TY - THES A1 - Kudriashova, Liudmila T1 - Photoluminescence Reveals Charge Carrier Recombination in Organic and Hybrid Semiconductors T1 - Photolumineszenz zeigt die Rekombination der Ladungsträger in organischen und hybriden Halbleitern N2 - In this work, we elucidated recombination kinetics in organic and hybrid semiconductors by steady-state and time-resolved PL spectroscopy. Using these simple and very flexible experimental techniques, we probed the infrared emission from recombining free charge carriers in metal–halide perovskites, as well as the deep blue luminescence from intramolecular charge-transfer states in novel OLED emitters. We showed that similar state diagrams and kinetic models accurately describe the dynamics of excited species in these very different material systems. In Chapters 4 and 5, we focused on lead iodide perovskites (MAPI and FAPI), whose comparatively developed deposition techniques suited the systematic material research. In MAPI, we harnessed the anomalous dependence of transient PL on the laser repetition rate in order to investigate the role of interfaces with the commonly used charge-selective layers: PC60BM, spiro-MeOTAD, and P3HT. The film was deposited on a large precut substrate and separated into several parts, which were then covered with the charge-selective layers. Thereby, the same bulk perovskite structure was maintained for all samples. Consequently, we were able to isolate interface-affected and bulk carrier recombination. The first one dominated the fast component of PL decay up to 300 ns, whereas the last was assigned to the remaining slow component. The laser repetition rate significantly prolonged PL decay in MAPI with additional interfaces while shortening the charge carrier lifetime in the pristine film. We qualitatively explained this effect by a kinetic model that included radiative electron–hole recombination and nonradiative trap-assisted recombination. All in all, we showed that the apparent PL lifetime in MAPI is to large extend defined by the laser repetition rate and by the adjacent interfaces. Further, we studied photon recycling in MAPI and FAPI. We monitored how the microscopic PL transforms while propagating through the thin perovskite film. The emission was recorded within 5orders of magnitude in intensity up to 70μm away from the excitation spot. The Beer–Lambert law previously failed to describe the complex interplay of the intrinsic PL spectrum and the additional red-shifted peak. Therefore, we developed a general numerical model that accounts for self-absorption and diffusion of the secondary charge carriers. A simulation based on this model showed excellent agreement with the experimental spatially resolved PL maps. The proposed model can be applied to any perovskite film, because it uses easily measurable intrinsic PL spectrum and macroscopic absorption coefficient as seeding parameters. In Chapter 6, we conducted an extensive photophysical study of a novel compact deep blue OLED emitter, SBABz4, containing spiro-biacridine and benzonitrile units. We also considered its single-donor monomer counterpart, DMABz4, in order to highlight the structure–property relationships. Both compounds exhibited thermally activated delayed fluorescence (TADF), which was independently proven by oxygen quenching and temperature-dependent transient PL measurements. The spiro-linkage in the double-donor core of SBABz4 rendered its luminescence pure blue compared to the blue-green emission from the single-donor DMABz4. Thus, the core-donor provided desirable color tuning in the deep blue region, as opposed to the common TADF molecular design with core-acceptor. Using PL lifetimes and efficiencies, we predicted EQEmax = 7.1% for SBABz4-based OLED, whereas a real test device showed EQEmax = 6.8%. Transient PL was recorded from the solutions and solid films in the unprecedentedly broad dynamic range covering up to 6orders of magnitude in time and 8orders of magnitude in intensity. The stretched exponent was shown to fit the transient PL in the films very well, whereas PL decay in dilute solution was found purely exponential. When the emitter was embedded in the host matrix that prevented aggregation, its TADF properties were superior in comparison with the pure SBABz4 film. Finally, using temperature-dependent transient PL data, we calculated the TADF activation energy of 70 meV. To sum up, this Thesis contributes to the two fascinating topics of the last decade’s material research: perovskite absorbers for photovoltaics and TADF emitters for OLEDs. We were lucky to work with the emerging systems and tailor for them new models out of the well-known physical concepts. This was both exciting and challenging. In the end, science of novel materials is always a mess. We hope that we brought there a bit of clarity and light. N2 - Im Rahmen dieser Arbeit wurden Rekombinationsmechanismen in organischen und hybriden Halbleitern mittels statischer und zeitaufgelöster Photolumineszenz-Spektroskopie untersucht. Diese einfachen und flexiblen experimentellen Methoden erlaubten es, sowohl die infrarote Emission rekombinierender freier Ladungsträger in Perowskiten als auch die blaue Lumineszenz intramolekularer Ladungstransferzustände in neuartigen OLED-Emittern zu erforschen. Es wurde gezeigt, dass das Verhalten angeregter Ladungsträger in sehr unterschiedlichen Materialsystemen durch vergleichbare Zustandsdiagramme und kinetische Modelle beschrieben werden kann. Kapitel 4 und 5 legen den Fokus auf Bleiiodid-Perowskite (MAPI und FAPI), deren vergleichsweise etablierte Herstellungsmethode systematische Untersuchungen erlaubt. In MAPI wurde die anomale Abhängigkeit transienter PL von der Repetitionsrate des Lasers verwendet, um die Bedeutung der Grenzflächen zwischen Perowskitschicht und den gängigsten ladungsselektiven Schichten PC60BM, spiro-MeOTAD und P3HT zu untersuchen. Dafür wurde die Perowskitschicht auf ein Substrat aufgebracht, dieses in mehrere gleiche Stücke geteilt und anschließend mit einer jeweils unterschiedlichen ladungsselektiven Schicht bedeckt. Dies sicherte die Vergleichbarkeit der aktiven Schicht der verschiedenen Proben. Durch diesen Ansatz konnten der Einfluss des aktiven Materials als auch der seiner Grenzflächen auf die Ladungsträgerrekombination getrennt beobachtet werden. Ersterer dominierte den schnellen Anteil des PL-Abfalls, letzterer den langsamen Anteil. Die Repetitionsrate des Lasers verlangsamte den PL-Abfall in MAPI-Filmen mit zusätzlichen Grenzflächen signifikant, während sie die Lebensdauer der Ladungsträger in reinen MAPI- Filmen verkürzte. Dieser Effekt konnte durch ein qualitatives Modell erklärt werden, welches strahlende Elektron–Loch-Rekombination sowie nichtstrahlende Rekombination über Ladungsträgerfallen miteinbezieht. Insgesamt konnte gezeigt werden, dass die PL- Lebensdauer in MAPI stark von der Laserrepetitionsrate sowie von Grenzflächeneffekten abhängig ist. Des Weiteren wurde der Photon-Recycling-Effekt in MAPI und FAPI untersucht. Dafür wurde verfolgt, wie sich die lokale PL mit ihrer Ausbreitung durch den dünnen Perowskitfilm verändert. Die Emission konnte bis zu 70 μm entfernt von der Anregung gemessen werden, bei einer Abnahme der Intensität um fünf Größenordnungen. Mit reiner Anwendung des Lambert–Beer’sches Gesetzes konnte das auftretende komplexe Zusammenspiel des ursprünglichen Spektrums mit einer zusätzlichen rotverschobenen Emission nicht erklärt werden. Deshalb wurde ein allgemeines numerisches Modell entwickelt, das sowohl Selbstabsorption als auch die Diffusion sekundärer Ladungsträger berücksichtigt. Entsprechende Simulationen zeigten hervorragende Übereinstimmung mit räumlich aufgelösten experimentellen PL-Messungen. Das Modell kann auf jeden Perwoskitfilm angewendet werden, da die nötigen Parameter auf dem einfach messbaren intrinsischen PL- Spektrum und dem makroskopischen Absorptionskoeffizienten des jeweiligen Films beruhen. In Kapitel6 wird die umfangreiche photophysikalische Untersuchung eines neuartigen kompakten blauen OLED-Emitters, SBABz4, welcher Spiro-Biacridine und Benzonitril-Einheiten enthält, beschrieben. Auch sein Gegenstück DMABz4, als einfacher Donator, wurde betrachtet, um Zusammenhänge zwischen Struktur und Materialeigenschaften hervorzuheben. Beide Verbindungen zeigten thermisch-aktivierte verzögerte Fluoreszenz (TADF), welche unabhängig voneinander sowohl durch Sauerstoff- Fluoreszenzlöschung als auch durch temperaturabhängige transiente PL-Messungen nachgewiesen wurde. Die Spiro-Bindung im Inneren des zweifachen Donators SBABz4 führten zu einer, im Vergleich zur blaugrünen Emission des einfachen Donators DMABz4, reinen blauen Lumineszenz. Im Gegensatz zum Aufbau üblicher TADF-Molekülen mit zentralem Akzeptor, erlaubt in diesem Fall der zentrale Donator also die gewünschte Farbeinstellung im tiefblauen Bereich. Mit Hilfe von PL-Lebensdauern und -Effizienzen wurde eine EQEmax von 7.1% für SBABz4-basierte OLEDs abgeschätzt, während ein reales Testexemplar eine EQEmax von 6.8% aufzeigte. Transiente PL wurde für Lösungen sowie für feste Filme in einem beispiellos großen, dynamischen Bereich von sechs Größenordnungen in Zeit und acht Größenordnungen in Intensität aufgenommen. Die transiente PL der Filme lässt sich gut durch eine gestreckte Exponentialfunktion anpassen, während der PL-Abfall der Lösung rein exponentiell verläuft. Die Einbettung des Emitters in der Gast-Matrix, die Aggregieren verhinderte, führten zu gegenüber dem reinen SBABz4-Film überlegenen TADF- Eigenschaften. Zuletzt wurde die TADF Aktivierungsenergie von 70 meV unter alleiniger Verwendung der temperaturabhängigen transienten PL berechnet. Zusammengefasst steuert diese Doktorarbeit einen Beitrag zu zwei der faszinierendsten Themen der Materialforschung des letzten Jahrzehnts bei: Perowskitabsorbern für die Photovoltaik und TADF-Emittern für OLEDs. Diese Arbeit erlaubte es mit aufkommenden Systemen zu arbeiten und neue Modelle aus bekannten physikalischen Konzepten für sie zu entwickeln. Dies war sowohl spannend als auch anspruchsvoll. Letztlich ist Forschung an neuartigen Materialien immer ein großes Durcheinander. Hoffentlich konnte durch diese Arbeit jedoch ein wenig mehr Klarheit geschaffen werden. KW - Time-resolved photoluminescence KW - Charge carrier recombination KW - Organic and hybrid semiconductors KW - Photoluminescence Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-193437 ER - TY - THES A1 - Gabel, Judith T1 - Interface Engineering of Functional Oxides: A Photoemission Study T1 - Kontrollierte Manipulation der Grenzflächen in funktionellen oxidischen Heterostrukturen: Eine Photoemissionsstudie N2 - Due to their complex chemical structure transition metal oxides display many fascinating properties which conventional semiconductors lack. For this reason transition metal oxides hold a lot of promise for novel electronic functionalities. Just as in conventional semiconductor heterostructures, the interfaces between different materials play a key role in oxide electronics. The textbook example is the (001) interface between the band insulators LaAlO\(_3\) and SrTiO\(_3\) at which a two-dimensional electron system (2DES) forms. In order to utilize such a 2DES in prospective electronic devices, it is vital that the electronic properties of the interface can be controlled and manipulated at will. Employing photoelectron spectroscopy as well as electronic transport measurements, this thesis examines how such interface engineering can be realized in the case of the LaAlO\(_3\)/SrTiO\(_3\) heterostructure: By photoemission we manage to unambiguously distinguish the different mechanisms by which SrTiO\(_3\) can be doped with electrons. An electronic reconstruction is identified as the driving mechanism to render stoichiometric LaAlO\(_3\)/SrTiO\(_3\) interfaces metallic. The doping of the LaAlO\(_3\)/SrTiO\(_3\) heterointerface can furthermore be finely adjusted by changing the oxygen vacancy \(V_{\mathrm{O}}\) concentration in the heterostructure. Combining intense x-ray irradiation with oxygen dosing, we even achieve control over the \(V_{\mathrm{O}}\) concentration and, consequently, the doping in the photoemission experiment itself. Exploiting this method, we investigate how the band diagram of SrTiO\(_3\)-based heterostructures changes as a function of the \(V_{\mathrm{O}}\) concentration and temperature by hard x-ray photoemission spectroscopy. With the band bending in the SrTiO\(_3\) substrate changing as a function of the \(V_{\mathrm{O}}\) concentration, the interfacial band alignment is found to vary as well. The relative permittivity of the SrTiO\(_3\) substrate and, in particular, its dependence on temperature and electric field is identified as one of the essential parameters determining the electronic interface properties. That is also why the sample temperature affects the charge carrier distribution. The mobile charge carriers are shown to shift toward the SrTiO\(_3\) bulk when the sample temperature is lowered. This effect is, however, only pronounced if the total charge carrier concentration is small. At high charge carrier concentrations the charge carriers are always confined to the interface, independent of the sample temperature. The dependence of the electronic interface properties on the \(V_{\mathrm{O}}\) concentration is also investigated by a complementary method, viz. by electronic transport measurements. These experiments confirm that the mobile charge carrier concentration increases concomitantly to the \(V_{\mathrm{O}}\) concentration. The mobility of the charge carriers changes as well depending on the \(V_{\mathrm{O}}\) concentration. Comparing spectroscopy and transport results, we are able to draw conclusions about the processes limiting the mobility in electronic transport. We furthermore build a memristor device from our LaAlO\(_3\)/SrTiO\(_3\) heterostructures and demonstrate how interface engineering is used in practice in such novel electronic applications. This thesis furthermore investigates how the electronic structure of the 2DES is affected by the interface topology: We show that, akin to the (001) LaAlO\(_3\)/SrTiO\(_3\) heterointerface, an electronic reconstruction also renders the (111) interface between LaAlO\(_3\) and SrTiO\(_3\) metallic. The change in interface topology becomes evident in the Fermi surface of the buried 2DES which is probed by soft x-ray photoemission. Based on the asymmetry in the Fermi surface, we estimate the extension of the conductive layer in the (111)-oriented LaAlO\(_3\)/SrTiO\(_3\) heterostructure. The spectral function measured furthermore identifies the charge carriers at the interface as large polarons. N2 - Aufgrund ihrer komplexen chemischen Struktur weisen Übergangsmetalloxide viele faszinierende Eigenschaften auf, die konventionelle Halbleitermaterialien entbehren und die Potenzial für neuartige elektronische Funktionalitäten bergen. Genauso wie in konventionellen Halbleiterstrukturen kommt dabei den Grenzflächen zwischen den Materialien besondere Bedeutung zu. In der Oxid-Elektronik ist ein Paradebeispiel hierfür die (001)-Grenzfläche zwischen den Bandisolatoren LaAlO\(_3\) und SrTiO\(_3\), an der sich ein zweidimensionales Elektronensystem (2DES) ausbildet. Um solche Elektronensysteme zukünftig in elektronischen Anwendungen zu nutzen, ist es jedoch unabdingbar, dass die elektronischen Eigenschaften der Grenzfläche gezielt kontrolliert und manipuliert werden können. Mittels Photoelektronenspektroskopie sowie Transportmessungen untersucht diese Arbeit am Beispiel der LaAlO\(_3\)/SrTiO\(_3\)-Grenzfläche, wie eine derartige Kontrolle realisiert werden kann. Mithilfe von Photoemissionsexperimenten gelingt es, verschiedene Mechanismen zu unterscheiden, mit denen SrTiO\(_3\) dotiert werden kann. In stöchiometrischen LaAlO\(_3\)/SrTiO\(_3\)-Heterostrukturen kann so die elektronische Rekonstruktion als treibender Mechanismus identifiziert werden, der zur Ausbildung der leitfähigen Grenzschicht führt. Die Dotierung der LaAlO\(_3\)/SrTiO\(_3\)-Heterostruktur kann weiterhin auch durch die kontrollierte Erzeugung von Sauerstofffehlstellen \(V_{\mathrm{O}}\) gezielt gesteuert werden. Die \(V_{\mathrm{O}}\)-Konzentration kann sogar während der Photoemissionsexperimente zielgerichtet variiert werden, wenn die Bestrahlung mit intensivem Röntgenlicht mit einer Sauerstoffbehandlung kombiniert wird. Diese Methode nutzen wir in Folge aus, um in Photoemissionsmessungen mit harter Röntgenstrahlung systematisch zu untersuchen, wie sich das Banddiagramm von SrTiO\(_3\)-basierten Heterostrukturen als Funktion der \(V_{\mathrm{O}}\)-Konzentration und Temperatur ändert. Wir zeigen, dass sich parallel zur Bandverbiegung im SrTiO\(_3\)-Substrat auch die Bandanordnung an der Grenzfläche als Funktion der \(V_{\mathrm{O}}\)-Konzentration ändert. Dabei stellt sich heraus, dass die dielektrische Funktion des SrTiO\(_3\)-Substrats - insbesondere durch ihre starke Abhängigkeit vom elektrischen Feld und Temperatur - maßgeblich die elektronischen Eigenschaften der Grenzfläche bestimmt. Aus diesem Grund hat die Temperatur der Probe Einfluss auf die Ladungsträgerverteilung. Die mobilen Ladungsträger verschieben sich weg von der Grenzfläche tiefer in das Substrat, je niedriger die Temperatur gewählt wird. Dieser Effekt ist jedoch nur bei niedriger Dotierung zu beobachten. Bei hoher Dotierung ist das zweidimensionale Elektronensystem unabhängig von der Temperatur nahe der Grenzfläche lokalisiert. Die Abhängigkeit der elektronischen Eigenschaften von der \(V_{\mathrm{O}}\)-Konzentration wird auch komplementär im elektronischen Transport untersucht. Auch hier steigt die Ladungsträgerdichte simultan zur \(V_{\mathrm{O}}\)-Konzentration. Zugleich ändert sich auch die Mobilität der Ladungsträger. Der direkte Vergleich von Spektroskopie- und Transportmessungen erlaubt Rückschlüsse auf die Prozesse, die die Ladungsträgermobilität begrenzen. Am Beispiel eines LaAlO\(_3\)/SrTiO\(_3\)-basierten Memristors wird darüber hinaus praktisch demonstriert, wie die Kontrolle über die Grenzfläche in neuartigen elektronischen Anwendungen tatsächlich eingesetzt werden kann. Ferner untersucht diese Arbeit, wie die Topologie der Grenzfläche die elektronische Struktur des 2DES beeinflusst: Wir weisen nach, dass analog zur (001)-Grenzfläche auch die (111)-Grenzfläche zwischen LaAlO\(_3\) und SrTiO\(_3\) durch eine elektronische Rekonstruktion dotiert wird. Die Änderung in der Grenzflächentopologie zeigt sich deutlich in der Fermifläche des vergrabenen 2DES, die mittels resonanter Photoemission untersucht wird. Anhand der Asymmetrie der Fermifläche wird überdies die Ausdehnung des Elektronensystems abgeschätzt, wohingegen die Spektralfunktion Hinweise auf die Elektron-Phonon-Kopplung an der Grenzfläche liefert. KW - Übergangsmetalloxide KW - Grenzfläche KW - Strontiumtitanat KW - Heterostruktur KW - Röntgen-Photoelektronenspektroskopie KW - oxide heterostructure KW - interface conductivity KW - oxygen vacancies KW - LaAlO3/SrTiO3 KW - hard x-ray photoemission KW - soft x-ray photoemission Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-192275 ER - TY - THES A1 - Groß, Heiko T1 - Controlling Light-Matter Interaction between Localized Surface Plasmons and Quantum Emitters T1 - Kontrollierte Licht-Materie Wechselwirkung zwischen lokalisierten Oberflächenplasmonen und Quantenemittern N2 - Metal nanostructures have been known for a long time to exhibit optical resonances via localized surface plasmons. The high electric fields in close proximity to the metal surface have prospects to dramatically change the dynamics of electronic transitions, such as an enhanced spontaneous decay rate of a single emitter. However, there have been two major issues which impede advances in the experimental realization of enhanced light-matter interaction. (i) The fabrication of high-quality resonant structures requires state-of-the-art patterning techniques in combination with superior materials. (ii) The tiny extension of the optical near-field requires precise control of the single emitter with respect to the nanostructure. This work demonstrates a solution to these problems by combining scanning probe and optical confocal microscopy. Here, a novel type of scanning probe is introduced which features a tip composed of the edge of a single crystalline gold sheet. The patterning via focused ion beam milling makes it possible to introduce a plasmonic nanoresonator directly at the apex of the tip. Numerical simulations demonstrate that the optical properties of this kind of scanning probe are ideal to analyze light-matter interaction. Detailed experimental studies investigate the coupling mechanism between a localized plasmon and single colloidal quantum dots by dynamically changing coupling strength via their spatial separation. The results have shown that weak interaction affects the shape of the fluorescence spectrum as well as the polarization. For the best probes it has been found that it is possible to reach the strong coupling regime at the single emitter level at room temperature. The resulting analysis of the experimental data and the proposed theoretical models has revealed the differences between the established far-field coupling and near-field coupling. It has been found that the broad bandwidth of plasmonic resonances are able to establish coherent coupling to multiple transitions simultaneously giving rise to an enhanced effective coupling strength. It has also been found that the current model to numerically calculate the effective mode volume is inaccurate in case of mesoscopic emitters and strong coupling. Finally, light-matter interaction is investigated by the means of a quantum-dot-decorated microtubule which is traversing a localized nearfield by gliding on kinesin proteins. This biological transport mechanism allows the parallel probing of a meta-surface with nm-precision. The results that have been put forward throughout this work have shed new light on the understanding of plasmonic light-matter interaction and might trigger ideas on how to more efficiently combine the power of localized electric fields and novel excitonic materials. N2 - Metallische Nanostrukturen sind seit langer Zeit bekannt dafür optische Resonanzen durch lokalisierte Oberflächenplasmonen zu zeigen. Hohe elektrische Felder in direkter Nähe zur Metalloberfläche versprechen dramatische Dynamikänderungen von elektrischen Übergängen wie z.B. die gesteigerte spontane Zerfallsrate eines Einzelemitters. Es gibt jedoch zwei maßgebliche Gründe warum die Fortschritte der experimentellen Realisierung von Licht-Materie Wechselwirkung ausgebremst wird. (i) Die Herstellung von qualitativ hochwertigen resonanten Strukturen benötigt modernste Strukturierungsmethoden sowie die bestmöglichen Materialeigenschaften. (ii) Die winzigen Dimensionen von optischen Nahfeldern erfordern eine präzise Kontrolle des Einzelemitters im Bezug zur Nanostruktur. Diese Arbeit löst diese Probleme durch die Kombination eines Rasterkraftmikroskops mit einem optischen Konfokalmikroskop. Dabei wird eine neuartige Rastersonde vorgestellt welche eine Spitze aufweist die aus der Ecke einer monokristallinen Goldflocke besteht. Die Strukturierung mittels eines fokussierten Ionenstrahls ermöglicht es einen plasmonischen Nanoresonator direkt an der Spitze der Sonde herzustellen. Numerische Simulationen haben gezeigt, dass die optischen Eigenschaften für diese Art von Sonde ideal sind um Licht-Materie Wechselwirkung zu untersuchen. Die hier gezeigten experimentellen Studien haben den Kopplungsmechanismus zwischen lokalisierten Plasmonen und einzelnen kolloidalen Quantenpunkten untersucht indem die Kopplungstärke dynamisch über den Abstand kontrolliert wurde. Die Ergebnisse haben gezeigt, dass schwache Wechselwirkung einen Einfluss auf die Form des Fluoreszenzspektrums als auch auf die Polarisation hat. Die besten Sonden haben gezeigt, dass es möglich ist starke Wechselwirkung mit Einzelemittern bei Raumtemperatur zu erreichen. Die resultierende Analyse der experimentellen Daten und die aufgestellten theoretischen Modelle haben die Unterschiede zwischen der etablierten Fernfeldkopplung und der Nahfeldkopplung aufgezeigt. Dabei wurde beobachtet, dass die große Bandbreite von plasmonischen Resonanzen es möglich macht kohärent mit mehreren Übergängen gleichzeitig zu koppeln und dabei die effektive Kopplungsstärke zu höhen. Es wurde auch festgestellt, dass das aktuelle Model zur numerischen Beschreibung von effektiven Modenvolumen Ungenauigkeiten bei mesoskopischen Emittern und starker Wechselwirkung aufzeigt. Zuletzt wird die Licht-Materie Wechselwirkung mittels Quantenpunkt-bestückten Mikrotubuli untersucht, die auf Kinesin Proteinen durch ein lokalisiertes Nahfeld gleiten. Dieses biologische Transportsystem erlaubt es eine Meta-Oberfläche mit nm-Präzision parallel zu untersuchen. Die Ergebnisse, die diese Arbeit hervorgebracht hat, wirft neues Licht auf das Verständnis von plasmonischer Licht-Materie Wechselwirkung und könnte als Grundlage dienen neue Ideen zu entwickeln um effizienter die Stärke von lokalisierten elektrischen Felder und neuartiger exzitonischer Materialien zu kombinieren. KW - Plasmon KW - Starke Kopplung KW - Quantenpunkt KW - Mikrotubulus KW - Nahfeldoptik KW - light-matter interaction KW - quantum optics KW - optical antenna KW - quantum dot KW - surface plasmon KW - strong coupling Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-192097 ER - TY - THES A1 - Knebl, Georg T1 - Epitaktisches Wachstum und Transportuntersuchung topologisch isolierender Materialien: GaSb/InAs Doppelquantenfilme und Bi\(_2\)Se\(_3\) Nanostrukturen T1 - Epitaxial growth and transport characterisation of topolological insulating materials: GaSb/InAs double quantum wells and Bi\(_2\)Se\(_3\) nanostructures N2 - Topologische Isolatoren gehören zu einer Klasse von Materialien, an deren Realisation im Rahmen der zweiten quantenmechanischen Revolution gearbeitet wird. Einerseits sind zahlreiche Fragestellungen zu diesen Materialen und deren Nutzbarmachung noch nicht beantwortet, andererseits treiben vielversprechende Anwendungen im Feld der Quantencomputer und Spintronik die Lösung dieser Fragen voran. Topologische Rand- bzw. Oberflächenzustände wurden für unterschiedlichste Materialien und Strukturen theoretisch vorhergesagt, so auch für GaSb/InAs Doppelquantenfilme und Bi2Se3. Trotz intensiver Forschungsarbeiten und großer Fortschritte bedürfen viele Prozesse v. a. im Bereich der Probenherstellung und Verarbeitung noch der Optimierung. Die vorliegende Arbeit präsentiert Ergebnisse zur Molekularstahlepitaxie, zur Probenfertigung sowie zu elektro-optisch modulierter Transportuntersuchung von GaSb/InAs Doppelquantenfilmen und der epitaktischen Fertigung von Bi2Se3 Nanostrukturen. Im ersten Teil dieser Arbeit werden die Parameter zur Molekularstrahlepitaxie sowie die Anpassung der Probenfertigung von GaSb/InAs Doppelquantenfilmen an material- und untersuchungsbedingte Notwendigkeiten beschrieben. Dieser verbesserte Prozess ermöglicht die Fertigung quantitativ vergleichbarer Probenserien. Anschließend werden Ergebnisse für Strukturen mit variabler InAs Schichtdicke unter elektrostatischer Kontrolle mit einem Frontgate präsentiert. Auch mit verbessertem Prozess zeigten sich Leckströme zum Substrat. Diese erschweren eine elektrostatische Kontrolle über Backgates. Die erstmals durch optische Anregung präsentierte Manipulation der Ladungsträgerart sowie des Phasenzustandes in GaSb/InAs Doppelquantenfilmen bietet eine Alternative zu problembehafteten elektrostatisch betriebenen Gates. Im zweiten Teil wird die epitaktische Herstellung von Bi2Se3 Nanostrukturen gezeigt. Mit dem Ziel, Vorteile aus dem erhöhten Oberfläche-zu-Volumen Verhältnis zu ziehen, wurden im Rahmen dieser Arbeit erstmals Bi2Se3 Nanodrähte und -flocken mittels Molekularstrahlepitaxie für die Verwendung als topologischer Isolator hergestellt. Ein Quantensprung – Kapitel 1 führt über die umgangssprachliche Wortbedeutung des Quantensprungs und des damit verbundenen Modells der Quantenmechanik in das Thema. Die Anwendung dieses Modells auf Quanten-Ensembles und dessen technische Realisation wird heute als erste Quantenmechanische Revolution bezeichnet und ist aus unserem Alltag nicht mehr wegzudenken. Im Rahmen der zweiten Quantenmechanischen Revolution soll nun die Anwendung auf einzelne Zustände realisiert und technisch nutzbar gemacht werden. Hierbei sind topologische Isolatoren ein vielversprechender Baustein. Es werden das Konzept des topologischen Isolators sowie die Eigenschaften der beiden in dieser Arbeit betrachteten Systeme beschrieben: GaSb/InAs Doppelquantenfilme und Bi2Se3 Nanostrukturen. GaSb/InAs Doppelquantenfilme Kapitel 2 beschreibt die notwendigen physikalischen und technischen Grundlagen. Ausgehend von der Entdeckung des Hall-Effekts 1879 werden die Quanten-Hall-Effekte eingeführt. Quanten-Spin-Hall-Isolatoren oder allgemeiner topologische Isolatoren sind Materialien mit einem isolierenden Inneren, weisen an der Oberfläche aber topologisch geschützte Zustände auf. Doppelquantenfilme aus GaSb/InAs, die in AlSb gebettet werden, weisen – abhängig vom Aufbau der Heterostruktur – eine typische invertierte Bandstruktur auf und sind ein vielversprechender Kandidat für die Nutzbarmachung der topologischen Isolatoren. GaSb, InAs und AlSb gehören zur 6,1 Ångström-Familie, welche für ihre opto-elektronischen Eigenschaften bekannt ist und häufig verwendet wird. Die Eigenschaften sowie die technologischen Grundlagen der epitaktischen Fertigung von Heterostrukturen aus den Materialien der 6,1 Ångström-Familie mittels Molekularstrahlepitaxie werden besprochen. Abschließend folgen die Charakterisierungs- und Messmethoden. Ein Überblick über die Literatur zu GaSb/InAs Doppelquantenfilmen in Bezug auf topologische Isolatoren rundet dieses Kapitel ab. Zu Beginn dieser Arbeit stellten Kurzschlusskanäle eine Herausforderung für die Detektion der topologischen Randkanäle dar. Kapitel 3 behandelt Lösungsansätze hierfür und beschreibt die Verbesserung der Herstellung von GaSb/InAs Doppelquantenfilm-Strukturen mit Blick auf die zukünftige Realisation topologischer Randkanäle. In Abschnitt 3.1 werden numerische Simulationen präsentiert, die sich mit der Inversion der elektronischen Niveaus in Abhängigkeit der GaSb und InAs Schichtdicken dGaSb und dInAs beschäftigen. Ein geeigneter Schichtaufbau für Strukturen mit invertierter Bandordnung liegt im Parameterraum von 8 nm ≾ dInAs ≾ 12 nm und 8 nm ≾ dGaSb ≾ 10 nm. Abschnitt 3.2 beschreibt die epitaktische Herstellung von GaSb/InAs Doppelquantenfilmen mittels Molekularstrahlepitaxie. Die Fertigung eines GaSb Quasisubstrats auf ein GaAs Substrat wird präsentiert und anschließend der Wechsel auf native GaSb Substrate mit einer reduzierten Defektdichte sowie reproduzierbar hoher Probenqualität begründet. Ein Wechseln von binärem AlSb auf gitterangepasstes AlAsSb erlaubt die Verwendung dickerer Barrieren. Versuche, eine hinlängliche Isolation des Backgates durch das Einbringen einer dickeren unteren Barriere zu erreichen, werden in diesem Abschnitt diskutiert. In Abschnitt 3.3 wird die Optimierung der Probenprozessierung gezeigt. Die Kombination zweier angepasster Ätzprozesse – eines trockenchemischen und eines sukzessive folgenden nasschemischen Schrittes – liefert zusammen mit der Entfernung von Oberflächenoxiden reproduzierbar gute Ergebnisse. Ein materialselektiver Ätzprozess mit darauffolgender direkter Kontaktierung des InAs Quantenfilmes liefert gute Kontaktwiderstände, ohne Kurzschlusskanäle zu erzeugen. Abschnitt 3.4 gibt einen kompakten Überblick, über den im weiteren Verlauf der Arbeit verwendeten „best practice“ Prozess. Mit diesem verbesserten Prozess wurden Proben mit variabler InAs Schichtdicke gefertigt und bei 4,2 K auf ihre Transporteigenschaften hin untersucht. Dies ist in Kapitel 4 präsentiert und diskutiert. Abschnitt 4.1 beschreibt die Serie aus drei Proben mit GaSb/InAs Doppelquantenfilm in AlSb Matrix mit einer variablen InAs Schichtdicke. Die InAs Schichtdicke wurde über numerische Simulationen so gewählt, dass je eine Probe im trivialen Regime, eine im invertierten Regime und eine am Übergang liegt. Gezeigt werden in Kapitel 4.2 Magnetotransportmessungen für konstante Frontgatespannungen sowie Messungen mit konstantem Magnetfeld gegen die Frontgatespannung. Die Messungen bestätigen eine Fertigung quantitativ vergleichbarer Proben, zeigen aber auch, dass keine der Proben im topologischen Regime liegt. Hierfür kommen mehrere Ursachen in Betracht: Eine Überschätzung der Hybridisierung durch die numerische Simulation, zu geringe InAs Schichtdicken in der Fertigung oder ein asymmetrisches Verschieben mit nur einem Gate (Kapitel 4.3). Zur Reduktion der Volumenleitfähigkeit wurden Al-haltigen Schichten am GaSb/InAs Übergang eingebracht. Die erwartete Widerstandssteigerung konnte in ersten Versuchen nicht gezeigt werde. Die in Kapitel 5 gezeigte optische Manipulation des dominanten Ladungsträgertyps der InAs/GaSb-Doppelquantentöpfe gibt eine zusätzliche Kontrollmöglichkeit im Phasendiagramm. Optische Anregung ermöglicht den Wechsel der Majoritätsladungsträger von Elektronen zu Löchern. Dabei wird ein Regime durchlaufen, in dem beide Ladungsträger koexistieren. Dies weist stark auf eine Elektron-Loch-Hybridisierung mit nichttrivialer topologischer Phase hin. Dabei spielen zwei unterschiedliche physikalische Prozesse eine Rolle, die analog eines Frontgates bzw. eines Backgates wirken. Der Frontgate Effekt beruht auf der negativ persistenten Photoleitfähigkeit, der Backgate Effekt fußt auf der Akkumulation von Elektronen auf der Substratseite. Das hier gezeigte optisch kontrollierte Verschieben der Zustände belegt die Realisation von opto-elektronischem Schalten zwischen unterschiedlichen topologischen Phasen. Dies zeigt die Möglichkeit einer optischen Kontrolle des Phasendiagramms der topologischen Zustände in GaSb/InAs Doppelquantenfilmen. In Abschnitt 5.1 wird die optische Verstimmung von GaSb/InAs Quantenfilmen gezeigt und erklärt. Sie wird in Abhängigkeit von der Temperatur, der Anregungswellenlänge sowie der Anregungsintensität untersucht. Kontrollversuche an Proben mit einem unterschiedlichen Strukturaufbau zeigen, dass das Vorhandensein eines Übergitters auf der Substratseite der Quantenfilmstruktur essentiell für die Entstehung der Backgate-Wirkung ist (Abschnitt 5.2). Abschließend werden in Abschnitt 5.3 die Erkenntnisse zur optischen Kontrolle zusammengefasst und deren Möglichkeiten, wie optisch definierte topologischen Phasen-Grenzflächen, diskutiert. Bi2Se3 Nanostrukturen Mit Blick auf die Vorteile eines erhöhten Oberfläche-zu-Volumen Verhältnisses ist die Verwendung von Nanostrukturen für das Anwendungsgebiet der dreidimensionalen topologischen Isolatoren effizient. Mit dem Ziel, diesen Effekt für die Realisation des topologischen Isolators in Bi2Se3 auszunutzen, wurde im Rahmen dieser Arbeit erstmalig das Wachstum von Bi2Se3 Nanodrähten und -flocken mit Molekularstrahlepitaxie realisiert. In Kapitel 6 werden technische und physikalische Grundlagen hierzu erläutert (Abschnitt 6.1). Ausgehend von einer Einführung in dreidimensionale topologische Isolatoren werden die Eigenschaften des topologischen Zustandes in Bi2Se3 gezeigt. Darauf folgen die Kristalleigenschaften von Bi2Se3 sowie die Erklärung des epitaktischen Wachstums von Nanostrukturen mit Molekularstrahlepitaxie. In Abschnitt 6.2 schließt sich die Beschreibung der epitaktischen Herstellung an. Die Kristallstruktur wurde mittels hochauflösender Röntgendiffraktometrie und Transmissionselektronenmikroskopie als Bi2Se3 identifiziert. Rasterelektronenmikroskopie-Aufnahmen zeigen Nanodrähte und Nanoflocken auf mit Gold vorbehandelten bzw. nicht mit Gold vorbehandelten Proben. Der Wachstumsmechanismus für Nanodrähte kann nicht zweifelsfrei definiert werden. Das Fehlen von Goldtröpfchen an der Drahtspitze legt einen wurzelbasierten Wachstumsmechanismus nahe (Abschnitt 6.3). N2 - Topological insulators are among the concepts being worked on in the second quantum mechanical revolution. On the one hand, numerous questions on these materials and their utilization have not yet been answered; on the other hand, promising applications in the field of quantum computing and spintronics are driving the solution of these questions. Topological edge and surface states have been predicted theoretically for a wide variety of materials and structures, including GaSb/InAs double quantum wells and Bi2Se3. Despite intensive research and great progress, many processes, especially in the field of sample preparation and processing, still require optimization. This thesis presents detailed studies on growth, fabrication and electro-optically modulated transport analysis of GaSb/InAs double quantum films as well as the epitaxial fabrication of Bi2Se3 nanostructures. In the first part of this thesis, the parameters for molecular beam epitaxy and sample preparation for GaSb/InAs double quantum films are described. The protocols for sample preparation have been adapted to the necessities of the material and experimental requirements. The achieved reproducibility of the presented process enables the production of quantitatively comparable sample series. Subsequently, results for structures with variable InAs layer thickness under electrostatic control with a front gate are presented. Despite of an improved process, leakage currents to the substrate were still observed. These hinder electrostatic control via back gates. The manipulation of the charge carrier type and the phase state in GaSb/InAs double quantum films are presented for the first time by optical excitation and offer an alternative to problematic electrostatically operated gates. The second part shows the epitaxial production of Bi2Se3 nanostructures. The increased surface-to-volume ratio of nanostructures is advantageous to supress the bulk conductivity in reference to surface conduction. Here, the molecular beam epitaxy of Bi2Se3 nanowires and flakes is shown for the first time. Chapter 1 introduces the topic of quantum technology, and in particular protected quantum (edge) states, starting with the proverb “Quantum Leap” (german “Quantensprung”). The application of quantum mechanics to quantum ensembles and its technical realization nowadays is called the first quantum mechanical revolution and is an indispensable part of our everyday life. Within the framework of the second quantum mechanical revolution, the application to individual states is now to be realized and made technically usable. Here topological insulators are a promising building block. The concept of the topological insulator as well as the properties of the two systems considered in this thesis are briefly described: GaSb/InAs double quantum films and Bi2Se3 nanostructures. GaSb/InAs double quantum films Chapter 2 describes the physical and technical basics of topological insulators as well as methods used for fabrication and analysis. Starting with the discovery of the Hall effect in 1879, the quantum Hall effects are introduced. Quantum spin Hall insulators or general topological insulators are materials with an insulating bulk but have topologically protected states at the surface. Double quantum films of GaSb/InAs embedded in AlSb matrix show – depending on the structure of the heterostructure – a typical inverted band structure and are a promising candidate for the utilization of topological insulators. GaSb, InAs and AlSb belong to the 6.1 Ångstrom family, which is known for its opto-electronic properties and is frequently used. The properties as well as the technological basics of epitaxial fabrication of heterostructures from the materials of the 6.1 Ångstrom family by molecular beam epitaxy are reviewed. Finally, the characterization and measurement methods are shown. At the beginning of the work leading up to this thesis, various short circuit channels hindered the detection of topological edge channels. Chapter 3 deals with possible solutions and describes the improvement of the fabrication of GaSb/InAs double quantum film structures with regard to the future realization of topological edge channels. In section 3.1 numerical simulations are presented. The inversion of the electronic level is calculated as a function of GaSb and InAs layer thicknesses dGaSb and dInAs. A suitable layer structure for structures with inverted band order lies within the parameter space of 8 nm ≾ dInAs ≾ 12 nm and 8 nm ≾ dGaSb ≾ 10 nm. Section 3.2 describes the epitaxial production of GaSb/InAs double quantum films by molecular beam epitaxy. The production of a GaSb quasi-substrate on a GaAs substrate is presented. Subsequently, the change to native GaSb substrates is motivated with a reduced defect density as well as reproducibly high sample quality. Changing from binary AlSb to lattice-matched AlAsSb allows the use of thicker barriers. Attempts to achieve sufficient isolation of the back gate by introducing a thicker lower barrier are discussed in this section. Section 3.3 shows the optimization of sample processing. The combination of two adapted etching processes – a dry chemical and a successive wet chemical step – in combination with the removal of surface oxides provide reproducible good results. A material selective etching process with subsequent direct contacting of the InAs quantum film provides good contact resistance without creating short circuit channels. Section 3.4 gives a compact overview of the "best practice" process used in the further course of this thesis. With this improved process, samples with variable InAs layer thickness were produced and examined at 4.2 K regarding their transport properties. This is presented and discussed in chapter 4. Section 4.1 describes a series of three samples with GaSb/InAs double quantum films in AlSb matrix with a variable InAs layer thickness. The InAs layer thickness was selected by numerical simulations in such a way that one sample is in the trivial regime, one in the inverted regime and one at the transition point. In section 4.2 magneto-transport measurements for constant front gate voltage and measurements with constant magnetic field versus the front gate voltage are shown. The measurements confirm a production of quantitatively comparable samples, but also show that none of the samples are in the topological regime. This might be explained by several possible reasons: an overestimation of hybridization by numerical simulation, insufficient InAs layer thicknesses in production or asymmetric shifting with only one gate (section 4.3). To reduce the volume conductivity, Al-containing layers were introduced at the GaSb/InAs transition. The expected increase in resistance could not be shown in first experiments. The optical manipulation of the dominant charge carrier type of the InAs/GaSb double quantum wells shown in chapter 5 provides an additional possibility of control in the phase diagram. Optical excitation allows the change of the majority charge carriers from electrons to holes. The transition involves a regime in which both charge carriers coexist. This strongly suggests electron-hole hybridization with a non-trivial topological phase. Here, two different physical processes play a role, which act analogously to a front gate or a back gate. The front gate effect is based on the negative persistent photoconductivity, the back-gate effect is based on the accumulation of electrons on the substrate side. The optically controlled shifting of the states shown here proves the realization of opto-electronic switching between different topological phases. This shows the possibility of an optical control of the phase diagram of the topological states in GaSb/InAs double quantum films. Section 5.1 displays and explains the optical detuning of GaSb/InAs quantum films. It is investigated as a function of temperature, excitation wavelength and excitation intensity. Control experiments on samples with a different structure show that the presence of a superlattice on the substrate side of the quantum film structure is essential for the formation of the back-gate effect (section 5.2). Finally, Section 5.3 summarizes the findings on optical control and discusses its possibilities for optical defined interfaces between topological phases in this system. Bi2Se3 Nanostructures Due to the increased surface-to-volume ratio, it is beneficial to use nanostructures for the application of three-dimensional Tis. With the aim to exploit this effect for the realization of a Bi2Se3 topological insulator, the growth of Bi2Se3 nanowires and flakes with molecular beam epitaxy was first realized in the context of this work. Chapter 6 explains the technical and physical basics (Section 6.1). Starting from an introduction to three-dimensional topological isolators, the properties of the topological state in Bi2Se3 are shown. This is followed by the crystal properties of Bi2Se3 and the explanation of the epitaxial growth of nanostructures with molecular beam epitaxy. Section 6.2 describes the epitaxial production. The crystal structure was identified as Bi2Se3 by high-resolution X-ray diffraction and transmission electron microscopy. Scanning electron microscopy images show nanowires and nanoflakes on samples that were either pre-treated with gold or not pre-treated with gold. While the growth mechanism for the nanowires cannot be defined beyond doubt, the absence of gold droplets at the wire tip suggests a root-catalysed growth mechanism (section 6.3). KW - GaSb/InAs KW - Bi2Se3 KW - Quantenfilm KW - Quantum well KW - Molekularstrahlepitaxie KW - molecular beam epitaxy KW - nano structure KW - Nanostruktur KW - topological insulator KW - Topologischer Isolator Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-191471 ER - TY - THES A1 - Lykowsky, Gunthard T1 - Hardware- und Methodenentwicklung für die 23Na- und 19F-Magnetresonanztomographie T1 - Hardware and method development for 23Na and 19F magnetic resonance imaging N2 - Neben dem Wasserstoffkern 1H können auch andere Kerne für die Magnetresonanztomographie (MRT) genutzt werden. Diese sogenannten X-Kerne können komplementäre Informationen zur klassischen 1H-MRT liefern und so das Anwendungsspektrum der MRT erweitern. Die Herausforderung bei der X-Kern-Bildgebung liegt zum großen Teil in dem intrinsisch niedrigen Signal-zu-Rauschen-Verhältnis (SNR), aber auch in den spezifischen Kerneigenschaften. Um X-Kern-Bildgebung optimal betreiben zu können, müssen daher Sende-/Empfangsspulen, Messsequenzen und -methoden auf den jeweiligen Kern angepasst werden. Im Fokus dieser Dissertation standen die beiden Kerne Natrium (23Na) und Fluor (19F), für die optimierte Hardware und Methoden entwickelt wurden. 23Na spielte in dieser Arbeit vor allem wegen seiner Funktion als Biomarker für Arthrose, einer degenerativen Gelenkserkrankung, eine Rolle. Hierbei ist insbesondere die quantitative Natriumbildgebung von Bedeutung, da sich mit ihr der Knorpelzustand auch im Zeitverlauf charakterisieren lässt. Für die quantitative Messung mittels MRT ist die Kenntnis des B1-Feldes der eingesetzten MR-Spule entscheidend, denn dieses kann die relative Signalintensität stark beeinflussen und so zu Fehlern in der Quantifizierung führen. Daher wurde eine Methode zur Bestimmung des B1-Feldes untersucht und entwickelt. Dies stellte aufgrund des niedrigen SNR und der kurzen sowie biexponentiellen T2-Relaxationszeit von 23Na eine Herausforderung dar. Mit einer retrospektiven Korrekturmethode konnte eine genaue und zugleich schnelle Korrekturmethode gefunden werden. Für die 1H- und 23Na-Bildgebung am menschlichen Knieknorpel wurden zwei praxistaugliche, doppelresonante Quadratur-Birdcage-Resonatoren entwickelt, gebaut und charakterisiert. Der Vergleich der beiden Spulen bezüglich Sensitivität und Feldhomogenität zeigte, dass der Vier-Ring-Birdcage dem Alternating-Rungs-Birdcage für den vorliegenden Anwendungsfall überlegen ist. Die in vivo erzielte Auflösung und das SNR der 23Na-Bilder waren bei beiden Spulen für die Quantifizierung der Natriumkonzentration im Knieknorpel ausreichend. Hochauflösende anatomische 1H-Bilder konnten ohne Mittelungen aufgenommen werden. In einer umfangreichen Multiparameter-MR-Tierstudie an Ziegen wurde der Verlauf einer chirurgisch induzierten Arthrose mittels 23Na- und 1H-Bildgebungsmethoden untersucht. Hierbei kamen dGEMRIC, T1ρ-Messung und quantitative Natrium-MRT zum Einsatz. Trotz des im Vergleich zum Menschen dünneren Ziegenknorpels, der niedrigen Feldstärke von 1,5 T und den auftretenden Ödemen konnten erstmals diese MR-Parameter über den Studienverlauf hinweg an den gleichen Versuchstieren und zu den gleichen Zeitpunkten ermittelt werden. Die Ergebnisse wurden verglichen und die ermittelten Korrelationen entsprechen den zugrundeliegenden biochemischen Mechanismen. Die im Rahmen dieser Studie entwickelten Methoden, Bildgebungsprotokolle und Auswertungen lassen sich auf zukünftige Humanstudien übertragen. Die mit klinischen Bildgebungssequenzen nicht zugängliche kurze Komponente der biexponentiellen T2*-Relaxationszeit von 23Na konnte mittels einer radialen Ultra-Short-Echo-Time-Sequenz bestimmt werden. Hierzu wurde eine Multi-Echo-Sequenz mit einem quasizufälligen Abtastschema kombiniert. Hierdurch gelang es, die kurze und lange T2*-Komponente des patellaren Knorpels in vivo zu bestimmen. 19F wird in der MRT wegen seiner hohen relativen Sensitivität und seines minimalen, körpereigenen Hintergrundsignals als Marker eingesetzt. Zur Detektion der niedrigen in-vivo-Konzentrationen der Markersubstanzen werden hochsensitive Messspulen benötigt. Für die 19F-Bildgebung an Mäusen wurde eine Birdcage-Volumenspule entwickelt, die sowohl für 19F als auch 1H in Quadratur betrieben werden kann, ohne Kompromisse in Sensitivität oder Feldhomogenität gegenüber einer monoresonanten Spule eingehen zu müssen. Dies gelang durch eine verschiebbare Hochfrequenzabschirmung, mit der die Resonanzfrequenz des Birdcage verändert werden kann. Es konnte weiterhin gezeigt werden, dass die Feldverteilungen bei 1H und 19F im Rahmen der Messgenauigkeit identisch sind und so der 1H-Kanal für die Pulskalibrierung und die Erstellung von B1-Karten für die 19F-Bildgebung genutzt werden kann. Hierdurch kann die Messzeit deutlich reduziert werden. Ein grundsätzliches Problemfeld stellt die Korrelation unterschiedlicher Bildgebungsmodalitäten dar. In der MRT betrifft das häufig die Korrelation von in-/ex-vivo-MR-Daten und den dazugehörigen Lichtbildaufnahmen an histologischen Schnitten. In dieser Arbeit wurde erstmals erfolgreich eine 1H- und 19F-MR-Messung an einem histologischen Schnitt vorgenommen. Durch die Verwendung einer optimierten 1H/19F-Oberflächenspule konnte die 19F-Signalverteilung in einer dünnen Tumorscheibe in akzeptabler Messzeit aufgenommen werden. Da der gleiche Schnitt sowohl mit Fluoreszenzmikroskopie als auch mit MRT gemessen wurde, konnten Histologie und MR-Ergebnisse exakt korreliert werden. Zusammenfassend konnten in dieser Arbeit durch Hardware- und Methodenentwicklung zahlreiche neue Aspekte der 19F- und 23Na-MRT beleuchtet werden und so zukünftige Anwendungsfelder erschlossen werden. N2 - In addition to the hydrogen nucleus 1H, other nuclei can also be used for magnetic resonance imaging (MRI). These so-called X-nuclei can provide complementary information on classical 1H MRI and thus expand the range of applications of MRI. The challenge in X-nucleus imaging is largely due to the intrinsically low signal-to-noise ratio (SNR), but also to the specific properties of the nucleus. In order to optimally perform X-nuclei imaging, transmit/receive coils, imaging sequences and methods must be adapted to the respective nucleus. The two nuclei sodium (23Na) and fluorine (19F) were in the focus of this dissertation and thus optimized hardware and methods were developed for these nuclei. 23Na played a major role in this work, mainly because of its function as a biomarker of osteoarthritis, a degenerative joint disease. In particular, the quantitative sodium imaging is of importance, as it can characterize the cartilage state over time. For quantitative measurements by MRI, the knowledge of the B1 field of the MR coil used is crucial, because this can strongly influence the signal intensity and thus lead to errors in the quantification. Therefore, a method for the determination of the B1 field was developed. This presented a challenge due to the low SNR and the short and biexponential T2 relaxation time of 23Na. Using a retrospective correction method, a precise and at the same time rapid correction method could be found. Two practicable double resonant quadrature birdcage resonators have been developed, constructed and characterized for 1H/23Na imaging on human knee cartilage. The comparison of the two coils in terms of sensitivity and field homogeneity showed that the four-ring birdcage is superior to the alternating-rungs birdcage for the present application. The in vivo resolution and SNR of the 23Na images were sufficient for both coils to quantify the sodium concentration in the knee cartilage. High-resolution 1H anatomical images could be acquired without averaging. In a large multiparameter MRI animal study on goats, the progression of surgically induced osteoarthritis was studied using 23Na and 1H imaging techniques. DGEMRIC, T1ρ and quantitative sodium MRI were used. Despite thinner goat cartilage compared to humans, low field strength of 1.5 T and the occurring edema, it was possible for the first time to determine these MR parameters over the course of the study on the same experimental animals and at the same time points. The correlations of the MR parameters correspond to the underlying biochemical mechanisms. The methods, imaging protocols and evaluations developed in this study can be applied to future human studies. The short component of the biexponential T2* relaxation time of 23Na, which is not accessible with clinical imaging sequences, could be determined by means of a radial ultra-short echo time sequence. For this purpose, a multi-echo sequence was combined with a quasi-random sampling scheme. This enabled the determination of the short and long T2* component of patellar cartilage in vivo. 19F is used as a marker in MRI because of its high relative sensitivity and minimal body’s own background signal. To detect the low in vivo concentrations of the marker substances, highly sensitive measuring coils are required. For 19F imaging of mice, a birdcage volume coil was developed that can be operated in quadrature for both 19F and 1H without compromising sensitivity or field homogeneity compared to monoresonant coils. This is due to a slidable RF shield, which is used to change the resonance frequency of the birdcage. It has also been shown that field distributions at 1H and 19F are identical allowing the 1H channel to be used for pulse calibration and B1 mapping for 19F imaging. This can significantly reduce the acquisition time. A fundamental challenge is the correlation of different imaging modalities. In MRI, this often affects the correlation of in and ex vivo MR data and the associated images of histological sections. In this work, 1H and 19F MR measurements of a histological section were successfully performed for the first time. By using an optimized 1H/19F surface coil, the 19F signal distribution in a thin tumor slice was acquired within an acceptable acquisition time. Since the same section was measured by fluorescence microscopy as well as by MRI, histology and MR results could be correlated exactly. In summary, hardware and method development in this work has highlighted numerous new aspects of 19F and 23Na MRI, opening up future fields of application. KW - Kernspintomografie KW - Fluor-19 KW - Natrium-23 KW - 19F-MRT KW - 23Na-MRT Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-188710 ER - TY - THES A1 - Elsholz, Markus T1 - Das akademische Selbstkonzept angehender Physiklehrkräfte als Teil ihrer professionellen Identität – Dimensionalität und Veränderung während einer zentralen Praxisphase T1 - Pre-Service Teachers‘ Academic Self-Concept as Part of their Professional Identity – Dimensionality and Change during a Practical Training N2 - Die vorliegende Arbeit untersucht die Struktur und die Veränderung des akademischen Selbstkonzepts angehender Physiklehrkräfte. Als selbstbezogene Kognition wird es als eine Grundlage der professionellen Identität von Lehrkräften verstanden. Selbstkonzepte bilden sich aus der Kategorisierung selbstrelevanter Informationen, die eine Person in verschiedenen Kontexten sammelt, bewertet und interpretiert. Für angehende Lehrkräfte wird der professionelle Kontext durch die Struktur und die Inhalte des Lehramtsstudiums gebildet. Daraus folgt die erste zentrale Hypothese der Arbeit: Im akademischen Selbstkonzept angehender Physiklehrkräfte lassen sich drei Facetten empirisch trennen, die den inhaltlichen Domänen des Lehramtsstudiums entsprechen. Demnach strukturieren Studierende ihre Fähigkeitszuschreibungen in Bezug auf (1) die Fachwissenschaft Physik, (2) die Fachdidaktik Physik sowie (3) die Erziehungswissenschaften. Konkrete Erfahrungen bilden als Quelle selbstrelevanter Informationen die Basis für den Aufbau bzw. die Veränderung von domänenspezifischen Selbstkonzeptfacetten. Sie stabilisieren das Selbstkonzept, falls sie im Einklang mit dem bisherigen Bild der Person von sich selbst stehen bzw. können eine Veränderung des Selbstkonzepts initiieren, wenn sie sich nicht konsistent in dieses Bild einfügen lassen. Vor diesem Hintergrund folgt die zweite zentrale Hypothese der vorliegenden Arbeit: Während der Praxisphasen des Studiums verändert sich das akademische Selbstkonzept der Studierenden. Die Hypothesen werden mit Ansätzen der latenten Modellierung untersucht. Mittels konfirmatorischer Faktorenanalyse wird die empirische Trennbarkeit der drei angenommenen Facetten bestätigt. In einer querschnittlichen Betrachtung zeigt sich ein deutlicher Einfluss des Geschlechts der Studierenden auf den Zusammenhang zwischen ihrem fachdidaktischen Selbstkonzept und ihrer bisherigen Praxiserfahrung. Die längsschnittliche Analyse der Veränderung des Selbstkonzepts während einer zentralen fachdidaktischen Lehrveranstaltung mit ausgeprägten Praxisphasen (Lehr-Lern-Labor-Seminar) wird mit einem latenten Wachstumskurvenmodell untersucht. Das auf die Fachdidaktik Physik bezogene Selbstkonzept steigt während des Seminars leicht an, wenn die Studierenden zum Seminarbeginn bereits über Praxiserfahrung verfügten. Fehlt diese, so ist ein leichter Rückgang in der Ausprägung des Selbstkonzepts feststellbar, der für weibliche Studierende stärker ausfällt als für ihre männlichen Kommilitonen. Mit den Befunden zu Struktur und Veränderung des akademischen Selbstkonzepts angehender Physiklehrkräfte trägt die vorliegende Arbeit dazu bei, die überwiegend qualitativen Analysen von Identitätsprozessen bei Studierenden durch den Einsatz eines theoretisch fundierten und klar umrissenen Konstrukts um eine quantitative Perspektive zu ergänzen. N2 - This study examines the structure and the change of the academic self-concept of preservice physics teachers. As a self-directed cognition, self-concept is understood as a basis for the professional identity of teachers. Self-concepts are formed by the categorization of context specific self-relevant information that a person collects, evaluates and interprets. In teacher education, the professional context for prospective teachers is formed by the structure and content of the specific teacher education program. Therefore the first central hypothesis of this thesis can be deduced: In the academic self-concept of pre-service physics teachers three facets can be separated empirically, which correspond to the content domains of the teacher education program, i. e. (1) physics, (2) physics didactics, and (3) educational sciences. Self-relevant experiences form the basis for building up or changing domain-specific self-concept facets. They are the source of self-relevant information that either stabilizes the self-concept if it is consistent with the person’s perception of him- or herself or can initiate a self-concept change if it can not be consistently integrated. Against this background, the second central hypothesis of the study follows: Practical trainings in initial teacher education are accompanied by a change in the pre-service teachers’ academic self-concept. The hypotheses are examined within a latent modeling approach. Confirmatory factor analysis confirms the empirical separability of the three assumed self-concept facets. A cross-sectional analysis reveals the influence of gender on the interrelation between pre-service teachers’ didactic self-concept and their prior teaching experience. The change in self-concept accompanying to a mandatory course in physics didactics and a practical training (Lehr-Lern-Labor-Seminar) is evaluated fitting a latent growth curve model. The self-concept facet related to physics didactics slightly increases during the seminar if the pre-service teachers already had teaching experience at the beginning of the seminar. In the subsample without teaching experience, a slight decline in the self-concept is noticeable. With the findings on the structure and change of the academic self-concept, this study contributes to supplementing the predominantly qualitative analyzes of identity processes in prospective teachers with a quantitative perspective by using a theoretically founded and clearly defined construct. KW - Selbstbild KW - Identität KW - Lehrerbildung KW - Analyse latenter Strukturen KW - Fachdidaktik KW - Selbstkonzept KW - self-concept KW - pre-service teachers KW - Lehramtsstudierende Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-172153 N1 - Erscheint auch als Buchhandelsausgabe im Logos Verlag Berlin (2019) ER - TY - THES A1 - Knapp, Alexander Gerhard T1 - Resonant Spin Flip Raman-Spectroscopy of Electrons and Manganese-Ions in the n-doped Diluted Magnetic Semiconductor (Zn,Mn)Se:Cl T1 - Resonante Spin Flip Ramanspektroskopie von Elektronen und Manganionen im n-dotierten verdünnt magnetischen Halbleiter (Zn,Mn)Se:Cl N2 - Main focus of the present dissertation was to gain new insight about the interaction between magnetic ions and the conduction band of diluted magnetic semiconductors. This interaction in magnetic semiconductors with carrier concentrations near the metal-insulator transition (MIT) in an external magnetic field is barely researched. Hence, n-doped Zn1−xMnxSe:Cl samples were studied. Resonant Raman spectroscopy was employed at an external magnetic field between 1T and 7T and a temperature of 1.5K. The resulting magnetization of the material amplifies the splitting of states with opposite spins both in the valence and the conduction band. This is known as the "giant-Zeeman-effect". In this thesis, the resonance of the electron spin flip process, i.e. the enhancement of the signal depending on the excitation energy, was used as an indicator to determine the density of states of the charge carriers. The measured resonance profiles of each sample showed a structure, which consist of two partially overlapping Gaussian curves. The analysis of the Gaussian curves revealed that their respective maxima are separated independent of the magnetic field strenght by about 5 meV, which matches the binding energy of the donor bound exciton (D0, X). A widening of the full width at half maximum of the resonance profile was observed with increasing magnetic field. A detailed analysis of this behavior showed that the donor bound exciton spin flip resonance primarily accounts for the widening for all samples with doping concentrations below the metal insulator transition. A model was proposed for the interpretation of this observation. This is based on the fundamental assumptions of a spatially random distribution of the manganese ions on the group-II sublattice of the ZnSe crystal and the finite extension of the excitons. Thus, each exciton covers an individual quantity of manganese ions, which manifest as a local manganese concentration. This local manganese concentration is normally distributed for a set of excitons and hence, the evaluation of the distribution allows the determination of exciton radii Two trends were identified for the (D0, X) radii. The radius of the bound exciton decreases with increasing carrier concentration as well as with increasing manganese concentration. The determination of the (D0, X) radii by the use of resonant spin flip Raman spectroscopy and also the observation of the behavior of the (D0, X) radius depending on the carrier concentration, was achieved for the first time. For all samples with carrier concentrations below the metal-insulator transition, the obtained (X0) radii are up to a factor of 5.9 larger than the respective (D0, X) radii. This observation is explained by the unbound character of the (X0). For the first time, such an observation could be made by Raman spectroscopy.Beside the resonance studies, the shape of the Raman signal of the electron spin flip was analyzed. Thereby an obvious asymmetry of the signal, with a clear flank to lower Raman shifts, was observed. This asymmetry is most pronounced, when the spin flip process is excited near the (D0, X) resonance. To explain this observation, a theoretical model was introduced in this thesis. Based on the asymmetry of the resonantly excited spin flip signal, it was possible to estimate the (D0, X) radii, too. At external magnetic fields between 1.25T and 7T, the obtained radii lie between 2.38nm and 2.75nm. Additionally, the asymmetry of the electron spin flip signal was observed at different excitation energies. Here it is striking that the asymmetry vanishes with increasing excitation energy. At the highest excitation energy, where the electron spin flip was still detectable, the estimated radius of the exciton is 3.92nm. Beside the observations on the electron spin flip, the resonance behavior of the spin flip processes in the d-shell of the incorporated Mn ions was studied in this thesis. This was performed for the direct Mn spin flip process as well as for the sum process of the longitudinal optical phonon with the Mn spin flip. For the Stokes and anti-Stokes direct spin flip process and for the Stokes sum process, each the resonance curve is described by considering only one resonance mechanism. In contrast, resonance for the sum process in which an anti-Stokes Mn spin flip is involved, consists of two partially overlapping resonances due to different mechanisms. A detailed analysis of this resonance profile showed that for (Zn,Mn)Se at the chosen experimental parameters, an incoming and outgoing resonance can be achieved, separated by a few meV. Hereby, at a specific excitation energy range and a high excitation power, it was possible to achieve an inversion of the anti-Stokes to Stokes intensity, because only the anti-Stokes Mn spin flip process was enhanced resonantly. N2 - Ziel der Dissertation war das Erlangen neuer Erkenntnisse zur Wechselwirkung der magnetischen Ionen und des Leitungsbandes von verdünnten magnetischen Halbleitern. Diese Interaktion bei magnetischen Halbleitern mit Ladungsträgerkonzentration nahe des Metall-Isolator Übergangs (metal-insulator transition MIT) in externen Magnetfeldern ist bisher kaum erforscht. Daher wurden Untersuchung n-dotierte Zn1−xMnxSe:Cl untersucht. Als Analysetechnik wurde die resonante Spin Flip Raman-Spektroskopie bei einem externen Magnetfeld zwischen 1T und 7T und einer Temperatur von 1,5 K angewandt. Durch die entstehende Magnetisierung des Materials werden die Aufspaltungen der Zustände mit entgegengesetzten Spins sowohl im Valenz- als auch im Leitungsband verstärkt. Dies ist als "giant-Zeeman effect" bekannt. In dieser Arbeit wurde die Resonanz des Spin Flip Prozesses, d.h. die Signalerhöhung in Abhängigkeit der Anregungsenergie, als Indikator zur Bestimmung der Ladungsträgerzustandsdichte genutzt. Die gemessenen Resonanzprofile aller Proben zeigten dabei eine Struktur, welche aus sich zwei teilweise überlagernden Gaußkurven bestand. Mit steigendem Magnetfeld wurde eine deutliche Zunahme der Halbwertsbreite der Resonanzprofile beobachtet. Die detaillierte Analyse dieses Verhaltens zeigte, dass für alle Proben mit einer Dotierung unterhalb des Metall-Isolator-Übergangs, die Verbreiterung primär auf den Donor gebundenen Exzitonen Anteil der Resonanzkurve entfällt. Zur Deutung dieser Beobachtung wurde ein Modell entwickelt. Dieses beruht auf der grundlegenden Annahme einer räumlich statistisch Verteilung der Mangan-Ionen auf dem Gruppe-II Untergitter des ZnSe Kristalls, sowie der endlichen Ausdehnung der Exzitonen. Somit erfasst jedes einzelne Exziton eine individuelle Anzahl von Mangan-Ionen, was sich als lokale Mangankonzentration manifestiert. Diese lokale Mangankonzentration normalverteilt für ein Set von Exzitonen und deren Auswertung erlauben einen Rückschluss auf die Radien der Exzitonen. Zwei Trends für die (D0, X) Radien konnten identifiziert werden. Sowohl mit steigender Ladungsträgerkonzentration als auch mit steigendem Mangangehalt nimmt der Radius der gebundenen Exzitonen ab. Es gelangte erstmalig die Bestimmung der (D0, X) Radien mittels resonanter Spin Flip Raman-Spektroskopie und die Beobachtung des Verhaltens der (D0, X) Radien in Abhängigkeit der Ladungsträgerkonzentration. Die ermittelten (X0) Radien sind für die Proben mit Ladungsträgerkonzentrationen unterhalb des Metall-Isolator-Übergangs im Vergleich zu den (D0, X) Radien um einen Faktor von bis zu 5,9 größer. Diese Beobachtung lässt sich durch den ungebundenen Charakter der (X0) erklären. Aufgrund dessen erfasst ein (X0) während seiner Lebenszeit im Vergleich zu einem (D0, X) einen räumlich ausgedehnteren Bereich des Kristalls. Hierdurch konnte erstmalig mittels Raman-Spektroskopie solch eine Beobachtung gemacht werden. Neben den Resonanzuntersuchungen des elektronischen Spin Flips wurde dessen Preakform im Ramanspektrum analysiert. Dabei wurde eine deutliche Asymmetrie des Signals beobachtet, sichtbar als Flanke zu niedrigeren Raman- Verschiebungen. Zur Erklärung dieser Beobachtungen kann ebenfalls das eingeführte Modell angewandt werden. Anhand der Asymmetrie des resonant angeregten Spin Flip Signals konnten hiermit die Radien der (D0, X) bestimmt werden. Zusätzlich wurde die Asymmetrie bei unterschiedlichen Anregungsenergien sichtbar. Hierbei fiel auf, dass diese mit steigender Anregungsenergie abnimmt. Desweiteren wurde zusätzlich zu den Beobachtungen des elektronischen Spin Flips, das Resonanzverhalten des Spin Flips der einzelnen Mn-Ionen in dieser Arbeit untersucht. Dies wurde sowohl für den direkten Mn Spin Flip Prozess, als auch den Summenprozesses aus einem longitudinal optischen Phonon und einem Mn Spin Flip durchgeführt. Jeweils eine Resonanz wurde sowohl für die direkten Stokes und anti-Stokes Prozesse, als auch für den Stokes Summenprozess beobachtet. Im Gegensatz hierzu besteht das Resonanzprofil des Summenprozesses, bei dem ein Anti-Stokes Mn Spin Flip involviert ist, aus zwei sich überlappenden Resonanzanteile. Eine genaue Analyse dieses Resonanzprofils ergab, dass es bei (Zn,Mn)Se und den gewählten experimentellen Parametern möglich ist, sowohl eine eingehende als auch eine ausgehende Resonanz für diesen Summenprozess mit einer Energiedifferenz von wenigen meV zu erhalten. Die zusätzlich auftretende eingehende Resonanz konnte dabei dem optischen Übergang von dem mj = 1/2 Valenzband- zum mj = -1/2 Leitungsbandzustand zugeordnet werden. Die daraufhin folgende Anregung eines LO Phonons führt zu einer Reduzierung der Energie des gestreuten Photons. Dies erzeugt die beobachtete Überlagerung der Resonanzen, gemessen in der Energie der gestreuten Photonen. Hierdurch war es möglich, bei geeigneter Anregungsenergie und hoher Anregungsleistung eine Inversion der Anti-Stokes zu Stokes Intensität zu beobachten, da die eingehende Resonanz in diesem Fall nur für den Anti-Stokes Mn Spin Flip auftrat KW - Raman-Spektroskopie KW - Wide-gap-Halbleiter KW - n-Halbleiter KW - Spin flip KW - Zinkselenid KW - verdünnt magnetische Halbleiter KW - diluted magnetic Semiconductor Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-186099 ER - TY - THES A1 - Scheiderer, Philipp T1 - Spectroscopy of Prototypical Thin Film Mott Materials T1 - Spektroskopie prototypischer Mott-Materialien in dünnen Filmen N2 - The rich phase diagram of transition metal oxides essentially roots in the many body physics arising from strong Coulomb interactions within the underlying electron system. Understanding such electronic correlation effects remains challenging for modern solid state physics, therefore experimental data is required for further progress in the field. For this reason, spectroscopic investigations of prototypical correlated materials are the scope of this thesis. The experimental methods focus on photoelectron spectroscopy, and the test materials are the correlated metal SrVO\(_3\) and the Mott insulator LaTiO\(_3\), both of which are fabricated as high quality thin films. In SrVO\(_3\) thin films, a reduction of the film thickness induces a dimensional crossover from the metallic into the Mott insulating phase. In this thesis, an extrinsic chemical contribution from a surface over-oxidation is revealed that emerges additionally to the intrinsic change of the effective bandwidth usually identified to drive the transition. The two contributions are successfully disentangled by applying a capping layer that prevents the oxidation, allowing for a clean view on the dimensional crossover in fully stoichiometric samples. Indeed, these stoichiometric layers exhibit a higher critical thickness for the onset of the metallic phase than the bare and therefore over-oxidized thin films. For LaTiO\(_3\) thin films, the tendency to over-oxidize is even stronger. An uncontrolled oxygen diffusion from the substrate into the film is found to corrupt the electronic properties of LaTiO\(_3\) layers grown on SrTiO\(_3\). The Mott insulating phase is only detected in stoichiometric films fabricated on more suitable DyScO\(_3\) substrates. In turn, it is demonstrated that a \(controlled\) incorporation of excess oxygen ions by increasing the oxygen growth pressure is an effective way of \(p\) doping the material which is used to drive the band filling induced Mott transition. Gaining control of the oxygen stoichiometry in both materials allows for a systematic investigation of correlation effects in general and of the Mott transition in particular. The investigations are realized by various photoelectron spectroscopy techniques that provide a deep insight into the electronic structure. Resonant photoemission not only gives access to the titanium and vanadium related partial density of states of the valence band features, but also shows how the corresponding signal is enhanced by tuning the photon energy to the \(L\) absorption threshold. The enhanced intensity turns out to be very helpful for probing the Fermi surface topology and band dispersions by means of angular-resolved photoemission. The resulting momentum resolved electronic structure verifies central points of the theoretical description of the Mott transition, viz. the renormalization of the band width and a constant Luttinger volume in a correlated metal as the Mott phase is approached. N2 - Das reichhaltige Phasendiagramm von Übergansmetalloxiden ist im Wesentlichen auf Aspekte der Vielteilchenphysik zurückzuführen, welche durch starke Coulomb Wechselwirkungen im zugrundeliegenden Elektronensystem auftreten. Die Beschreibung solcher Korrelationseffekte stellt immernoch eine Herausforderung für die moderne Festkörperhysik dar, wobei für weitere Fortschritte experimentelle Daten nötig sind. Aus diesem Grund beschäftigt sich diese Arbeit mit spektroskopischen Untersuchungen an prototypischen korrelierten Materialien. Die experimentellen Methoden fokussieren sich dabei auf die Photoelektronenspektroskopie. Diese wird auf das korrelierte Metall SrVO\(_3\) und dem Mott Isolator LaTiO\(_3\) angewandt, welche beide als dünne Filme in hoher Qualität hergestellt werden. Eine Verkleinerung der Schichtdicke kann in SrVO\(_3\)-Dünnfilmen einen dimensionsgetriebenen Übergang von der metallischen in die Mott-isolierende Phase induzieren. In dieser Arbeit konnte der extrinsische Beitrag einer Oberflächenoxidation identifiziert werden, der zusätzlich zu den intrinsischen Veränderungen der effektiven Bandbreite, die für gewöhnlich als Grund für den Phasenübergang angeführt werden, auftritt. Durch das Aufbringen einer Deckschicht wird die Oxidation verhindert. So kann der dimensionsinduzierte Übergang ohne extrinsische Einflüsse in stöchiometrischen Proben untersucht werden, die tatsächlich eine höhere kritische Schichtdicke für das Einsetzen des metallischen Verhaltens aufweisen als die freiliegenden und damit überoxidierten Dünnfilme. Bei LaTiO\(_3\)-Dünnfilmen ist die Tendenz zur Überoxidation noch stärker. Eine unkontrollierte Diffusion von Sauerstoff aus dem Substrat in den Film verfälscht die elektronischen Eigenschaften von LaTiO\(_3\)-Schichten, die auf SrTiO\(_3\) gewachsen werden. Die Mott-isolierende Phase kann nur in stöchiometrischen Filmen stabilisiert werden, die auf geeigneteren DyScO\(_3\) Substraten hergestellt werden. Dahingegen kann eine \(kontrollierte\) \(p\)-Dotierung durch eine Erhöhung des Sauerstoffdrucks während des Wachstumsprozesses angewendet werden um den bandfüllungsinduzierten Mott-Übergang zu treiben. Die Kontrolle der Sauerstoffstöchiometrie in beiden Materialien erlaubt eine systematische Untersuchung von Korrelationseffekten im Allgemeinen und des Mott-Übergangs im Speziellen. Dies wird durch die Anwendung diverser spezialisierter Techniken der Photoelektronenspektroskopie realisiert, welche weitreichende Einblicke in die elektronische Struktur gewähren. Resonante Photoelektronenspektroskopie macht nicht nur die partielle Zustandsdichte mit Titan- und Vanadium-Charakter im Valenzband zugänglich, sondern zeigt auch, wie stark die zugehörigen Signale an der \(L\)-Absorptionskante verstärkt werden. Diese Intensitätsverstärkung erweist sich zudem als hilfreich bei der Untersuchung der Fermiflächentopologie und Banddispersion mittels winkelaufgelöster Phototemission. Die daraus gewonnenen Erkenntnisse zur impulsaufgelösten, elektronischen Struktur bestätigen zentrale Punkte der theoretischen Beschreibung des Mott-Übergangs, nämlich eine Renormierung der Bandbreite und ein konstantes Luttingervolumen in einem korrelierten Metall, welches sich der Mott-Phase annähert. KW - Übergangsmetalloxide KW - Mott-Übergang KW - Dünne Schicht KW - Metall-Isolator-Phasenumwandlung KW - Photoelectron Spectroscopy KW - Thin Films KW - Correlated Electron Materials KW - Mott Transistion KW - Photoelektronenspektroskopie KW - Mott-Isolator KW - Lanthantitanate KW - Strontiumvanadate Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-186358 ER - TY - THES A1 - Zapf, Michael T1 - Oxidische Perovskite mit Hoher Massenzahl Z: Dünnfilmdeposition und Spektroskopische Untersuchungen T1 - High-Z Perovskite Oxides: Thin Film Deposition and Spectroscopic Investigations N2 - Perovskite oxides are a very versatile material class with a large variety of outstanding physical properties. A subgroup of these compounds particularly tempting to investigate are oxides involving high-\(Z\) elements, where spin-orbit coupling is expected to give rise to new intriguing phases and potential application-relevant functionalities. This thesis deals with the preparation and characterization of two representatives of high-\(Z\) oxide sample systems based on KTaO\(_3\) and BaBiO\(_3\). KTaO\(_3\) is a band insulator with an electronic valence configuration of Ta 5\(d\)\(^0\) . It is shown that by pulsed laser deposition of a disordered LaAlO\(_3\) film on the KTaO\(_3\)(001) surface, through the creation of oxygen vacancies, a Ta 5\(d\)\(^{0+\(\delta\)}\) state is obtained in the upmost crystal layers of the substrate. In consequence a quasi two dimensional electron system (q2DES) with large spin-orbit coupling emerges at the heterointerface. Measurements of the Hall effect establish sheet carrier densities in the range of 0.1-1.2 10\(^{14}\) cm\(^2\), which can be controlled by the applied oxygen background pressure during deposition and the LaAlO\(_3\) film thickness. When compared to the prototypical oxide q2DESs based on SrTiO\(_3\) crystals, the investigated system exhibits exceptionally large carrier mobilities of up to 30 cm\(^2\)/Vs (7000 cm\(^2\)/Vs) at room temperature (below 10 K). Through a depth profiling by photoemission spectra of the Ta 4\(f\) core level it is shown that the majority of the Ta 5\(d\)\(^0\) charge carriers, consisting of mobile and localized electrons, is situated within 4 nm from the interface at low temperatures. Furthermore, the momentum-resolved electronic structure of the q2DES \(buried\) underneath the LaAlO\(_3\) film is probed by means of hard X-ray angle-resolved photoelectron spectroscopy. It is inferred that, due to a strong confinement potential of the electrons, the band structure of the system is altered compared to \(n\)-doped bulk KTO. Despite the constraint of the electron movement along one direction, the Fermi surface exhibits a clear three dimensional momentum dependence, which is related to a depth extension of the conduction channels of at least 1 nm. The second material, BaBiO\(_3\), is a charge-ordered insulator, which has recently been predicted to emerge as a large-gap topological insulator upon \(n\)-doping. This study reports on the thin film growth of pristine BaBiO\(_3\) on Nb:SrTiO\(_3\)(001) substrates by means of pulsed laser deposition. The mechanism is identified that facilitates the development of epitaxial order in the heterostructure despite the presence of an extraordinary large lattice mismatch of 12 %. At the heterointerface, a structurally modified layer of about 1.7 nm thickness is formed that gradually relieves the in-plane strain and serves as the foundation of a relaxed BBO film. The thereupon formed lattice orders laterally in registry with the substrate with the orientation BaBiO\(_3\)(001)||SrTiO\(_3\)(001) by so-called domain matching, where 8 to 9 BaBiO\(_3\) unit cells align with 9 to 10 unit cells of the substrate. Through the optimization of the deposition conditions in regard to the cation stoichiometry and the structural lattice quality, BaBiO\(_3\) thin films with bulk-like electronic properties are obtained, as is inferred from a comparison of valence band spectra with density functional theory calculations. Finally, a spectroscopic survey of BaBiO\(_3\) samples of various thicknesses resolves that a recently discovered film thickness-controlled phase transition in BaBiO\(_3\) thin films can be traced back to the structural and concurrent stoichiometric modifications occuring in the initially formed lattice on top of the SrTiO\(_3\) substrate rather than being purely driven by the smaller spatial extent of the BBO lattice. N2 - Komplexe Metalloxide mit Perowskitstruktur sind bekannt für ihre große Vielfalt einzigartiger physikalischer Eigenschaften. Eine interessante Untergruppe dieser Materialien sind Verbindungen von Elementen mit hoher Ordnungszahl \(Z\), in denen neue, durch Spin-Bahn Kopplung getriebene Phasen und anwendungsrelevante Funktionalitäten erwartet werden. Diese Arbeit handelt von der Präparation und Charakterisierung zweier Probensysteme, die auf eben solchen Materialien mit hoher \(Z\) basieren. KTaO\(_3\) ist ein Bandisolator, der im Grundzustand eine Ta 5\(d\)\(^0\) Valenz besitzt. Durch gepulste Laserdeposition von ungeordnetem LaAlO\(_3\) auf der KTaO\(_3\)(001) Oberfläche, werden die obersten Schichten des Substratkristalls durch die Erzeugung von Sauerstofffehlstellen dotiert. Es bildet sich ein quasi zweidimensionales metallisches Elektronensystem (q2DES) an der Grenzfläche der Heterostruktur aus. Messungen des Hall-Effekts ergeben Schichtladungsträgerdichten im Bereich von 0.1-1.2 10\(^{14}\) cm\(^2\), welche durch Anpassung des Sauerstoffhintergrunddrucks während der Deposition bzw. durch die Dicke der abgeschiedenen LaAlO\(_3\) Schicht beeinflusst werden können. Mit Werten von 30 cm\(^2\)/Vs (7000 cm\(^2\)/Vs) bei Raumtemperatur (unter 10 K), besitzt das q2DES in LaAlO\(_3\)/KTaO\(_3\) im Vergleich zu ähnlichen Elektronensystemen in SrTiO\(_3\) bemerkenswert große Ladungsträgerbeweglichkeiten. Aus dem Tiefenprofil des Photoemissionspektrums des Ta 4\(f\) Rumpfniveaus ergibt sich, dass sich der Großteil der Ta 5\(d\) Ladungsträger, bestehend aus mobilen und lokalisierten Elektronen, innerhalb einer Schicht von 4 nm Dicke befindet. Die Vermessung der elektronischen Bandstruktur des vergrabenen q2DES mit Hilfe winkelaufgelöster Photoelektronenspektroskopie mit harter Röntgenstrahlung zeigt, dass das Elektronensystem, vermutlich wegen des starken Potentialgradients an der Grenzfläche, eine modifizierte elektronische Struktur gegenüber n-dotiertem Bulk-KTaO\(_3\) aufweist. Trotz der Einschränkung der Bewegung der Elektronen entlang einer Richtung, besitzt die Fermifläche des Systems eine dreidimensionale Struktur, woarus auf eine Tiefenausdehnung der metallischen Zustände von mindestens 1 nm geschlossen werden kann. Undotiertes BaBiO\(_3\) ist durch die Ausbildung einer Ladungsordnung isolierend. Unter Elektronendotierung gilt das Material als Kandidat für einen oxidischen topologischen Isolator. In dieser Studie wird die Deposition von BaBiO\(_3\) auf Nb:SrTiO\(_3\)(001) Substraten untersucht. Dabei wird der Mechanismus identifiziert, der epitaktisches Wachstum von BaBiO\(_3\), trotz einer Gitterfehlanpassung von 12 %, ermöglicht: Eine 1.7 nm dicke Lage mit abweichender Kristallstruktur an der Grenzfläche entkoppelt das Filmgitter vom Substrat, sodass darüber vollständig relaxiertes BaBiO\(_3\) aufwachsen kann. Dieses weist eine epitaktische Orientierung von BaBiO\(_3\)(001)||SrTiO\(_3\)(001) auf, die durch die Ausbildung von lateralen Gitterdomänen, bei denen 8 bzw. 9 BaBiO\(_3\) auf 9 bzw. 10 SrTiO\(_3\) Einheitszellen ausgerichtet sind, gewährleistet wird. Die Stoichiometrie und die strukturelle Qualität der BaBiO\(_3\) Filme werden durch eine systematische Anpassung der Depositionsbedingungen optimiert. Die Valenzbandstruktur der Proben stimmt gut mit Rechnungen der Dichtefunktionaltheorie überein, was darauf hindeutet, dass die Filme hinsichtlich der elektronischen Eigenschaften mit BaBiO\(_3\) Einkristallen vergleichbar sind. Eine abschließende Untersuchung eines schichtdickenabhängigen Phasenübergangs in BaBiO\(_3\) Dünnfilmen, von dem kürzlich in der Literatur berichtet wurde, belegt, dass dieser nicht allein auf die Ausdehnung des Kristallgitters, sondern auch auf strukturelle und stoichiometrische Modifikationen der untersten Filmlagen zurückzuführen ist. KW - Perowskit KW - Röntgen-Photoelektronenspektroskopie KW - Pulsed laser deposition KW - Übergangsmetalloxide KW - KTaO3 KW - BaBiO3 KW - Oxide Heterostructure KW - Interface Conductivity KW - oxidische Heterostruktur KW - Grenzflächenleitfähigkeit KW - Winkelaufgelöste Photoemission mit harten Röntgenstrahlen KW - Hard X-ray Angle Resolved Photoemission KW - High-Z Oxides KW - HARPES Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-185370 ER - TY - THES A1 - Trabel, Mirko T1 - Growth and Characterization of Epitaxial Manganese Silicide Thin Films T1 - Wachstum und Charakterisierung dünner epitaktischer MnSi Schichten N2 - This thesis describes the growth and characterization of epitaxial MnSi thin films on Si substrates. The interest in this material system stems from the rich magnetic phase diagram resulting from the noncentrosymmetric B20 crystal structure. Here neighboring spins prefer a tilted relative arrangement in contrast to ferro- and antiferromagnets, which leads to a helical ground state where crystal and spin helix chirality are linked [IEM+85]. This link makes the characterization and control of the crystal chirality the main goal of this thesis. After a brief description of the material properties and applied methods, the thesis itself is divided into four main parts. In the first part the advancement of the MBE growth process of MnSi on Si\((111)\) substrate as well as the fundamental structural characterization are described. Here the improvement of the substrate interface by an adjusted substrate preparation process is demonstrated, which is the basis for well ordered flat MnSi layers. On this foundation the influence of Mn/Si flux ratio and substrate temperature on the MnSi layer growth is investigated via XRD and clear boundaries to identify the optimal growth conditions are determined. The nonstoichiometric phases outside of this optimal growth window are identified as HMS and Mn\(_5\)Si\(_3\). Additionally, a regime at high substrate temperatures and low Mn flux is discovered, where MnSi islands are growing incorporated in a Si layer, which could be interesting for further investigations as a size confinement can change the magnetic phase diagram [DBS+18]. XRD measurements demonstrate the homogeneity of the grown MnSi layers over most of the 3 inch wafer diameter and a small \(\omega\)-FWHM of about 0.02° demonstrates the high quality of the layers. XRD and TEM measurements also show that relaxation of the layers happens via misfit dislocations at the interface to the substrate. The second part of the thesis is concerned with the crystal chirality. Here azimuthal \(\phi\)-scans of asymmetric XRD reflections reveal twin domains with a \(\pm\)30° rotation to the substrate. These twin domains seem to consist of left and right-handed MnSi, which are connected by a mirror operation at the \((\bar{1}10)\) plane. For some of the asymmetric XRD reflections this results in different intensities for the different twin domains, which reveals that one of the domains is rotated +30° and the other is rotated -30°. From XRD and TEM measurements an equal volume fraction of both domains is deduced. Different mechanisms to suppress these twin domains are investigated and successfully achieved with the growth on chiral Si surfaces, namely Si\((321)\) and Si\((531)\). Azimuthal \(\phi\)-scans of asymmetric XRD reflections demonstrate a suppression of up to 92%. The successful twin suppression is an important step in the use of MnSi for the proposed spintronics applications with skyrmions as information carriers, as discussed in the introduction. Because of this achievement, the third part of the thesis on the magnetic properties of the MnSi thin films is not only concerned with the principal behavior, but also with the difference between twinned and twin suppressed layers. Magnetometry measurements are used to demonstrate, that the MnSi layers behave principally as expected from the literature. The analysis of saturation and residual magnetization hints to the twin suppression on Si\((321)\) and Si\((531)\) substrates and further investigations with more samples can complete this picture. For comparable layers on Si\((111)\), Si\((321)\) and Si\((531)\) the Curie-Weiss temperature is identical within 1 K and the critical field within 0.1 T. Temperature dependent magnetoresistivity measurements also demonstrate the expected \(T^2\) behavior not only on Si\((111)\) but also on Si\((321)\) substrates. This demonstrates the successful growth of MnSi on Si\((321)\) and Si\((531)\) substrates. The latter measurements also reveal a residual resistivity of less then half for MnSi on Si\((321)\) in comparison to Si\((111)\). This can be explained with the reduced number of domain boundaries demonstrating the successful suppression of one of the twin domains. The homogeneity of the residual resistivity as well as the charge carrier density over a wide area of the Si\((111)\) wafer is also demonstrated with these measurements as well as Hall effect measurements. The fourth part shows the AMR and PHE of MnSi depending on the angle between in plane current and magnetic field direction with respect to the crystal direction. This was proposed as a tool to identify skyrmions [YKT+15]. The influence of the higher C\(_{3\mathrm{v}}\) symmetry of the twinned system instead of the C\(_3\) symmetry of a B20 single crystal is demonstrated. The difference could serve as a useful additional tool to prove the twin suppression on the chiral substrates. But this is only possible for rotations with specific symmetry surfaces and not for the studied unsymmetrical Si\((321)\) surface. Measurements for MnSi layers on Si\((111)\) above the critical magnetic field demonstrate the attenuation of AMR and PHE parameters for increasing resistivity, as expected from literature [WC67]. Even if a direct comparison to the parameters on Si\((321)\) is not possible, the higher values of the parameters on Si\((321)\) can be explained considering the reduced charge carrier scattering from domain boundaries. Below the critical magnetic field, which would be the region where a skyrmion lattice could be expected, magnetic hysteresis complicates the analysis. Only one phase transition at the critical magnetic field can be clearly observed, which leaves the existence of a skyrmion lattice in thin epitaxial MnSi layers open. The best method to solve this question seems to be a more direct approach in the form of Lorentz-TEM, which was also successfully used to visualize the skyrmion lattice for thin plates of bulk MnSi [TYY+12]. For the detection of in plane skyrmions, lamellas would have to be prepared for a side view, which seems in principle possible. The demonstrated successful twin suppression for MnSi on Si\((321)\) and Si\((531)\) substrates may also be applied to other material systems. Suppressing the twinning in FeGe on Si\((111)\) would lead to a single chirality skyrmion lattice near room temperature [HC12]. This could bring the application of skyrmions as information carriers in spintronics within reach. Glossary: MBE Molecular Beam Epitaxy XRD X-Ray Diffraction HMS Higher Manganese Silicide FWHM Full Width Half Maximum TEM Tunneling Electron Microscopy AMR Anisotropic MagnetoResistance PHE Planar Hall Effect Bibliography: [IEM+85] M. Ishida, Y. Endoh, S. Mitsuda, Y. Ishikawa, and M. Tanaka. Crystal Chirality and Helicity of the Helical Spin Density Wave in MnSi. II. Polarized Neutron Diffraction. Journal of the Physical Society of Japan, 54(8):2975, 1985. [DBS+18] B. Das, B. Balasubramanian, R. Skomski, P. Mukherjee, S. R. Valloppilly, G. C. Hadjipanayis, and D. J. Sellmyer. Effect of size confinement on skyrmionic properties of MnSi nanomagnets. Nanoscale, 10(20):9504, 2018. [YKT+15] T. Yokouchi, N. Kanazawa, A. Tsukazaki, Y. Kozuka, A. Kikkawa, Y. Taguchi, M. Kawasaki, M. Ichikawa, F. Kagawa, and Y. Tokura. Formation of In-plane Skyrmions in Epitaxial MnSi Thin Films as Revealed by Planar Hall Effect. Journal of the Physical Society of Japan, 84(10):104708, 2015. [WC67] R. H. Walden and R. F. Cotellessa. Magnetoresistance of Nickel-Copper Single-Crystal Thin Films. Journal of Applied Physics, 38(3):1335, 1967. [TYY+12] A. Tonomura, X. Yu, K. Yanagisawa, T. Matsuda, Y. Onose, N. Kanazawa, H. S. Park, and Y. Tokura. Real-Space Observation of Skyrmion Lattice in Helimagnet MnSi Thin Samples. Nano Letters, 12(3):1673, 2012. [HC12] S. X. Huang and C. L. Chien. Extended Skyrmion Phase in Epitaxial FeGe(111) Thin Films. Physical Review Letters, 108(26):267201, 2012. N2 - Diese Arbeit befasst sich mit dem Wachstum und der Charakterisierung dünner epitaktischer MnSi Schichten auf Si Substraten. Das Interesse an diesem Materialsystem liegt insbesondere im reichhaltigen magnetischen Phasendiagramm begründet, welches aus der nicht zentrosymmetrischen B20 Kristallstruktur des MnSi resultiert. Im Gegensatz zu Ferro- oder Antiferromagneten bevorzugen benachbarte Spins sich unter einem Winkel zueinander auszurichten, was zu einem helikalen Grundzustand führt in dem die Händigkeit von Kristallstruktur und Spin-Helix aneinander gekoppelt sind [IEM+85]. Diese Kopplung macht die Charakterisierung und Kontrolle der Händigkeit der Kristallstruktur zum Hauptziel dieser Arbeit. Nach einer kurzen Beschreibung der Materialeigenschaften und der angewendeten Methoden ist die Arbeit selbst in vier Hauptteile aufgeteilt. Im ersten Teil ist sowohl die Verbesserung des Molekularstrahlepitaxie-Wachstumsprozesses von MnSi auf Si\((111)\) Substrat, als auch die grundlegende strukturelle Charakterisierung beschrieben. Hierbei ist die Verbesserung der Substratgrenzfläche mit Hilfe eines angepassten Vorbereitungsprozesses erläutert, welche die Basis für glatte, geordnete dünne MnSi Schichten bildet. Auf dieser Basis ist der Einfluss des Mn/Si Fluss-Verhältnisses sowie der Substrattemperatur mittels Röntgenbeugung dargestellt und ein optimales Wachstumsfenster identifiziert. Die nicht stöchiometrischen Phasen außerhalb dieses Wachstumsfensters sind MnSi\(_{1.75-x}\) (HMS) sowie Mn\(_5\)Si\(_3\). Zusätzlich tritt bei hohen Substrattemperaturen und niedrigem Mn Fluss eine Phase auf, in der MnSi Inseln, eingebettet in eine Si Schicht, wachsen. Diese könnten von weiterführendem Interesse sein, da die Größenbeschränkung das magnetische Phasendiagramm beeinflussen kann [DBS+18]. Röntgenbeugungsmessungen zeigen die Homogenität der gewachsenen MnSi Schichten über einen Großteil des 3\ Zoll Wafer Durchmessers sowie die hohe Qualität mittels einer kleinen \(\omega\)-Halbwertsbreite von ungefähr 0.02°. Röntgenbeugungs- und Transmissionselektronenmikroskopiemessungen zeigen außerdem, dass die MnSi Dünnschichten mittels Fehlversetzungen an der Grenzfläche zwischen Dünnschicht und Substrat relaxieren. Der zweite Teil befasst sich mit der Händigkeit der Kristallstruktur. Azimutale \(\phi\)-Messungen asymmetrischer Röntgenbeugungsreflexe zeigen Kristallzwillingsdomänen welche \(\pm\)30° zum Substrat rotiert sind. Die Kristallzwillingsdomänen lassen sich vermutlich als rechts- und links-händiges MnSi identifizieren, welche durch eine Spiegelung an der \((\bar{1}10)\) Ebene verbunden sind. Anhand der unterschiedlichen Intensität mancher Reflexe für unterschiedliche Händigkeit wird außerdem gezeigt, dass eine der Domänen um +30° und die andere Domäne um -30° rotiert ist. Mithilfe der Röntgenbeugung und Transmissionselektronenmikroskopie wird außerdem der gleiche Volumenanteil der Kristallzwillinge demonstriert. Verschieden Mechanismen zur Unterdrückung dieser Kristallzwillingsdomänen werden untersucht und die erfolgreiche Unterdrückung gelang mit Hilfe des Wachstums auf chiralen Si Substraten, nämlich Si\((321)\) und Si\((531)\) Substraten. Hier ist mit azimutalen \(\phi\)-Messungen der asymmetrischen Röntgenbeugungsreflexen eine Unterdrückung von bis zu 92% demonstriert. Die erfolgreiche Unterdrückung der Kristallzwillingsdomänen ist ein wichtiger Schritt zur vorgeschlagenen Nutzung von MnSi in Spintronik-Anwendungen, wie in der Einleitung erläutert. Aufgrund dessen befasst sich der dritte Teil nicht nur mit den magnetischen Eigenschaften der dünnen MnSi Schichten, sondern auch damit, wie die Unterschiede für Schichten mit Kristallzwillingsdomänen und mit deren Unterdrückung sind. Im ersten Abschnitt ist anhand von Magnetometriemessungen gezeigt, dass sich die MnSi Dünnschichten prinzipiell so verhalten, wie es aus der Literatur zu erwarten ist. Das Verhalten von Sättigungs- und Restmagnetisierung deutet auf die Unterdrückung der Kristallzwillingsdomänen auf Si\((321)\) und Si\((531)\) Substraten hin, wobei das Gesamtbild mittels einer erweiterten Probenserie vervollständigt werden kann. Für vergleichbare MnSi Dünnschichten auf Si\((111)\), Si\((321)\) und Si\((531)\) ist die Curie-Weiss Temperatur innerhalb von 1 K und das kritische Magnetfeld innerhalb von 0.1 T identisch. Die Temperaturabhängigkeit des Magnetowiderstands zeigt das zu erwartende \(T^2\) Verhalten nicht nur auf Si\((111)\), sondern auch auf Si\((321)\). Dies zeigt das erfolgreiche Wachstum von MnSi auf Si\((321)\) und Si\((531)\). Die letzteren Messungen ergeben außerdem einen Restwiderstand von weniger als der Hälfte für MnSi auf Si\((321)\) im Vergleich zu Si\((111)\). Dies kann durch die geringere Anzahl an Domänengrenzen erklärt werden und zeigt die erfolgreiche Unterdrückung einer Kristallzwillingsdomäne. Mit Hilfe der Restwiderstände und Hall-Messungen ist die Homogenität des Restwiderstandes und der Ladungsträgerdichte über einen großen Bereich des Wafers gezeigt. Im vierten Teil werden der Anisotrope Magnetwiderstand und der Planare Hall Effekt für MnSi abhängig von den Winkeln von Stromrichtung und Magnetfeld im Bezug auf die Kristallrichtung untersucht. Dies wurde als Werkzeug zur Identifikation der Skyrmionenphase vorgeschlagen [YKT+15]. Der Einfluss der höheren C\(_{3\mathrm{v}}\) Symmetrie des Kristallzwillingssystems und nicht der C\(_3\) Symmetrie des B20 Einzelkristalls ist gezeigt Der Unterschied könnte ein nützliches zusätzliches Werkzeug für die Demonstration der Kristallzwillingsunterdrückung sein. Dies ist allerdings nur für die Rotation mit spezifischen symmetrischen Oberflächen möglich und nicht für die untersuchte unsymmetrische Si\((321)\) Oberfläche. Messungen von MnSi Dünnschichten auf Si\((111)\) oberhalb des kritischen Magnetfeldes zeigen die Abnahme der Anisotropie-Parameter für den Anisotropen Magnetwiderstand und den Planaren Hall-Effekt für steigenden Widerstand, wie aus der Literatur zu erwarten [WC67]. Auch wenn ein direkter Vergleich zu den Parametern für Dünnschichten auf Si\((321)\) nicht möglich ist, können die größeren Parameterwerte bei Si\((321)\) mit der reduzierten Streuung an Domänengrenzen erklärt werden. Die Analyse unterhalb des kritischen Magnetfeldes, der Bereich in dem eine mögliche Skyrmionenphase zu erwarten wäre, wird durch magnetische Hysterese verkompliziert. Nur ein Phasenübergang beim kritischen Magnetfeld kann deutlich gezeigt werden. Damit bleibt die Frage zur Existenz der Skyrmionen in den MnSi Dünnschichten weiter offen. Die beste Möglichkeit diese Frage zu klären wäre ein direkterer Ansatz in Form von Lorentz-Transmissionselektronenmikroskopie, welche schon erfolgreich genutzt wurde um das Skyrmionengitter in dünnen Platten aus Volumenkristall MnSi zu visualisieren [TYY+12]. Für die Detektion von Skyrmionen in der Schichtebene müssten Lamellen für eine Seitenansicht präpariert werden, was prinzipiell möglich erscheint. Die gezeigte erfolgreiche Unterdrückung von einem der Kristallzwillinge für MnSi Schichten auf Si\((321)\) und Si\((531)\) sollte außerdem auf andere Materialsysteme übertragbar sein. Die Kristallzwillingsbildung in FeGe auf Si\((111)\) zu unterdrücken würde zu einem Skyrmionengitter mit einer einzigen Händigkeit bei annähernd Raumtemperatur führen [HC12]. Dies könnte Skyrmionen als Informationsträger in der Spintronik in greifbare Nähe bringen. Bibliographie: [IEM+85] M. Ishida, Y. Endoh, S. Mitsuda, Y. Ishikawa, and M. Tanaka. Crystal Chirality and Helicity of the Helical Spin Density Wave in MnSi. II. Polarized Neutron Diffraction. Journal of the Physical Society of Japan, 54(8):2975, 1985. [DBS+18] B. Das, B. Balasubramanian, R. Skomski, P. Mukherjee, S. R. Valloppilly, G. C. Hadjipanayis, and D. J. Sellmyer. Effect of size confinement on skyrmionic properties of MnSi nanomagnets. Nanoscale, 10(20):9504, 2018. [YKT+15] T. Yokouchi, N. Kanazawa, A. Tsukazaki, Y. Kozuka, A. Kikkawa, Y. Taguchi, M. Kawasaki, M. Ichikawa, F. Kagawa, and Y. Tokura. Formation of In-plane Skyrmions in Epitaxial MnSi Thin Films as Revealed by Planar Hall Effect. Journal of the Physical Society of Japan, 84(10):104708, 2015. [WC67] R. H. Walden and R. F. Cotellessa. Magnetoresistance of Nickel-Copper Single-Crystal Thin Films. Journal of Applied Physics, 38(3):1335, 1967. [TYY+12] A. Tonomura, X. Yu, K. Yanagisawa, T. Matsuda, Y. Onose, N. Kanazawa, H. S. Park, and Y. Tokura. Real-Space Observation of Skyrmion Lattice in Helimagnet MnSi Thin Samples. Nano Letters, 12(3):1673, 2012. [HC12] S. X. Huang and C. L. Chien. Extended Skyrmion Phase in Epitaxial FeGe(111) Thin Films. Physical Review Letters, 108(26):267201, 2012. KW - Molekularstrahlepitaxie KW - Mangansilicide KW - Magnetische Eigenschaft KW - MnSi KW - Epitaxy KW - XRD KW - Twin Domains KW - Twin Suppression KW - Magnetometry KW - Magnetoresistance KW - Anisotropic Magnetoresistance KW - Röntgendiffraktometrie KW - Zwillingsbildung KW - Magnetismus KW - Magnetowiderstand Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-184720 ER -