TY - JOUR T1 - Observation of Light-by-Light Scattering in Ultraperipheral Pb + Pb Collisions with the ATLAS Detector JF - Physical Review Letters N2 - This Letter describes the observation of the light-by-light scattering process, gamma gamma -> gamma gamma, in Pb + Pb collisions at root S-NN = 5.02 TeV. The analysis is conducted using a data sample corresponding to an integrated luminosity of 1.73 nb(-1), collected in November 2018 by the ATLAS experiment at the LHC. Light-by-light scattering candidates are selected in events with two photons produced exclusively, each with transverse energy E-T(gamma) > 3 GeV and pseudorapidity vertical bar eta(gamma)vertical bar < 2.4, diphoton invariant mass above 6 GeV, and small diphoton transverse momentum and acoplanarity. After applying all selection criteria, 59 candidate events are observed for a background expectation of 12 +/- 3 events. The observed excess of events over the expected background has a significance of 8.2 standard deviations. The measured fiducial cross section is 78 +/- 13(stat) +/- 7(syst) +/- 3(lumi) nb. KW - Ultrarelativistic Heavy-Ion KW - Delbruck Scattering KW - Physics KW - Relativistic heavy-ion collisions Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-226892 VL - 123 ER - TY - JOUR T1 - Search for heavy particles decaying into a top-quark pair in the fully hadronic final state in \({pp}\) collisions at root s=13 TeV with the ATLAS detector JF - Physical Review D N2 - A search for new particles decaying into a pair of top quarks is performed using proton-proton collision data recorded with the ATLAS detector at the Large Hadron Collider at a center-of-mass energy of root s = 13 TeV corresponding to an integrated luminosity of 36.1 fb(-1). Events consistent with top-quark pair production and the fully hadronic decay mode of the top quarks are selected by requiring multiple high transverse momentum jets including those containing b-hadrons. Two analysis techniques, exploiting dedicated top-quark pair reconstruction in different kinematic regimes, are used to optimize the search sensitivity to new hypothetical particles over a wide mass range. The invariant mass distribution of the two reconstructed top-quark candidates is examined for resonant production of new particles with various spins and decay widths. No significant deviation from the Standard Model prediction is observed and limits are set on the production cross-section times branching fraction for new hypothetical Z' bosons, dark-matter mediators, Kaluza-Klein gravitons and Kaluza-Klein gluons. By comparing with the predicted production cross sections, the Z' boson in the topcolor-assisted-technicolor model is excluded for masses up to 3.1-3.6 TeV, the dark-matter mediators in a simplified framework are excluded in the mass ranges from 0.8 to 0.9 TeV and from 2.0 to 2.2 TeV, and the Kaluza-Klein gluon is excluded for masses up to 3.4 TeV, depending on the decay widths of the particles. KW - Parton distributions KW - ++ KW - Algorithm KW - Cross-section KW - Physics KW - LHC KW - Gravitons KW - Hypothetical gauge bosons KW - Top quark KW - Hadron colliders Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-317362 VL - 99 IS - 9 ER - TY - JOUR A1 - Schlottmann, Elisabeth A1 - Schicke, David A1 - Krüger, Felix A1 - Lingnau, Benjamin A1 - Schneider, Christian A1 - Höfling, Sven A1 - Lüdge, Kathy A1 - Porte, Xavier A1 - Reitzenstein, Stephan T1 - Stochastic polarization switching induced by optical injection in bimodal quantum-dot micropillar lasers JF - Optics Express N2 - Mutual coupling and injection locking of semiconductor lasers is of great interest in non-linear dynamics and its applications for instance in secure data communication and photonic reservoir computing. Despite its importance, it has hardly been studied in microlasers operating at mu W light levels. In this context, vertically emitting quantum dot micropillar lasers are of high interest. Usually, their light emission is bimodal, and the gain competition of the associated linearly polarized fundamental emission modes results in complex switching dynamics. We report on selective optical injection into either one of the two fundamental mode components of a bimodal micropillar laser. Both modes can lock to the master laser and influence the non-injected mode by reducing the available gain. We demonstrate that the switching dynamics can be tailored externally via optical injection in very good agreement with our theory based on semi-classical rate equations. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement KW - Nonlinear Dynamics KW - Bistability KW - Generation KW - Subject KW - Regimes KW - Physics KW - Vcsels Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-228603 VL - 27 IS - 20 ER -