in FC-43 is the most common approach that fulfills the requirements of most applications. However, hardly any alternatives are known for cases where usage of FC-43 is not feasible due to its specific disadvantages. Two alternative substances (bromotricholoromethane and Fomblin Y25) were presented and their usability was checked by susceptibility determination and demonstration experiments after shimming under practical conditions. In a typical MRM microcoil experiment, the sample volume is significantly smaller than the maximum volume usable for imaging. This mismatch has been optimized in order to increase the experiment efficiency by increasing the number of probe coils and samples used. A four-channel probehead consisting of four individual solenoid coils suited for cellular imaging of Xenopus laevis oocytes was designed, allowing simultaneous acquisition from four samples. All coils were well isolated and allowed quantitative image acquisition with the same spatial resolution as in single coil operation. This method has also been applied in other studies for increased efficiency: using X. laevis oocytes as a single cell model, the effect of chemical fixation on intracellular NMR relaxation times T1 and T2 and on diffusion was studied for the first time. Significant reduction of relaxation times was found in all cell compartments; after reimmersion in buffer, values return close to the initial values, but there were small but statistically significant differences due to residual formaldehyde. Embryos of the same species have been studied morphologically in different developmental stages. Wild type embryos were compared to embryos that had experienced variations in protein levels of chromosomal proteins HMGN and H1A. Significant differences were found between wild type and HMGN-modified embryos, while no difference was observed between wild type and H1-modified embryos. These results were concordant with results obtained from light microscopy and histology. The technique of molecular imaging was also performed on X. laevis embryos. Commercially available antibodies coupled to ultrasmall superparamagnetic iron oxide (USPIO) dextrane coated particles (MACS) served as a specific probe detectable by MRM, the aim being the detection of tissue specific contrast variations. Initially, the relaxivity of MACS was studied and compared to Resovist and VSOP particles. The iron concentration was determined quantitatively by using a general theoretical approach and results were compared to values obtained from mass spectroscopy. After incubation with MACS antibodies, intraembryonal relaxation times were determined in different regions of the embryo. These values allowed determination of local iron oxide particle concentrations, and specific binding could be distinguished from unspecific binding. Although applications in this work were focused on X. laevis oocytes and embryos, 3D-imaging on a beewolf head was also carried out in order to visualize the postpharyngeal gland. Additionally, an isolated beewolf antenna was imaged with a spatial resolution of (8 um)^3 for depiction of the antennal glands by using a microcoil that was specially designed for this sample. The experiments carried out in this work show that commercially available MRM systems can be significantly optimized by using small sample-adapted RF coils and by parallel operation of multiple coils, by which the sample throughput and thus time-efficiency is increased. With this optimized setup, practical use was demonstrated in a number of new biological applications. N2 - Bildgebung mittels magnetischer Kernresonanz (NMR) ist eine etablierte Methode. Liegt die erreichte Ortsauflösung unter 100 um, wird sie allgemein als Magnetresonanz-Mikroskopie (MRM) bezeichnet. Die Untergrenze der Auflösung liegt in der Größenordnung weniger um. Da höchstaufgelöste Bildgebung meist sehr zeitintensiv ist, kostspielige Anforderungen an die zugrunde liegende Technologie setzt und zudem durch die notwendige Verkleinerung der Hochfrequenz (HF)-Spule auf sogenannte microcoils und Erhöhung der Bildauflösung auch nachteilige Effekte zunehmen, besteht viel Optimierungsbedarf bei bestehenden MRM-Methoden. Das Ziel dieser Arbeit war daher die Verbesserung und Weiterentwicklung bestehender Methoden der MRM mit besonderem Augenmerk auf die HF-Spule und ihre Anwendung auf neue biologische Fragestellungen. Alle Experimente wurden an einem Bruker 17.6T System mit einer maximalen Gradientenstärke von 1T/m und vier HF-Empfangskanälen durchgeführt. Die Miniaturisierung der HF-Spule führt zu Bildverzerrungen aufgrund des Unterschieds in magnetischer Suszeptibilität zwischen Luft und Spulendraht. Der übliche Ansatz der Suszeptibilitätsanpassung mit FC-43 ist für die meisten Anwendungen ausreichend, jedoch gibt es kaum bekannte Alternativen für den Fall, dass die Nachteile von FC-43 eine Verwendung verhindern. Es wurden zwei neue Substanzen (Bromtrichlormethan sowie Fomblin Y25) vorgestellt und ihre Verwendbarkeit mittels Suszeptibilitätsmessung und experimentellen Shim-Ergebnissen im praktischen Einsatz geprüft. Bei üblichen MRM-Experimenten mit ’microcoils’ ist das Probenvolumen deutlich kleiner als das maximal für Bildgebung zur Verfügung stehende Volumen. Dieses Ungleichgewicht wurde ausgenutzt, um die Effizienz von Mikroskopie-Experimenten durch parallelen Einsatz mehrerer ’microcoils’ zu erhöhen. Ein Probenkopf mit vier entkoppelten Solenoidspulen wurde für zelluläre Bildgebung an Xenopus laevis (Krallenfrosch)-Oozyten konstruiert. Ohne Auflösungsverlust konnten damit vier Proben zeitgleich quantitativ untersucht werden. Diese Methode wurde auch in weiteren Studien zur Steigerung der Effizienz eingesetzt: Am Modell einzelner Zellen (X. laevis-Oozyten) wurde die Auswirkung chemischer Fixierung auf NMR-Relaxationszeiten (T1, T2) sowie Diffusion erstmals intrazellulär untersucht. Es konnten erhebliche Verkürzungen der Relaxationszeiten in allen Zellkompartimenten festgestellt werden, die nach Spülung mit Pufferlösung bis auf geringe, statistisch signifikante Abweichungen bedingt durch verbleibendes Formaldehyd auf die Ausgangswerte der nichtfixierten Zelle zurückkehrten. In einem weiteren Projekt wurden Embryonen derselben Spezies in verschiedenen Entwicklungsstadien morphologisch untersucht. Wildtyp-Embryonen wurden mit Embryonen verglichen, deren natürlicher Gehalt an chromosomalen Proteinen HMGN und H1A verändert wurden. Signifikante Unterschiede zwischen Wildtyp und HMGN-veränderten Embryonen konnten festgestellt werden, während sich kein Unterschied zu H1A-veränderten Embryonen zeigte. Lichtmikroskopie und Histologie lieferten damit übereinstimmende Ergebnisse. Ebenfalls an Xenopus-Embryonen wurde die Technik der molekularen Bildgebung eingesetzt. Ziel war es, mit kommerziell erhältlichen Antikörpern, die an superparamagnetische Eisenoxidpartikel mit einer Größe von wenigen nm (USPIO) mit Dextranhülle gekoppelt sind (MACS), gewebespezifische Kontraständerungen zu erhalten. Zunächst wurde die Relaxivität von MACS untersucht und mit Resovist- sowie VSOP-Partikeln verglichen. Anschließend wurde die Eisenkonzentration quantitativ unter Zuhilfenahme eines allgemeinen theoretischen Modells bestimmt und mit Ergebnissen verglichen, die massenspektroskopisch gewonnen wurden. Nach Inkubation mit MACS wurden Relaxationszeiten intraembryonal in verschiedenen Regionen gemessen. Daraus wurden Konzentrationen von Eisenoxid-Partikeln berechnet; zusätzlich konnte zwischen spezifischer und unspezifischer Bindung differenziert werden. Obwohl der Anwendungsschwerpunkt dieser Arbeit auf der Bildgebung an X. laevis- Oozyten und Embryonen lag, wurde auch Bildgebung am Kopf eines Bienenwolfs zur 3D-Darstellung der Postpharyngealdrüse durchgeführt. Zusätzlich wurde mit einer speziell auf das Untersuchungsobjekt angepassten ’microcoil’ eine isolierte Bienenwolfantenne mit einer Auflösung von (8 um)^3 untersucht; Ziel war die Darstellung der Antennaldrüsen. Die durchgeführten Projekte zeigen, dass bei kommerziell erhältlichen MRM-Systemen deutliches Optimierungspotential existiert: zum einen durch verkleinerte und probenangepasste HF-Spulen, zum anderen durch die Parallelisierung mehrerer Spulen, wodurch der Probendurchsatz und damit die Zeiteffizienz gesteigert werden kann. Mit diesem optimierten Aufbau konnte anschließend die Nutzbarkeit der MRM bei neuen biologischen Anwendungen gezeigt werden. KW - Magnetische Resonanz KW - NMR-Bildgebung KW - Glatter Krallenfrosch KW - Bienenwolf KW - NMR-Mikroskopie KW - Simultanbildgebung KW - MRI KW - magnetic resonance KW - imaging KW - microscopy Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-31066 ER - TY - THES A1 - Heidemann, Robin T1 - Non-Cartesian Parallel Magnetic Resonance Imaging T1 - Nicht kartesische parallele Magnetresonanz-Bildgebung N2 - Besides image contrast, imaging speed is probably the most important consideration in clinical magnetic resonance imaging (MRI). MR scanners currently operate at the limits of potential imaging speed, due to technical and physiological problems associated with rapidly switched gradient systems. Parallel imaging (parallel MRI or pMRI) is a method which allows one to significantly shorten the acquisition time of MR images without changing the contrast behavior of the underlying MR sequence. The accelerated image acquisition in pMRI is accomplished without relying on more powerful technical equipment or exceeding physiological boundaries. Because of these properties, pMRI is currently employed in many clinical routines, and the number of applications where pMRI can be used to accelerate imaging is increasing. However, there is also growing criticism of parallel imaging in certain applications. The primary reason for this is the intrinsic loss in the SNR due to the accelerated acquisition. In addition, other effects can also lead to a reduced image quality. Due to unavoidable inaccuracies in the pMRI reconstruction process, local and global errors may appear in the final reconstructed image. The local errors are visible as noise enhancement, while the global errors result in the so-called fold-over artifacts. The appearance and strength of these negative effects, and thus the image quality, depend upon different factors, such as the parallel imaging method chosen, specific parameters in the method, the sequence chosen, as well as specific sequence parameters. In general, it is not possible to optimize all of these parameters simultaneously for all applications. The application of parallel imaging in can lead to very pronounced image artifacts, i.e. parallel imaging can amplify errors. On the other hand, there are applications such as abdominal MR or MR angiography, in which parallel imaging does not reconstruct images robustly. Thus, the application of parallel imaging leads to errors. In general, the original euphoria surrounding parallel imaging in the clinic has been dampened by these problems. The reliability of the pMRI methods currently implemented is the main criticism. Furthermore, it has not been possible to significantly increase the maximum achievable acceleration with parallel imaging despite major technical advances. An acceleration factor of two is still standard in clinical routine, although the number of independent receiver channels available on most MR systems (which are a basic requirement for the application of pMRI) has increased by a factor of 3-6 in recent years. In this work, a novel and elegant method to address this problem has been demonstrated. The idea behind the work is to combine two methods in a synergistic way, namely non-Cartesian acquisition schemes and parallel imaging. The so-called non-Cartesian acquisition schemes have several advantages over standard Cartesian acquisitions, in that they are often faster and less sensitive to physiological noise. In addition, such acquisition schemes are very robust against fold-over artifacts even in the case of vast undersampling of k-space. Despite the advantages described above, non-Cartesian acquisition schemes are not commonly employed in clinical routines. A reason for that is the complicated reconstruction techniques which are required to convert the non-Cartesian data to a Cartesian grid before the fast Fourier transformation can be employed to arrive at the final MR image. Another reason is that Cartesian acquisitions are routinely accelerated with parallel imaging, which is not applicable for non-Cartesian MR acquisitions due to the long reconstruction times. This negates the speed advantage of non-Cartesian acquisition methods. Through the development of the methods presented in this thesis, reconstruction times for accelerated non-Cartesian acquisitions using parallel imaging now approach those of Cartesian images. In this work, the reliability of such methods has been demonstrated. In addition, it has been shown that higher acceleration factors can be achieved with such techniques than possible with Cartesian imaging. These properties of the techniques presented here lead the way for an implementation of such methods on MR scanners, and thus also offer the possibility for their use in clinical routine. This will lead to shorter examination times for patients as well as more reliable diagnoses. N2 - Neben dem Bildkontrast ist die Aufnahmegeschwindigkeit die entscheidende Größe für die klinische Anwendung der Magnetresonanz-Tomographie (MRT). Heutzutage arbeiten MR-Tomographen bereits häufig am Limit dessen, was technisch möglich und physiologisch noch vertretbar ist. Die parallele Bildgebung (parallele MRT, pMRT) ist ein Verfahren, welches es ermöglicht, die Aufnahmezeiten von MRT-Bildern signifikant zu verkürzen, ohne dabei das Kontrastverhalten der zu Grunde liegenden MR Sequenz zu verändern. Die beschleunigte Bildakquisition in der pMRT wird erzielt, ohne auf eine leistungsfähigere technische Ausstattung der MR-Tomographen angewiesen zu sein und ohne dabei die physiologischen Grenzwerte zu überschreiten. Wegen dieser Eigenschaften wird die pMRT heutzutage vielfach in der klinischen Routine eingesetzt. Dabei wächst die Zahl der klinischen MR Anwendungen, welche mittels paralleler Bildgebung beschleunigt werden. Neben dieser Entwicklung ist heutzutage aber auch eine zunehmende Kritik am Einsatz der parallelen Bildgebung bei bestimmten Applikationen festzustellen. Ein Hauptgrund dafür ist der intrinsische Verlust an Signal-Rausch-Verhältnis durch die beschleunigte Akquisition. Es gibt weitere Effekte, welche die Bildqualität vermindern können. Durch unvermeidbare Ungenauigkeiten bei den Verfahren der pMRT kann es zu lokalen und zu globalen Fehlern in den rekonstruierten Bildern kommen. Die lokalen Fehler sind als Rauschverstärkung sichtbar, wohingegen die globalen Fehler zu so genannten Faltungsartefakten im Bild führen. Das Auftreten und die Stärke dieser Störeffekte hängen von unterschiedlichen Parametern ab. Im Allgemeinen ist es nicht möglich alle Abhängigkeiten für jede Applikation gleichzeitig zu optimieren. Der Einsatz der parallelen Bildgebung kann zu massiven Bildartefakten führen, d.h. die parallele Bildgebung kann Fehler verstärken. Auf der anderen Seite gibt es Applikationen, wie zum Beispiel die abdominelle MR-Bildgebung oder die MR-Angiographie, bei denen die pMRT nicht zuverlässig funktioniert. Die Anwendung der pMRT verursacht also erst die Fehler. Ganz allgemein kann im klinischen Umfeld beobachtet werden, dass die anfängliche Euphorie gegenüber der parallelen Bildgebung einer gewissen Ernüchterung gewichen ist. Der Zuverlässigkeit der implementierten pMRT-Methoden gilt dabei die Hauptkritik. Des Weiteren ist es nicht gelungen, trotz großen technischen Fortschritts, die maximal zu erreichende Beschleunigung mittels paralleler Bildgebung signifikant zu erhöhen. Standard in der klinischen Routine ist immer noch ein Beschleunigungsfaktor von zwei, obwohl sich die Anzahl der unabhängigen Empfangskanäle eines MR Systems (eine Grundvoraussetzung für die Verwendung der pMRT) in den letzten Jahren um einen Faktor 3-6 erhöht hat. In dieser Arbeit wurde erstmalig gezeigt, dass es eine elegante Möglichkeit gibt, diese Probleme zu adressieren. Die Idee besteht darin, Synergieeffekte zu nutzen, die aus einer Kombination von so genannten nicht-kartesischen Abtastverfahren mit der parallelen Bildgebung entstehen. Die nicht-kartesischen Aufnahmeverfahren haben gegenüber den herkömmlichen kartesischen Verfahren einige Vorteile. Sie sind in der Regel schneller und weniger empfindlich für physiologisches Rauschen als kartesische Aufnahmeverfahren. Außerdem sind sie sehr robust gegenüber Faltungsartefakten, selbst bei starker Unterabtastung der k Raumdaten. Trotz der eben beschriebenen Vorteile finden nicht-kartesische Aufnahmeverfahren kaum Verwendung in der klinischen Routine. Ein Grund hierfür sind die komplexen Rekonstruktionsverfahren, die an Stelle der schnellen Fourier-Transformation angewendet werden müssen, um ein MR-Bild aus nicht-kartesischen Daten zu erzeugen. Ein weiterer Grund liegt darin, dass kartesische MR-Aufnahmen mittlerweile routinemäßig mit paralleler Bildgebung beschleunigt werden, wohingegen dies bei nicht-kartesischen MR-Aufnahmen wegen der langen Rekonstruktionszeiten nicht praktikabel ist. Dadurch wird der oben erwähnte Geschwindigkeitsvorteil der nicht-kartesischen Verfahren irrelevant. Durch die Entwicklung der in dieser Doktorarbeit vorgestellten Methoden konnten erstmals Rekonstruktionszeiten in der nicht-kartesischen Bildgebung erzielt werden, die vergleichbar sind mit denen in der kartesischen Bildgebung. In der vorliegenden Arbeit konnte die höhere Zuverlässigkeit dieser neuen Verfahren demonstriert werden. Des Weiteren wurde gezeigt, dass höhere Beschleunigungsfaktoren erzielt werden können als dies mit kartesischen Verfahren bisher möglich war. Diese Eigenschaften der vorgestellten Methoden bahnen den Weg für eine Implementierung solcher Verfahren an MR Geräten und damit deren Anwendung in der klinischen Routine. Letztendlich wird dies zu kürzeren Untersuchungszeiten der Patienten und zuverlässigeren Diagnosen führen. KW - NMR-Bildgebung KW - Magnetische Resonanz KW - NMR-Tomographie KW - parallel imaging KW - non-Cartesian trajectories KW - Spiral imaging KW - variable density sampling Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-26893 ER - TY - THES A1 - Breuer, Felix T1 - Development and Applications of Efficient Strategies for Parallel Magnetic Resonance Imaging T1 - Entwicklung und Anwendungen von effizienten Strategien in der Parallelen Magnetresonanztompgraphie N2 - Virtually all existing MRI applications require both a high spatial and high temporal resolution for optimum detection and classification of the state of disease. The main strategy to meet the increasing demands of advanced diagnostic imaging applications has been the steady improvement of gradient systems, which provide increased gradient strengths and faster switching times. Rapid imaging techniques and the advances in gradient performance have significantly reduced acquisition times from about an hour to several minutes or seconds. In order to further increase imaging speed, much higher gradient strengths and much faster switching times are required which are technically challenging to provide. In addition to significant hardware costs, peripheral neuro-stimulations and the surpassing of admissable acoustic noise levels may occur. Today’s whole body gradient systems already operate just below the allowed safety levels. For these reasons, alternative strategies are needed to bypass these limitations. The greatest progress in further increasing imaging speed has been the development of multi-coil arrays and the advent of partially parallel acquisition (PPA) techniques in the late 1990’s. Within the last years, parallel imaging methods have become commercially available,and are therefore ready for broad clinical use. The basic feature of parallel imaging is a scan time reduction, applicable to nearly any available MRI method, while maintaining the contrast behavior without requiring higher gradient system performance. PPA operates by allowing an array of receiver surface coils, positioned around the object under investigation, to partially replace time-consuming spatial encoding which normally is performed by switching magnetic field gradients. Using this strategy, spatial resolution can be improved given a specific imaging time, or scan times can be reduced at a given spatial resolution. Furthermore, in some cases, PPA can even be used to reduce image artifacts. Unfortunately, parallel imaging is associated with a loss in signal-to-noise ratio (SNR) and therefore is limited to applications which do not already operate at the SNR limit. An additional limitation is the fact that the coil array must provide sufficient sensitivity variations throughout the object under investigation in order to offer enough spatial encoding capacity. This doctoral thesis exhibits an overview of my research on the topic of efficient parallel imaging strategies. Based on existing parallel acquisition and reconstruction strategies, such as SENSE and GRAPPA, new concepts have been developed and transferred to potential clinical applications. N2 - In den späten 80er Jahren entwickelte sich die Magnetresonanz-Tomographie (MRT), die bis dato lediglich in Forschungseinrichtungen etabliert war, zu einem der wichtigsten Verfahren in der klinischen Diagnostik. Allerdings erfordern nahezu alle bestehenden klinischen Anwendungsgebiete sowohl eine hohe räumliche als auch eine hohe zeitliche Auflösung für eine optimale Detektion und Klassifizierung von Krankheitsbildern. Der bisherige Ansatz, diesen zunehmenden Anforderungen an die klinische MRT gerecht zu werden, bestand vor allem in der stetigen Verbesserung von Gradientensystemen die mit immer höheren Gradientenstärken und schnelleren Schaltzeiten aufwarteten. Die technischen Fortschritte, sowie schnelle Bildgebungsmethoden erlaubten es, Messzeiten von etwa einer Stunde auf nur wenige Minuten oder sogar Sekunden zu reduzieren. Eine weitere Verkürzung der Experimentdauer mittels noch leistungsfähigeren Gradientensystemen ist jedoch technisch schwierig zu realisieren. Ausserdem gehen enorm hohe Entwicklungs und Materialkosten mit den erhöhten Anforderungen einher. Es kommt hinzu, dass noch stärkere Gradienten und noch schnellere Schaltzeiten zu peripheren Neurostimulationen und zur Überschreitung von zulässigen akustischen Grenzwerten führen können. Heutige Gradientensysteme arbeiten schon sehr nahe an den Grenzen der zulässigen Sicherheitsbestimmungen. Deshalb werden alternative Strategien benötigt, um weitere Messzeitverkürzungen realisieren zu können. Der bisher erfolgreichste Ansatz bestand in der Entwicklung von Mehr-Kanal-Spulen-Anordnungen und damit verknüpft der darauffolgenden Einführung der parallellen Bildgebung in den späten 90er Jahren. In den letzten 5 Jahren haben sich parallele Bildgebungsmethoden an den klinischen Tomographen etabliert und nahezu alle Herstellerfirmen stellen diese Technik kommerziell zur Verfügung. Die parallele Bildgebung ermöglicht eine Messzeitverkürzung, die prinzipiell auf jede bestehende Bildgebungsmethode angewendet werden kann, ohne dabei das Kontrastverhalten zu verändern und ohne höhere Gradientenleistung zu beanspruchen. In der parallellen Bildgebung übernimmt die Mehr-Kanal-Spulen-Anordnung teilwiese die Ortskodierung, die normalerweise durch zeitaufwendiges Schalten von Magnetfelgradienten erzeugt wird. Mit dieser Strategie kann bei gleicher Messzeit die örtliche Auflösung verbessert, oder bei gleicher Auflösung die Messzeit verkürzt werden. Ausserdem können mit hilfe der parallelen MRT in manchen Fällen Bildartefakte signifikant reduziert werden. Allerdings ist mit der parallelen Bildgebung immer ein Signal zu Rausch (SNR) Verlust verbunden, der diese Methode auf klinische Anwendungen begrenzt, die nicht bereits am SNR-Limit betrieben werden. Ausserdem muß die Spulenanordnung genug Sensitivitätsvariationen über das zu untersuchende Objekt bereitstellen, um ausreichende Kodierfunktion zu gewährleisten. Diese Dissertationsarbeit liefert einen Überblick über meine Forschungsarbeit zum Thema “Entwicklung und Anwendung von effizienten Strategien in der parallelen MRT”. Basierend auf bestehenden parallelen Akquisitions und Rekonstruktionstechniken, wie beispielsweise SENSE und GRAPPA, wurden neue Konzepte entwickelt und auf mögliche klinische Fragestellungen angewandt. KW - NMR-Bildgebung KW - Paralleler Prozess KW - Parallele Bildgebung KW - SENSE KW - GRAPPA KW - TGRAPPA KW - CAIPIRINHA KW - dynamische Bildgebung KW - Parallel imaging KW - SENSE KW - GRAPPA KW - TGRAPPA KW - CAIPIRINHA KW - dynamic imaging Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-20683 ER -