TY - THES A1 - Breitenbach, Tim T1 - A mathematical optimal control based approach to pharmacological modulation with regulatory networks and external stimuli T1 - Ein auf mathematischer Optimalkontrolle basierender Ansatz für pharmakologische Modulation mit regulatorischen Netzwerken und externen Stimuli N2 - In this work models for molecular networks consisting of ordinary differential equations are extended by terms that include the interaction of the corresponding molecular network with the environment that the molecular network is embedded in. These terms model the effects of the external stimuli on the molecular network. The usability of this extension is demonstrated with a model of a circadian clock that is extended with certain terms and reproduces data from several experiments at the same time. Once the model including external stimuli is set up, a framework is developed in order to calculate external stimuli that have a predefined desired effect on the molecular network. For this purpose the task of finding appropriate external stimuli is formulated as a mathematical optimal control problem for which in order to solve it a lot of mathematical methods are available. Several methods are discussed and worked out in order to calculate a solution for the corresponding optimal control problem. The application of the framework to find pharmacological intervention points or effective drug combinations is pointed out and discussed. Furthermore the framework is related to existing network analysis tools and their combination for network analysis in order to find dedicated external stimuli is discussed. The total framework is verified with biological examples by comparing the calculated results with data from literature. For this purpose platelet aggregation is investigated based on a corresponding gene regulatory network and associated receptors are detected. Furthermore a transition from one to another type of T-helper cell is analyzed in a tumor setting where missing agents are calculated to induce the corresponding switch in vitro. Next a gene regulatory network of a myocardiocyte is investigated where it is shown how the presented framework can be used to compare different treatment strategies with respect to their beneficial effects and side effects quantitatively. Moreover a constitutively activated signaling pathway, which thus causes maleficent effects, is modeled and intervention points with corresponding treatment strategies are determined that steer the gene regulatory network from a pathological expression pattern to physiological one again. N2 - In dieser Arbeit werden Modelle für molekulare Netzwerke bestehend aus gewöhnlichen Differentialgleichungen durch Terme erweitert, die die Wechselwirkung zwischen dem entsprechenden molekularen Netzwerk und der Umgebung berücksichtigen, in die das molekulare Netzwerk eingebettet ist. Diese Terme modellieren die Effekte von externen Stimuli auf das molekulare Netzwerk. Die Nutzbarkeit dieser Erweiterung wird mit einem Modell der circadianen Uhr demonstriert, das mit gewissen Termen erweitert wird und Daten von mehreren verschiedenen Experimenten zugleich reproduziert. Sobald das Modell einschließlich der externen Stimuli aufgestellt ist, wird eine Grundstruktur entwickelt um externe Stimuli zu berechnen, die einen gewünschten vordefinierte Effekt auf das molekulare Netzwerk haben. Zu diesem Zweck wird die Aufgabe, geeignete externe Stimuli zu finden, als ein mathematisches optimales Steuerungsproblem formuliert, für welches, um es zu lösen, viele mathematische Methoden zur Verfügung stehen. Verschiedene Methoden werden diskutiert und ausgearbeitet um eine Lösung für das entsprechende optimale Steuerungsproblem zu berechnen. Auf die Anwendung dieser Grundstruktur pharmakologische Interventionspunkte oder effektive Wirkstoffkombinationen zu finden, wird hingewiesen und diese diskutiert. Weiterhin wird diese Grundstruktur in Bezug zu existierenden Netzwerkanalysewerkzeugen gesetzt und ihre Kombination für die Netzwerkanalyse diskutiert um zweckbestimmte externe Stimuli zu finden. Die gesamte Grundstruktur wird mit biologischen Beispielen verifiziert, indem man die berechneten Ergebnisse mit Daten aus der Literatur vergleicht. Zu diesem Zweck wird die Blutplättchenaggregation untersucht basierend auf einem entsprechenden genregulatorischen Netzwerk und damit assoziierte Rezeptoren werden detektiert. Weiterhin wird ein Wechsel von einem T-Helfer Zelltyp in einen anderen in einer Tumorumgebung analysiert, wobei fehlende Agenzien berechnet werden um den entsprechenden Wechsel in vitro zu induzieren. Als nächstes wird ein genregulatorisches Netzwerk eines Myokardiozyten untersucht, wobei gezeigt wird wie die präsentierte Grundstruktur genutzt werden kann um verschiedene Behandlungsstrategien in Bezug auf ihre nutzbringenden Wirkungen und Nebenwirkungen quantitativ zu vergleichen. Darüber hinaus wird ein konstitutiv aktivierter Signalweg, der deshalb unerwünschte Effekte verursacht, modelliert und Interventionspunkte mit entsprechenden Behandlungsstrategien werden bestimmt, die das genregulatorische Netzwerk wieder von einem pathologischen Expressionsmuster zu einem physiologischen steuern. KW - Bioinformatik KW - systematic drug targeting KW - optimal drug combination KW - disease modelling KW - external stimuli KW - intervention point analyzing KW - Molekülsystem KW - Reiz Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-174368 ER - TY - THES A1 - Vainshtein, Yevhen T1 - Applying microarray‐based techniques to study gene expression patterns: a bio‐computational approach T1 - Anwendung von Mikroarrayanalysen um Genexpressionsmuster zu untersuchen: Ein bioinformatischer Ansatz N2 - The regulation and maintenance of iron homeostasis is critical to human health. As a constituent of hemoglobin, iron is essential for oxygen transport and significant iron deficiency leads to anemia. Eukaryotic cells require iron for survival and proliferation. Iron is part of hemoproteins, iron-sulfur (Fe-S) proteins, and other proteins with functional groups that require iron as a cofactor. At the cellular level, iron uptake, utilization, storage, and export are regulated at different molecular levels (transcriptional, mRNA stability, translational, and posttranslational). Iron regulatory proteins (IRPs) 1 and 2 post-transcriptionally control mammalian iron homeostasis by binding to iron-responsive elements (IREs), conserved RNA stem-loop structures located in the 5’- or 3‘- untranslated regions of genes involved in iron metabolism (e.g. FTH1, FTL, and TFRC). To identify novel IRE-containing mRNAs, we integrated biochemical, biocomputational, and microarray-based experimental approaches. Gene expression studies greatly contribute to our understanding of complex relationships in gene regulatory networks. However, the complexity of array design, production and manipulations are limiting factors, affecting data quality. The use of customized DNA microarrays improves overall data quality in many situations, however, only if for these specifically designed microarrays analysis tools are available. Methods In this project response to the iron treatment was examined under different conditions using bioinformatical methods. This would improve our understanding of an iron regulatory network. For these purposes we used microarray gene expression data. To identify novel IRE-containing mRNAs biochemical, biocomputational, and microarray-based experimental approaches were integrated. IRP/IRE messenger ribonucleoproteins were immunoselected and their mRNA composition was analysed using an IronChip microarray enriched for genes predicted computationally to contain IRE-like motifs. Analysis of IronChip microarray data requires specialized tool which can use all advantages of a customized microarray platform. Novel decision-tree based algorithm was implemented using Perl in IronChip Evaluation Package (ICEP). Results IRE-like motifs were identified from genomic nucleic acid databases by an algorithm combining primary nucleic acid sequence and RNA structural criteria. Depending on the choice of constraining criteria, such computational screens tend to generate a large number of false positives. To refine the search and reduce the number of false positive hits, additional constraints were introduced. The refined screen yielded 15 IRE-like motifs. A second approach made use of a reported list of 230 IRE-like sequences obtained from screening UTR databases. We selected 6 out of these 230 entries based on the ability of the lower IRE stem to form at least 6 out of 7 bp. Corresponding ESTs were spotted onto the human or mouse versions of the IronChip and the results were analysed using ICEP. Our data show that the immunoselection/microarray strategy is a feasible approach for screening bioinformatically predicted IRE genes and the detection of novel IRE-containing mRNAs. In addition, we identified a novel IRE-containing gene CDC14A (Sanchez M, et al. 2006). The IronChip Evaluation Package (ICEP) is a collection of Perl utilities and an easy to use data evaluation pipeline for the analysis of microarray data with a focus on data quality of custom-designed microarrays. The package has been developed for the statistical and bioinformatical analysis of the custom cDNA microarray IronChip, but can be easily adapted for other cDNA or oligonucleotide-based designed microarray platforms. ICEP uses decision tree-based algorithms to assign quality flags and performs robust analysis based on chip design properties regarding multiple repetitions, ratio cut-off, background and negative controls (Vainshtein Y, et al., 2010). N2 - Die Regulierung und Aufrechterhaltung der Eisen-Homeostase ist bedeutend für die menschliche Gesundheit. Als Bestandteil des Hämoglobins ist es wichtig für den Transport von Sauerstoff, ein Mangel führt zu Blutarmut. Eukaryotische Zellen benötigen Eisen zum Überleben und zum Proliferieren. Eisen ist am Aufbau von Hämo- und Eisenschwefelproteinen (Fe-S) beteiligt und kann als Kofaktor dienen. Die Aufnahme, Nutzung, Speicherung und der Export von Eisen ist zellulär auf verschiedenen molekularen Ebenen reguliert (Transkription, mRNA-Level, Translation, Protein-Level). Die iron regulatory proteins (IRPs) 1 und 2 kontrollieren die Eisen-Homeostase in Säugetieren posttranslational durch die Bindung an Iron-responsive elements (IREs). IREs sind konservierte RNA stem-loop Strukturen in den 5' oder 3' untranslatierten Bereichen von Genen, die im Eisenmetabolismus involviert sind (z.B. FTH1, FTL und TFRC). In dieser Arbeit wurden biochemische und bioinformatische Methoden mit Microarray-Experimenten kombiniert, um neue mRNAs mit IREs zu identifizieren. Genexpressionsstudien verbessern unser Verständnis über die komplexen Zusammenhänge in genregulatorischen Netzwerken. Das komplexe Design von Microarrays, deren Produktion und Manipulation sind dabei die limitierenden Faktoren bezüglich der Datenqualität. Die Verwendung von angepassten DNA Microarrays verbessert häufig die Datenqualität, falls entsprechende Analysemöglichkeiten für diese Arrays existieren. Methoden Um unser Verständnis von eisenregulierten Netzwerken zu verbessern, wurde im Rahmen dieses Projektes die Auswirkung einer Behandlung mit Eisen bzw. von Knockout Mutation unter verschiedenen Bedingungen mittels bioinformatischer Methoden untersucht. Hierfür nutzen wir Expressionsdaten aus Microarray-Experimenten. Durch die Verknüpfung von biochemischen, bioinformatischen und Microarray Ansätzen können neue Proteine mit IREs identifiziert werden. IRP/IRE messenger Ribonucleoproteine wurden immunpräzipitiert. Die Zusammensetzung der enthaltenen mRNAs wurde mittels einem IronChip Microarray analysiert: Für diesen Chip wurden bioinformatisch Gene vorhergesagt, die IRE-like Motive aufweisen. Der Chip wurde mit solchen Oligonucleotiden beschichtet und durch Hybridisierung überprüft, ob die präzipitierten mRNA sich hieran binden. Die Analyse der erhaltenen Daten erfordert ein spezialisiertes Werkzeug um von allen Vorteilen der angepassten Microarrays zu profitieren. Ein neuer Entscheidungsbaum-basierter Algorithmus wurde in Perl im IronChip Evaluation Package (ICEP) implementiert. Ergebnisse Aus großen Sequenz-Datenbanken wurden IRE-like Motive identifiziert. Dazu kombiniert der Algorithmus, insbesondere RNA-Primärsequenz und RNA-Strukturdaten. Solche Datenbankanalysen tendieren dazu, eine große Anzahl falsch positiver Treffer zu generieren. Daher wurden zusätzliche Bedingungen formuliert, um die Suche zu verfeinern und die Anzahl an falsch positiven Treffer zu reduzieren. Die angepassten Suchkriterien ergaben 15 IRE-like Motive. In einem weiteren Ansatz verwendeten wir eine Liste von 230 IRE-like Sequenzen aus UTR-Datenbanken. Daraus wurden 6 Sequenzen ausgewählt, die auch im unteren Teil stabil sind (untere Helix über 6 bp stabil). Die korrespondierenden Expressed Sequence Tags (ESTs) wurden auf die humane oder murine Version des IronChips aufgetragen. Die Microarray Ergebnisse wurden mit dem ICEP Programm ausgewertet. Unsere Ergebnisse zeigen, dass die Immunpräzipitation mit anschließender Microarrayanalyse ein nützlicher Ansatz ist, um bioinformatisch vorhergesagte IRE-Gene zu identifizieren. Darüber hinaus ermöglicht uns dieser Ansatz die Detektion neuer mRNAs, die IREs enthalten, wie das von uns gefundene Gen CDC14A (Sanchez et al., 2006). ICEP ist ein optimiertes Programmpaket aus Perl Programmen (Vainshtein et al., BMC Bioinformatics, 2010). Es ermöglicht die einfache Auswertung von Microarray Daten mit dem Fokus auf selbst entwickelten Microarray Designs. ICEP diente für die statistische und bioinformatische Analyse von selbst entwickelten IronChips, kann aber auch leicht an die Analyse von oligonucleotidbasierten oder cDNA Microarrays adaptiert werden. ICEP nutzt einen Entscheidungsbaum-basierten Algorithmus um die Qualität zu bewerten und führt eine robuste Analyse basierend auf Chipeigenschaften, wie mehrfachen Wiederholungen, Signal/Rausch Verhältnis, Hintergrund und Negativkontrollen durch. KW - Microarray KW - Genexpression KW - Bioinformatik KW - geneexpression KW - microarrays KW - IronChip KW - ICEP Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-51967 ER - TY - THES A1 - Schulze, Katja T1 - Automatisierte Klassifizierung und Viabilitätsanalyse von Phytoplankton T1 - Automated classification and viability analysis for phytoplankton N2 - Zentrales Ziel dieser Arbeit war es, Methoden der Mikroskopie, Bildverarbeitung und Bilderkennung für die Charakterisierungen verschiedener Phyotplankter zu nutzen, um deren Analyse zu verbessern und zu vereinfachen. Der erste Schwerpunkt der Arbeit lag auf der Analyse von Phytoplanktongemeinschaften, die im Rahmen der Überprüfung der Süßwasserqualität als Marker dienen. Die konventionelle Analyse ist dabei sehr aufwendig, da diese noch immer vollständig von Hand durchgeführt wird und hierfür speziell ausgebildetes Personal eingesetzt werden muss. Ziel war es, ein System zur automatischen Erkennung aufzubauen, um die Analyse vereinfachen zu können. Mit Hilfe von automatischer Mikroskopie war es möglich Plankter unterschiedlicher Ausdehnung durch die Integration mehrerer Schärfeebenen besser in einem Bild aufzunehmen. Weiterhin wurden verschiedene Fluoreszenzeigenschaften in die Analyse integriert. Mit einem für ImageJ erstellten Plugin können Organismen vom Hintergrund der Aufnahmen abgetrennt und eine Vielzahl von Merkmalen berechnet werden. Über das Training von neuralen Netzen wird die Unterscheidung von verschieden Gruppen von Planktontaxa möglich. Zudem können weitere Taxa einfach in die Analyse integriert und die Erkennung erweitert werden. Die erste Analyse von Mischproben, bestehend aus 10 verschiedenen Taxa, zeigte dabei eine durchschnittliche Erkennungsrate von 94.7% und eine durchschnittliche Falsch-Positiv Rate von 5.5%. Im Vergleich mit bestehenden Systemen konnte die Erkennungsrate verbessert und die Falsch Positiv Rate deutlich gesenkt werde. Bei einer Erweiterung des Datensatzes auf 22 Taxa wurde darauf geachtet, Arten zu verwenden, die verschiedene Stadien in ihrem Wachstum durchlaufen oder höhere Ähnlichkeiten zu den bereits vorhandenen Arten aufweisen, um evtl. Schwachstellen des Systemes erkennen zu können. Hier ergab sich eine gute Erkennungsrate (86.8%), bei der der Ausschluss von nicht-planktonischen Partikeln (11.9%) weiterhin verbessert war. Der Vergleich mit weiteren Klassifikationsverfahren zeigte, dass neuronale Netze anderen Verfahren bei dieser Problemstellung überlegen sind. Ähnlich gute Klassifikationsraten konnten durch Support Vektor Maschinen erzielt werden. Allerdings waren diese bei der Unterscheidung von unbekannten Partikeln dem neuralen Netz deutlich unterlegen. Der zweite Abschnitt stellt die Entwicklung einer einfachen Methode zur Viabilitätsanalyse von Cyanobakterien, bei der keine weitere Behandlung der Proben notwendig ist, dar. Dabei wird die rote Chlorophyll - Autofluoreszenz als Marker für lebende Zellen und eine grüne unspezifische Fluoreszenz als Marker für tote Zellen genutzt. Der Assay wurde mit dem Modellorganismus Synechocystis sp. PCC 6803 etabliert und validiert. Die Auswahl eines geeigeneten Filtersets ermöglicht es beide Signale gleichzeitig anzuregen und zu beobachten und somit direkt zwischen lebendenden und toten Zellen zu unterscheiden. Die Ergebnisse zur Etablierung des Assays konnten durch Ausplattieren, Chlorophyllbestimmung und Bestimmung des Absorbtionsspektrums bestätigt werden. Durch den Einsatz von automatisierter Mikroskopie und einem neu erstellten ImageJ Plugin wurde eine sehr genaue und schnelle Analyse der Proben möglich. Der Einsatz beim Monitoring einer mutagenisierten Kultur zur Erhöhung der Temperaturtoleranz ermöglichte genaue und zeitnahe Einblicke in den Zustand der Kultur. Weitere Ergebnisse weisen darauf hin, dass die Kombination mit Absorptionsspektren es ermöglichen können bessere Einblicke in die Vitalität der Kultur zu erhalten. N2 - Central goal of this work was to improve and simplify the characterization of different phytoplankter by the use of automated microscopy, image processing and image analysis. The first part of the work dealt with the analysis of pytoplankton communities, which are used as a marker for the determination of fresh water quality. The current routine analysis, is very time consuming and expensive, as it is carried out manually by trained personnel. Thus the goal of this work was to develop a system for automating the analysis. With the use of automated microscopy different focal planes could be integrated into one image, which made it possible to image plankter of different focus levels simultaneously. Additionally it allowed the integration of different fluorescence characteristics into the analysis. An image processing routine, developed in ImageJ, allows the segmentation of organisms from the image background and the calculation of a large range of features. Neural networks are then used for the classification of previously defined groups of plankton taxa. The program allows easy integration of additional taxa and expansion of the recognition targets. The analysis of samples containing 10 different taxa showed an average recognition rate of 94.7% and an average error rate of 5.5%. The obtained recognition rate was better than those of existing systems and the exclusion of non-plankton particles could be greatly improved. After extending the data set to 22 different classes of (more demanding) taxa a still good recognition (86.9 %) and still improved error rate (11.9 %) were obtained. This extended set was specifically selected in order to target potential weaknesses of the system. It contained mainly taxa that showed strong similarities to each other or taxa that go through various different morphological stages during their growth. The obtained recognition rates were comparable or better than those of existing systems and the exclusion of non-plankton particles could be greatly improved. A comparison of different classification methods showed, that neural networks are superior to all other investigated methods when used for this specific task. While similar recognition rates could be achieved with the use of support vector machines they were vastly inferior for the differentiation of unknown particles. The second part focused on the development of a simple live - dead assay for unicellular cyanobacteria without the need of sample preparation. The assay uses red chlorophyll fluorescence, corresponding to viable cells, and an unspecific green autofluorescence, that can only be observed in non viable cells. The assay was established and validated for the model organism Synechocystis sp. PCC 6803. With the selection of a suitable filter-set both signals could be excited and observed simultaneously, allowing a direct classification of viable and non-viable cells. The results were confirmed by plating/colony count, absorption spectra and chlorophyll measurements. The use of an automated fluorescence microscope and an ImageJ based image analysis plugin allows a very precise and fast analysis. The monitoring of a random mutagenized culture undergoing selection for improved temperature tolerance allowed an accurate and prompt insight into the condition of the culture. Further results indicate that a combination of the new assay with absorption spectra or chlorophyll concentration measurements allows the estimation of the vitality of cells. KW - Bilderkennnung KW - Bioinformatik KW - Phytoplankton KW - Bilderkennung KW - Phytoplankton KW - Viabilität KW - Mikroskopie KW - Bioinformatik Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-107174 ER - TY - THES A1 - Blenk, Steffen T1 - Bioinformatical analysis of B-cell lymphomas T1 - Bioinformatische Analyse von B-Zell Lymphomen N2 - Background: The frequency of the most observed cancer, Non Hodgkin Lymphoma (NHL), is further rising. Diffuse large B-cell lymphoma (DLBCL) is the most common of the NHLs. There are two subgroups of DLBCL with different gene expression patterns: ABC (“Activated B-like DLBCL”) and GCB (“Germinal Center B-like DLBCL”). Without therapy the patients often die within a few months, the ABC type exhibits the more aggressive behaviour. A further B-cell lymphoma is the Mantle cell lymphoma (MCL). It is rare and shows very poor prognosis. There is no cure yet. Methods: In this project these B-cell lymphomas were examined with methods from bioinformatics, to find new characteristics or undiscovered events on the molecular level. This would improve understanding and therapy of lymphomas. For this purpose we used survival, gene expression and comparative genomic hybridization (CGH) data. In some clinical studies, you get large data sets, from which one can reveal yet unknown trends. Results (MCL): The published proliferation signature correlates directly with survival. Exploratory analyses of gene expression and CGH data of MCL samples (n=71) revealed a valid grouping according to the median of the proliferation signature values. The second axis of correspondence analysis distinguishes between good and bad prognosis. Statistical testing (moderate t-test, Wilcoxon rank-sum test) showed differences in the cell cycle and delivered a network of kinases, which are responsible for the difference between good and bad prognosis. A set of seven genes (CENPE, CDC20, HPRT1, CDC2, BIRC5, ASPM, IGF2BP3) predicted, similarly well, survival patterns as proliferation signature with 20 genes. Furthermore, some bands could be associated with prognosis in the explorative analysis (chromosome 9: 9p24, 9p23, 9p22, 9p21, 9q33 and 9q34). Results (DLBCL): New normalization of gene expression data of DLBCL patients revealed better separation of risk groups by the 2002 published signature based predictor. We could achieve, similarly well, a separation with six genes. Exploratory analysis of gene expression data could confirm the subgroups ABC and GCB. We recognized a clear difference in early and late cell cycle stages of cell cycle genes, which can separate ABC and GCB. Classical lymphoma and best separating genes form a network, which can classify and explain the ABC and GCB groups. Together with gene sets which identify ABC and GCB we get a network, which can classify and explain the ABC and GCB groups (ASB13, BCL2, BCL6, BCL7A, CCND2, COL3A1, CTGF, FN1, FOXP1, IGHM, IRF4, LMO2, LRMP, MAPK10, MME, MYBL1, NEIL1 and SH3BP5; Altogether these findings are useful for diagnosis, prognosis and therapy (cytostatic drugs). N2 - Hintergrund: Die Häufigkeit von Non-Hodgkin-Lymphomen (NHL), den am meisten beobachteten Krebserkrankungen, steigt weiter an. Von den aggressiven Non-Hodgkin-Lymphomen (NHL) macht das “großzellige, diffuse B-Zell-Lymphom” (DLBCL) den größten Anteil aus. Durch Genexpressionsmuster wurden zwei Subtypen definiert: ACB (“Activated B-like DLBCL”) und GCB (“Germinal Center B-like DLBCL”). Die Patienten der Gruppe ABC sterben ohne Therapie oft innerhalb weniger Monate, weil der ABC Typ einen aggressiveren Krankheitsverlauf aufweist. Ein weiteres, von einer malignen Entartung der B-Lymphozyten ausgehendes Lymphom, ist das “Mantelzell Lymphom” (MCL). Es tritt selten auf und ist ebenfalls mit einer schlechten Prognose verbunden. Eine vollständige Heilung nach der Therapie ist sehr selten. Methoden: In diesem Projekt wurden diese B-zell Lymphome mit bioinformatischen Methoden untersucht, um auf molekularer Ebene neue Eigenschaften oder bisher unentdeckte Zusammenhänge zu finden. Das würde das Verständnis und damit auch die Therapie voranbringen. Dafür standen uns Überlebens-, Genexpressions- und chromosomale Aberrationsdaten zur Verfügung. Sie sind die bevorzugte Wahl der Mittel, um genetische Veränderungen in Tumorzellen zu bestimmen. Hierbei fallen oft große Datenmengen an, aus welchen man mit bioinformatischen Methoden vorher unerkannte Trends und Hinweise identifizieren kann. Ergebnisse (MCL): Explorative Analysen sowohl der Genexpressions- (zweite Hauptachse der Korrespondenz Analyse) als auch der chromosomalen Aberrationsdaten des Mantelzell-Lymphom zeigten uns hierbei, daß es trotz der linearen Korrelation zwischen der veröffentlichten Proliferationssignatur und der Überlebenszeit sinnvoll ist, in den Patienten (n=71) zwei Ausprägungen zu betrachten: Patienten mit schlechter und mit guter Prognose. Statistische Tests (moderate t-test, Wilcoxon rank-sum test) dieser beiden Typen zeigten Unterschiede im Zellzyklus und ein Netzwerk von Kinasen auf, welche für den Unterschied zwischen guter und schlechter Prognose verantwortlich sind. Sieben Gene (CENPE, CDC20, HPRT1, CDC2, BIRC5, ASPM, IGF2BP3) konnten gefunden werden, die eine ähnliche gute Prognose für Überlebenszeiten ermöglichen, wie eine früher veröffentlichte Proliferationssignatur mit 20 Genen. Außerdem konnten chromosomale Banden durch eine explorative Analyse mit der Prognose assoziiert werden (Chromosom 9: 9p24, 9p23, 9p22, 9p21, 9q33 and 9q34). Ergebnisse (DLBCL): Durch geeignete Normalisierung der Genexpressionsdaten von 248 DLBCL-Patienten trennte der Signatur basierte Predictor die Risikogruppen nun besser auf. Eine ähnlich gute Auftrennung konnte von uns sogar mit sechs Genen erreicht werden. Die explorative Analyse der Genexpressionsdaten konnte die Subtypen ABC und GCB als valide Gruppen bestätigen. In den Genen, die ABC und GCB unterscheiden, ergab sich eine Häufung in späten und frühen Zellzyklusstadien. Klassische Lymphommarker, neu aufgefundene spezielle Gene und Zellzyklusgene bilden ein Netzwerk, das die ABC und GCB Gruppen klassifizieren und Unterschiede in deren Regulation erklären kann (ASB13, BCL2, BCL6, BCL7A, CCND2, COL3A1, CTGF, FN1, FOXP1, IGHM, IRF4, LMO2, LRMP, MAPK10, MME, MYBL1, NEIL1 and SH3BP5. Dies ist auch für die Diagnose, Prognose und Therapie (Zytostatika) interessant. KW - Bioinformatik KW - Genexpression KW - Auswertung KW - B-Zell-Lymphom KW - Diffuses großzelliges B-Zell-Lymphom KW - Mantelzell-Lymphom KW - Bioinformatics KW - gene expression KW - B-cell lymphoma KW - Diffuse large B-cell lymphoma (DLBCL) KW - Mantle cell lymphoma (MCL) Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-27421 ER - TY - THES A1 - Bertram, Helge T1 - Bioinformatische Identifikation von Domänenunterschieden bei Parasit und Wirt am Beispiel der Malaria T1 - Bioinformatic identification of domain differences in parasite and host using malaria as an example N2 - Diese Arbeit untersucht zelluläre Netzwerke mit dem Ziel, die so gewonnenen Einsichten medizinisch beziehungsweise biotechnologisch zu nutzen. Hierzu müssen zunächst Proteindomänen und wichtige regulatorische RNA Elemente erkannt werden. Dies geschieht für regulatorische Elemente in Nukleinsäuren am Beispiel von Iron Responsive Elements (IREs) in Staphylococcus aureus, wobei sich solche Elemente in viel versprechender Nähe zu exprimierten Sequenzen finden lassen (T. Dandekar, F. Du, H. Bertram (2001) Nonlinear Analysis 47(1): 225-34). Noch bedeutsamer als Ziele zur Medikamentenentwicklung gegen Parasiten sind Domänenunterschiede in Struktur und Sequenz bei Proteinen (T. Dandekar, F. Du, H. Bertram (2001) Nonlinear Analysis 47(1): 225-34). Ihre Identifikation wird am Beispiel eines potentiellen Transportproteins in Plasmodium falciparum exemplarisch dargestellt. Anschließend wird das Zusammenwirken von regulatorischen Elementen und Domänen in Netzwerken betrachtet (einschließlich experimenteller Daten). Dies kann einerseits zu allgemeineren Schlussfolgerungen über das Netzwerkverhalten führen, andererseits für konkrete Anwendungen genutzt werden. Als Beispiel wählten wir hier Redoxnetzwerke und die Bekämpfung von Plasmodien als Verursacher der Malaria. Da das gesamte Redoxnetzwerk einer lebenden Zelle mit Methoden der pH Wert Messung nur unzureichend zu erfassen ist, werden als alternative Messmethode für dieses Netzwerk Mikrokristalle der Glutathionreduktase als Indikatorsystem nach digitaler Verstärkung experimentell genutzt (H. Bertram, M. A. Keese, C. Boulin, R. H. Schirmer, R. Pepperkok, T. Dandekar (2002) Chemical Nanotechnology Talks III - Nano for Life Sciences). Um komplexe Redoxnetzwerke auch bioinformatisch zu modulieren, werden Verfahren der metabolischen Fluxanalyse vorgestellt und verbessert, um insbesondere ihrer Verzahnung besser gerecht zu werden und solche Netzwerke mit möglichst wenig elementaren Flussmoden zutreffend beschreiben zu können. Die Reduktion der Anzahl von Elementarmoden bei sehr großen metabolischen Netzwerken einer Zelle gelingt hier mit Hilfe unterschiedlicher Methoden und führt zu einer vereinfachten Darstellungsmöglichkeit komplexer Stoffwechselwege von Metaboliten. Dabei dient bei jeder dieser Methoden die biochemisch sinnvolle Definition von externen Metaboliten als Grundlage (T. Dandekar, F. Moldenhauer, S. Bulik, H. Bertram, S. Schuster (2003) Biosystems 70(3): 255-70). Allgemeiner werden Verfahren der Proteindomänenklassifikation sowie neue Strategien gegen mikrobielle Erreger betrachtet. In Bezug auf automatisierte Einteilung von Proteinen in Domänen wird ein neues System von Taylor (2002b) mit bekannten Systemen verglichen, die in unterschiedlichem Umfang menschlichen Eingriffs bedürfen (H. Bertram, T. Dandekar (2002) Chemtracts 15: 735-9). Außerdem wurde neben einer Arbeit über die verschiedenen Methoden aus den Daten eines Genoms Informationen über das metabolische Netzwerk der Zelle zu erlangen (H. Bertram, T. Dandekar (2004) it 46(1): 5-11) auch eine Übersicht über die Schwerpunkte der Bioinformatik in Würzburg zusammengestellt (H. Bertram, S. Balthasar, T. Dandekar (2003) Bioforum 1-2: 26-7). Schließlich wird beschrieben, wie die Pathogenomik und Virulenz von Bakterien der bioinformatischen Analyse zugänglich gemacht werden können (H. Bertram, S. Balthasar, T. Dandekar (2003) Bioforum Eur. 3: 157-9). Im letzten Teil wird die metabolische Fluxanalyse zur Identifikation neuer Strategien zur Bekämpfung von Plasmodien dargestellt: Beim Vergleich der Stoffwechselwege mit Glutathion und Thioredoxin in Plasmodium falciparum, Anopheles und Mensch geht es darum, gezielte Störungen im Stoffwechsel des Malariaerregers auszulösen und dabei den Wirt zu schonen. Es ergeben sich einige interessante Ansatzpunkte, deren medizinische Nutzung experimentell angestrebt werden kann. N2 - The objective of this thesis is to obtain information, which may be advantageous for biotechnical and medical purposes. In order to achieve this aim it is first necessary to identify protein domains and essential regulatory RNA elements. In case of regulatory RNA elements this is accomplished by investigating Iron Responsive Elements (IREs) in Staphylocuccus aureus as a model. In this case these elements are found in much promising vicinity to open reading frames coding for proteins (T. Dandekar, F. Du, H. Bertram (2001) Nonlinear Analysis 47(1): 225-34). Even more significant for the purpose of developing pharmaceuticals against parasites are differences of structure and sequence in protein domains (T. Dandekar, F. Du, H. Bertram (2001) Nonlinear Analysis 47(1): 225-34). Their identification is shown in a potential transport protein in Plasmodium falciparum. Subsequently the interaction of regulatory elements and domains in networks is considered (including experimental data). The resulting observations may lead to general conclusions concerning network reaction, as well as specific applications. Our example and field of interest are redox networks and Plasmodia causing malaria. It is not possible to cover the redox network state of a living cell using only pH measurements. Therefore small crystals of glutathione reductase are employed as a more suitable indicator, whose signal is digitally amplified (H. Bertram, M. A. Keese, C. Boulin, R. H. Schirmer, R. Pepperkok, T. Dandekar (2002) Chemical Nanotechnology Talks III - Nano for Life Sciences). In order to bioinformatically modulate complex redox networks techniques of metabolic flux analysis are presented. They are also improved particularly to advance the understanding of interdependences and to facilitate the correct comprehension of such networks with as few elementary flux modes as possible. In this thesis the reduction of the number of elementary modes of large and intertwined metabolic networks succeeds with various methods. This leads to a simpler model of complex metabolic functions. For each of the methods used in this process the biochemically justified definition of external and internal metabolites constitutes the basis (T. Dandekar, F. Moldenhauer, S. Bulik, H. Bertram, S. Schuster (2003) Biosystems 70(3): 255-70). In a more general sense methods of protein domain classification and new strategies for the control of microbial pathogens are considered. In reference to automated classification of protein domains a new system by Taylor (2002b) is compared with traditional systems, which require a varying degree of human intervention (H. Bertram, T. Dandekar (2002) Chemtracts 15: 735-9). In addition different methods of acquiring information on the cellular metabolic network from genomic data is discussed (H. Bertram, T. Dandekar (2004) it 46(1): 5-11). Furthermore a survey of the main fields of bioinformatic research in Würzburg is given (H. Bertram, S. Balthasar, T. Dandekar (2003) Bioforum 1-2: 26-7). Finally it is outlined how pathogenicity and virulence of bacteria may be made accessible to bioinformatic analysis (H. Bertram, S. Balthasar, T. Dandekar (2003) Bioforum Eur. 3: 157-9). In the conclusion metabolic flux analysis is used for the identification of new strategies in the battle against Plasmodia: The comparison of metabolic pathways with glutathione and thioredoxin in Plasmodium falciparum, Anopheles and man aims at raising planned dysfunctions in the metabolism of Plasmodium or Anopheles without harming the human host. Valuable suggestions for medical applications and pharmacological targets are obtained. KW - Plasmodium falciparum KW - Domäne KW - Klassifikation KW - Bioinformatik KW - Redoxsystem KW - Glutathion-Reductase KW - Malariamücke KW - Mensch KW - Stoffwechselweg KW - Malaria KW - metabolische Fluxanalyse KW - Glutathionreduktase KW - Iron Responsive Elements KW - Proteindomänenklassifikation KW - malaria KW - metabolic fluxanalysis KW - glutathione reductase KW - iron responsive elements KW - classification of protein domains Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-17188 ER - TY - THES A1 - Pischimarov, Jordan Ivanov T1 - Bioinformatische Methoden zur Identifizierung und Klassifizierung somatischer Mutationen in hämatologischen Erkrankungen T1 - Bioinformatics approaches for the detection and classification of somatic mutations in hematological malignancies N2 - Die Sequenzierungstechnologien entwickeln sich stetig weiter, dies ermöglicht eine zuvor nicht erreichte Ausbeute an experimentellen Daten und auch an Neuentwicklungen von zuvor nicht realisierbaren Experimenten. Zugleich werden spezifische Datenbanken, Algorithmen und Softwareprogramme entwickelt, um die neu entstandenen Daten zu analysieren. Während der Untersuchung bioinformatischer Methoden für die Identifizierung und Klassifizierung somatischer Mutationen in hämatologischen Erkrankungen, zeigte sich eine hohe Vielfalt an alternativen Softwaretools die für die jeweiligen Analyseschritte genutzt werden können. Derzeit existiert noch kein Standard zur effizienten Analyse von Mutationen aus Next-Generation-Sequencing (NGS)-Daten. Die unterschiedlichen Methoden und Pipelines generieren Kandidaten, die zum größten Anteil in allen Ansätzen identifiziert werden können, jedoch werden Software spezifische Kandidaten nicht einheitlich detektiert. Um eine einheitliche und effiziente Analyse von NGS-Daten durchzuführen war im Rahmen dieser Arbeit die Entwicklung einer benutzerfreundlichen und einheitlichen Pipeline vorgesehen. Hierfür wurden zunächst die essentiellen Analysen wie die Identifizierung der Basen, die Alignierung und die Identifizierung der Mutationen untersucht. Des Weiteren wurden unter Berücksichtigung von Effizienz und Performance diverse verfügbare Softwaretools getestet, ausgewertet und sowohl mögliche Verbesserungen als auch Erleichterungen der bisherigen Analysen vorgestellt und diskutiert. Durch Mitwirken in Konsortien wie der klinischen Forschergruppe 216 (KFO 216) und International Cancer Genome Consortium (ICGC) oder auch bei Haus-internen Projekten wurden Datensätze zu den Entitäten Multiples Myelom (MM), Burkitt Lymphom (BL) und Follikuläres Lymphom (FL) erstellt und analysiert. Die Selektion geeigneter Softwaretools und die Generierung der Pipeline basieren auf komparativen Analysen dieser Daten, sowie auf geteilte Ergebnisse und Erfahrungen in der Literatur und auch in Foren. Durch die gezielte Entwicklung von Skripten konnten biologische und klinische Fragestellungen bearbeitet werden. Hierzu zählten eine einheitliche Annotation der Gennamen, sowie die Erstellung von Genmutations-Heatmaps mit nicht Variant-Calling-File (VCF)-Syntax konformen Dateien. Des Weiteren konnten nicht abgedeckte Regionen des Genoms in den NGS-Daten identifiziert und analysiert werden. Neue Projekte zur detaillierten Untersuchung der Verteilung von wiederkehrender Mutationen und Funktionsassays zu einzelnen Mutationskandidaten konnten basierend auf den Ergebnissen initiiert werden. Durch eigens erstellte Python-Skripte konnte somit die Funktionalität der Pipeline erweitert werden und zu wichtigen Erkenntnissen bei der biologischen Interpretation der Sequenzierungsdaten führen, wie beispielsweise zu der Detektion von drei neuen molekularen Subgruppen im MM. Die Erweiterungen, der in dieser Arbeit entwickelten Pipeline verbesserte somit die Effizienz der Analyse und die Vergleichbarkeit unserer Daten. Des Weiteren konnte durch die Erstellung eines eigenen Skripts die Analyse von unbeachteten Regionen in den NGS-Daten erfolgen. N2 - The sequencing technologies, while still being under further development, render it possible to develop novel experiments and allow the generation of larger amounts of utilizable data. At the same time novel software tools, databases and algorithms are developed to analyze these larger amounts of data. The analysis of somatic mutations in hematological malignancies showed that a high variety of alternative software tools can be used for different analysis steps. Furthermore there is currently no standardized procedure for the efficient identification and analysis of mutations in NGS data. The different pipeline and methods are, for the most part, able to identify the same mutation candidates, however there are software specific candidates which are not called by all pipelines. The scope of this dissertation was therefore to develop a user-friendly pipeline which is able to call candidate mutations uniformly and efficiently. For this purpose necessary analysis steps including base calling, alignment generation and variant calling were investigated. Furthermore available software tools were tested and evaluated regarding their efficiency and performance. Possible improvements of these software tools and previously performed analysis are explained and discussed in this work. NGS data sets of the different cancer entities multiple myeloma (MM), Burkitt lymphoma (BL) and follicular lymphoma (FL) were generated and analyzed within the framework of cooperate projects like the International Cancer Genome Consortium (ICGC) and the Clinical Research Group 216 (KFO) as well as for internal projects. The development of the pipeline and selection of suitable software tools is based on the comparative analysis of the generated data sets, as well as previously described results and experiences in literature and forums. The selective development of certain python scripts enabled the evaluation of novel biological and clinical questions by standardizing gene names in the annotation step, generating heat- maps of non-standardized VCF-files as well as the identification and analysis of uncovered regions in NGS data sets. This work and the obtained results thereby provide the groundwork for further projects e.g. the analysis of the distribution of recurrent mutations or the functional analysis of specific mutation candidates. This extensions of the developed pipeline with python scripts helped to improve the efficiency and comparability of the NGS data. The interpretation of the NGS data with the extended script for example led to the discovery of three distinct molecular subgroups in MM. Furthermore the generation of the novel python scripts helped to analyze uncovered regions in the NGS data sets.  KW - Pipeline-Rechner KW - somatische Mutationen KW - Sequenzierung KW - Bioinformatik KW - Identifizierungspipeline KW - Next Generation Sequencing KW - Variantcalling KW - Bioinformatic KW - somatic mutations KW - DNS-Sequenz KW - Somatische Mutation Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-147773 ER - TY - THES A1 - Arumugam, Manimozhiyan T1 - Comparative metagenomic analysis of the human intestinal microbiota T1 - Vergleichende metagenomische Analyse des menschlichen Darmflora N2 - The human gut is home for thousands of microbes that are important for human life. As most of these cannot be cultivated, metagenomics is an important means to understand this important community. To perform comparative metagenomic analysis of the human gut microbiome, I have developed SMASH (Simple metagenomic analysis shell), a computational pipeline. SMASH can also be used to assemble and analyze single genomes, and has been successfully applied to the bacterium Mycoplasma pneumoniae and the fungus Chaetomium thermophilum. In the context of the MetaHIT (Metagenomics of the human intestinal tract) consortium our group is participating in, I used SMASH to validate the assembly and to estimate the assembly error rate of 576.7 Gb metagenome sequence obtained using Illumina Solexa technology from fecal DNA of 124 European individuals. I also estimated the completeness of the gene catalogue containing 3.3 million open reading frames obtained from these metagenomes. Finally, I used SMASH to analyze human gut metagenomes of 39 individuals from 6 countries encompassing a wide range of host properties such as age, body mass index and disease states. We find that the variation in the gut microbiome is not continuous but stratified into enterotypes. Enterotypes are complex host-microbial symbiotic states that are not explained by host properties, nutritional habits or possible technical biases. The concept of enterotypes might have far reaching implications, for example, to explain different responses to diet or drug intake. We also find several functional markers in the human gut microbiome that correlate with a number of host properties such as body mass index, highlighting the need for functional analysis and raising hopes for the application of microbial markers as diagnostic or even prognostic tools for microbiota-associated human disorders. N2 - Der menschliche Darm beheimatet tausende Mikroben, die für das menschliche Leben wichtig sind. Da die meisten dieser Mikroben nicht kultivierbar sind, ist „Metagenomics“ ein wichtiges Werkzeug zum Verständnis dieser wichtigen mikrobiellen Gemeinschaft. Um vergleichende Metagenomanalysen durchführen zu können, habe ich das Computerprogramm SMASH (Simple metagenomic analysis shell) entwickelt. SMASH kann auch zur Assemblierung und Analyse von Einzelgenomen benutzt werden und wurde erfolgreich auch das Bakterium Mycoplasma pneumoniae und den Pilz Chaetomium thermophilum angewandt. Im Zusammenhang mit der Beteiligung unserer Arbeitsgruppe am MetaHIT (Metagenomics of the human intestinal tract) Konsortium, habe ich SMASH benutzt um die Assemblierung zu validieren und die Fehlerrate der Assemblierung von 576.7 Gb Metagenomsequenzen, die mit der Illumina Solexa Technologie aus der fäkalen DNS von 124 europäischen Personen gewonnen wurde, zu bestimmen. Des Weiteren habe ich die Vollständigkeit des Genkatalogs dieser Metagenome, der 3.3 Millionen offene Leserahmen enthält, geschätzt. Zuletzt habe ich SMASH benutzt um die Darmmetagenome von 39 Personen aus 6 Ländern zu analysieren. Hauptergebnis dieser Analyse war, dass die Variation der Darmmikrobiota nicht kontinuierlich ist. Anstatt dessen fanden wir so genannte Enterotypen. Enterotypen sind komplexe Zustände der Symbiose zwischen Wirt und Mikroben, die sich nicht durch Wirteigenschaften, wie Alter, Body-Mass-Index, Erkrankungen und Ernährungseigenschaften oder ein mögliches technisches Bias erklären lassen. Das Konzept der Enterotypen könnte weitgehende Folgen haben. Diese könnten zum Beispiel die unterschiedlichen Reaktionen auf Diäten oder Medikamenteneinahmen erklären. Weiterhin konnten wir eine Anzahl an Markern im menschlichen Darmmikrobiome finden, die mit unterschiedlichen Wirtseigenschaften wie dem Body-Mass-Index korrelieren. Dies hebt die Wichtigkeit dieser Analysemethode hervor und erweckt Hoffnungen auf Anwendung mikrobieller Marker als diagnostisches oder sogar prognostisches Werkzeug für menschliche Erkrankungen in denen das Mikrobiom eine Rolle spielt. KW - Darmflora KW - Metagenom KW - Bioinformatik KW - human gut microbiome KW - metagenomics KW - comparative metagenomics KW - computational analysis Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-55903 ER - TY - THES A1 - Thakar, Juilee T1 - Computational models for the study of responses to infections T1 - Bioinformatische Modelle zur Analyse der Immunantwort auf Infektionen N2 - In diesem Jahrhundert haben neue experimentelle Techniken und Computer-Verfahren enorme Mengen an Information erzeugt, die bereits viele biologische Rätsel enthüllt haben. Doch die Komplexität biologischer Systeme wirft immer weitere neue Fragen auf. Um ein System zu verstehen, bestand der Hauptansatz bis jetzt darin, es in Komponenten zu zerlegen, die untersucht werden können. Ein neues Paradigma verknüpft die einzelnen Informationsteile, um sie auf globaler Ebene verstehen zu können. In der vorgelegten Doktorarbeit habe ich deshalb versucht, infektiöse Krankheiten mit globalen Methoden („Systembiologie“) bioinformatisch zu untersuchen. Im ersten Teil wird der Apoptose-Signalweg analysiert. Apoptose (Programmierter Zelltod) wird bei verschiedenen Infektionen, zum Beispiel bei Viruserkrankungen, als Abwehrmaßnahme eingesetzt. Die Interaktionen zwischen Proteinen, die ‚death’ Domänen beinhalten, wurden untersucht, um folgende Fragen zu klären: i) wie wird die Spezifität der Interaktionen erzielt? –sie wird durch Adapter erreicht, ii) wie werden Proliferation/ Überlebenssignale während der Aktivierung der Apoptose eingeleitet? – wir fanden Hinweise für eine entscheidende Rolle des RIP Proteins (Rezeptor-Interagierende Serine/Threonine-Proteinkinase 1). Das Modell erlaubte uns, die Interaktions-Oberflächen von RIP vorherzusagen. Der Signalweg wurde anschließend auf globaler Ebene mit Simulationen für verschiedene Zeitpunkte analysiert, um die Evolution der Aktivatoren und Inhibitoren des Signalwegs und seine Struktur besser zu verstehen. Weiterhin wird die Signalverarbeitung für Apoptosis-Signalwege in der Maus detailliert modelliert, um den Konzentrationsverlauf der Effektor-Kaspasen vorherzusagen. Weitere experimentelle Messungen von Kaspase-3 und die Überlebenskurven von Zellen bestätigen das Modell. Der zweite Teil der Resultate konzentriert sich auf das Phagosom, eine Organelle, die eine entscheidende Rolle bei der Eliminierung von Krankheitserregern spielt. Dies wird am Beispiel von M. tuberculosis veranschaulicht. Die Fragestellung wird wiederum in zwei Aspekten behandelt: i) Um die Prozesse, die durch M. tuberculosis inhibiert werden zu verstehen, haben wir uns auf das Phospholipid-Netzwerk konzentriert, das bei der Unterdrückung oder Aktivierung der Aktin-Polymerisation eine große Rolle spielt. Wir haben für diese Netzwerkanalyse eine Simulation für verschiedene Zeitpunkte ähnlich wie in Teil eins angewandt. ii) Es wird vermutet, dass Aktin-Polymere bei der Fusion des Phagosoms mit dem Lysosom eine Rolle spielen. Um diese Hypothese zu untersuchen, wurde ein in silico Modell von uns entwickelt. Wir fanden heraus, dass in der Anwesenheit von Aktin-Polymeren die Suchzeit für das Lysosom um das Fünffache reduziert wurde. Weiterhin wurden die Effekte der Länge der Aktin-Polymere, die Größe der Lysosomen sowie der Phagosomen und etliche andere Modellparameter analysiert. Nach der Untersuchung eines Signalwegs und einer Organelle führte der nächste Schritt zur Untersuchung eines komplexen biologischen Systems der Infektabwehr. Dies wurde am Beispiel der Wirt-Pathogen Interaktion bei Bordetella pertussis und Bordetella bronchiseptica dargestellt. Die geringe Menge verfügbarer quantitativer Daten war der ausschlaggebende Faktor bei unserer Modellwahl. Für die dynamische Simulation wurde ein selbst entwickeltes Bool’sches Modell verwendet. Die Ergebnisse sagen wichtige Faktoren bei der Pathologie von Bordetellen hervor, besonders die Bedeutung der Th1 assoziierten Antworten und dagegen nicht der Th2 assoziierten Antworten für die Eliminierung des Pathogens. Einige der quantitativen Vorhersagen wurden durch Experimente wie die Untersuchung des Verlaufs einer Infektion in verschiedenen Mutanten und Wildtyp-Mäusen überprüft. Die begrenzte Verfügbarkeit kinetischer Daten war der kritische Faktor bei der Auswahl der computer-gestützten Modelle. Der Erfolg unserer Modelle konnte durch den Vergleich mit experimentellen Beobachtungen belegt werden. Die vergleichenden Modelle in Kapitel 6 und 9 können zur Untersuchung neuer Wirt-Pathogen Interaktionen verwendet werden. Beispielsweise führt in Kapitel 6 die Analyse von Inhibitoren und inhibitorischer Signalwege aus drei Organismen zur Identifikation wichtiger regulatorischer Zentren in komplexen Organismen und in Kapitel 9 ermöglicht die Identifikation von drei Phasen in B. bronchiseptica und der Inhibition von IFN-γ durch den Faktor TTSS die Untersuchung ähnlicher Phasen und die Inhibition von IFN-γ in B. pertussis. Eine weitere wichtige Bedeutung bekommen diese Modelle durch die mögliche Identifikation neuer, essentieller Komponenten in Wirt-Pathogen Interaktionen. In silico Modelle der Effekte von Deletionen zeigen solche Komponenten auf, die anschließend durch experimentelle Mutationen weiter untersucht werden können. N2 - In this century new experimental and computational techniques are adding an enormous amount of information, revealing many biological mysteries. The complexities of biological systems still broach new questions. Till now the main approach to understand a system has been to divide it in components that can be studied. The upcoming new paradigm is to combine the pieces of information in order to understand it at a global level. In the present thesis we have tried to study infectious diseases with such a global ‘Systems Biology’ approach. In the first part the apoptosis pathway is analyzed. Apoptosis (Programmed cell death) is used as a counter measure in different infections, for example viral infections. The interactions between death domain containing proteins are studied to address the following questions: i) How specificity is maintained - showing that it is induced through adaptors, ii) how proliferation/ survival signals are induced during activation of apoptosis – suggesting the pivotal role of RIP. The model also allowed us to detect new possible interacting surfaces. The pathway is then studied at a global level in a time step simulation to understand the evolution of the topology of activators and inhibitors of the pathway. Signal processing is further modeled in detail for the apoptosis pathway in M. musculus to predict the concentration time course of effector caspases. Further, experimental measurements of caspase-3 and viability of cells validate the model. The second part focuses on the phagosome, an organelle which plays an essential role in removal of pathogens as exemplified by M. tuberculosis. Again the problem is addressed in two main sections: i) To understanding the processes that are inhibited by M. tuberculosis; we focused on the phospholipid network applying a time step simulation in section one, which plays an important role in inhibition or activation of actin polymerization on the phagosome membrane. ii) Furthermore, actin polymers are suggested to play a role in the fusion of the phagosome with lysosome. To check this hypothesis an in silico model was developed; we find that the search time is reduced by 5 fold in the presence of actin polymers. Further the effect of length of actin polymers, dimensions of lysosome, phagosome and other model parameter is analyzed. After studying a pathway and then an organelle, the next step was to move to the system. This was exemplified by the host pathogen interactions between Bordetella pertussis and Bordetella bronchiseptica. The limited availability of quantitative information was the crucial factor behind the choice of the model type. A Boolean model was developed which was used for a dynamic simulation. The results predict important factors playing a role in Bordetella pathology especially the importance of Th1 related responses and not Th2 related responses in the clearance of the pathogen. Some of the quantitative predictions have been counterchecked by experimental results such as the time course of infection in different mutants and wild type mice. All these computational models have been developed in presence of limited kinetic data. The success of these models has been validated by comparison with experimental observations. Comparative models studied in chapters 6 and 9 can be used to explore new host pathogen interactions. For example in chapter 6, the analysis of inhibitors and inhibitory paths in three organism leads to the identification of regulatory hotspots in complex organisms and in chapter 9 the identification of three phases in B. bronchiseptica and inhibition of IFN-γ by TTSS lead us to explore similar phases and inhibition of IFN-γ in B. pertussis. Further an important significance of these models is to identify new components playing an essential role in host-pathogen interactions. In silico deletions can point out such components which can be further analyzed by experimental mutations. KW - Bordetella pertussis KW - Infektion KW - Apoptosis KW - Signaltransduktion KW - Bioinformatik KW - Tuberkelbakterium KW - Biologische Kaskaden KW - Bordetellae KW - M. tuberculosis KW - Apoptose KW - Biological cascades KW - Bordetellae KW - M. tuberculosis KW - Apoptosis Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-17266 ER - TY - JOUR A1 - Dandekar, Thomas A1 - Liang, Chunguang A1 - Krüger, Beate T1 - GoSynthetic database tool to analyse natural and engineered molecular processes JF - Database N2 - An essential topic for synthetic biologists is to understand the structure and function of biological processes and involved proteins and plan experiments accordingly. Remarkable progress has been made in recent years towards this goal. However, efforts to collect and present all information on processes and functions are still cumbersome. The database tool GoSynthetic provides a new, simple and fast way to analyse biological processes applying a hierarchical database. Four different search modes are implemented. Furthermore, protein interaction data, cross-links to organism-specific databases (17 organisms including six model organisms and their interactions), COG/KOG, GO and IntAct are warehoused. The built in connection to technical and engineering terms enables a simple switching between biological concepts and concepts from engineering, electronics and synthetic biology. The current version of GoSynthetic covers more than one million processes, proteins, COGs and GOs. It is illustrated by various application examples probing process differences and designing modifications. KW - Bioinformatik Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-97023 ER - TY - THES A1 - Zeeshan [geb. Majeed], Saman T1 - Implementation of Bioinformatics Methods for miRNA and Metabolic Modelling T1 - Die Umsetzung der Bioinformatik-Methoden für miRNA-und der Metabolischen Modellierung N2 - Dynamic interactions and their changes are at the forefront of current research in bioinformatics and systems biology. This thesis focusses on two particular dynamic aspects of cellular adaptation: miRNA and metabolites. miRNAs have an established role in hematopoiesis and megakaryocytopoiesis, and platelet miRNAs have potential as tools for understanding basic mechanisms of platelet function. The thesis highlights the possible role of miRNAs in regulating protein translation in platelet lifespan with relevance to platelet apoptosis and identifying involved pathways and potential key regulatory molecules. Furthermore, corresponding miRNA/target mRNAs in murine platelets are identified. Moreover, key miRNAs involved in aortic aneurysm are predicted by similar techniques. The clinical relevance of miRNAs as biomarkers, targets, resulting later translational therapeutics, and tissue specific restrictors of genes expression in cardiovascular diseases is also discussed. In a second part of thesis we highlight the importance of scientific software solution development in metabolic modelling and how it can be helpful in bioinformatics tool development along with software feature analysis such as performed on metabolic flux analysis applications. We proposed the “Butterfly” approach to implement efficiently scientific software programming. Using this approach, software applications were developed for quantitative Metabolic Flux Analysis and efficient Mass Isotopomer Distribution Analysis (MIDA) in metabolic modelling as well as for data management. “LS-MIDA” allows easy and efficient MIDA analysis and, with a more powerful algorithm and database, the software “Isotopo” allows efficient analysis of metabolic flows, for instance in pathogenic bacteria (Salmonella, Listeria). All three approaches have been published (see Appendices). N2 - Dynamische Wechselwirkungen und deren Veränderungen sind wichtige Themen der aktuellen Forschung in Bioinformatik und Systembiologie. Diese Promotionsarbeit konzentriert sich auf zwei besonders dynamische Aspekte der zellulären Anpassung: miRNA und Metabolite. miRNAs spielen eine wichtige Rolle in der Hämatopoese und Megakaryozytopoese, und die Thrombozyten miRNAs helfen uns, grundlegende Mechanismen der Thrombozytenfunktion besser zu verstehen. Die Arbeit analysiert die potentielle Rolle von miRNAs bei der Proteintranslation, der Thrombozytenlebensdauer sowie der Apoptose von Thrombozyten und ermöglichte die Identifizierung von beteiligten Signalwegen und möglicher regulatorischer Schlüsselmoleküle. Darüber hinaus wurden entsprechende miRNA / Ziel-mRNAs in murinen Thrombozyten systematisch gesammelt. Zudem wurden wichtige miRNAs, die am Aortenaneurysma beteiligt sein könnten, durch ähnliche Techniken vorhergesagt. Die klinische Relevanz von miRNAs als Biomarker, und resultierende potentielle Therapeutika, etwa über eine gewebsspezifische Beeinflussung der Genexpression bei Herz-Kreislauf Erkrankungen wird ebenfalls diskutiert. In einem zweiten Teil der Dissertation wird die Bedeutung der Entwicklung wissenschaftlicher Softwarelösungen für die Stoffwechselmodellierung aufgezeigt, mit einer Software-Feature-Analyse wurden verschiedene Softwarelösungen in der Bioinformatik verglichen. Wir vorgeschlagen dann den "Butterfly"-Ansatz, um effiziente wissenschaftliche Software-Programmierung zu implementieren. Mit diesem Ansatz wurden für die quantitative Stoffflussanalyse mit Isotopomeren effiziente Software-Anwendungen und ihre Datenverwaltung entwickelt: LS-MIDA ermöglicht eine einfache und effiziente Analyse, die Software "Isotopo" ermöglicht mit einem leistungsfähigeren Algorithmus und einer Datenbank, eine noch effizientere Analyse von Stoffwechselflüssen, zum Beispiel in pathogenen Bakterien (Salmonellen, Listerien). Alle drei Ansätze wurden bereits veröffentlicht (siehe Appendix). KW - miRNS KW - Bioinformatics KW - miRNA KW - Metabolic Modelling KW - Spectral Data Analysis KW - Butterfly KW - Thrombozyt KW - Bioinformatik KW - Stoffwechsel KW - Modellierung KW - Metabolischen Modellierung Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-102900 ER -