TY - JOUR A1 - Karulin, Alexey Y. A1 - Caspell, Richard A1 - Dittrich, Marcus A1 - Lehmann, Paul V. T1 - Normal distribution of CD8+ T-cell-derived ELISPOT counts within replicates justifies the reliance on parametric statistics for identifying positive responses JF - Cells N2 - Accurate assessment of positive ELISPOT responses for low frequencies of antigen-specific T-cells is controversial. In particular, it is still unknown whether ELISPOT counts within replicate wells follow a theoretical distribution function, and thus whether high power parametric statistics can be used to discriminate between positive and negative wells. We studied experimental distributions of spot counts for up to 120 replicate wells of IFN-γ production by CD8+ T-cell responding to EBV LMP2A (426 – 434) peptide in human PBMC. The cells were tested in serial dilutions covering a wide range of average spot counts per condition, from just a few to hundreds of spots per well. Statistical analysis of the data using diagnostic Q-Q plots and the Shapiro-Wilk normality test showed that in the entire dynamic range of ELISPOT spot counts within replicate wells followed a normal distribution. This result implies that the Student t-Test and ANOVA are suited to identify positive responses. We also show experimentally that borderline responses can be reliably detected by involving more replicate wells, plating higher numbers of PBMC, addition of IL-7, or a combination of these. Furthermore, we have experimentally verified that the number of replicates needed for detection of weak responses can be calculated using parametric statistics. KW - ELISPOT KW - statistics KW - t-Test KW - ANOVA KW - T-cells KW - normal distribution Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-149968 VL - 4 IS - 1 ER - TY - THES A1 - Schindelin, Johannes T1 - The standard brain of Drosophila melanogaster and its automatic segmentation T1 - Das Standardgehirn von Drosophila melanogaster und seine automatische Segmentierung N2 - In this thesis, I introduce the Virtual Brain Protocol, which facilitates applications of the Standard Brain of Drosophila melanogaster. By providing reliable and extensible tools for the handling of neuroanatomical data, this protocol simplifies and organizes the recurring tasks involved in these applications. It is demonstrated that this protocol can also be used to generate average brains, i.e. to combine recordings of several brains with the same features such that the common features are emphasized. One of the most important steps of the Virtual Insect Protocol is the aligning of newly recorded data sets with the Standard Brain. After presenting methods commonly applied in a biological or medical context to align two different recordings, it is evaluated to what extent this alignment can be automated. To that end, existing Image Processing techniques are assessed. I demonstrate that these techniques do not satisfy the requirements needed to guarantee sensible alignments between two brains. Then, I analyze what needs to be taken into account in order to formulate an algorithm which satisfies the needs of the protocol. In the last chapter, I derive such an algorithm using methods from Information Theory, which bases the technique on a solid mathematical foundation. I show how Bayesian Inference can be applied to enhance the results further. It is demonstrated that this approach yields good results on very noisy images, detecting apparent boundaries between structures. The same approach can be extended to take additional knowledge into account, e.g. the relative position of the anatomical structures and their shape. It is shown how this extension can be utilized to segment a newly recorded brain automatically. N2 - In dieser Arbeit wird das Virtual Brain Protocol vorgestellt, das die Anwendungen rund um das Standardgehirn von \dm\ erleichtert. Durch das Bereitstellen robuster und erweiterbarer Werkzeuge zum Verarbeiten neuroanatomischer Datensätze ermöglicht es ein strukturiertes Abarbeiten der häufig benötigten Vorgänge im Zusammenhang mit der Arbeit mit dem Standardgehirn. Neben der Einpassung neuer Daten in das Standardgehirn kann dieses Protokoll auch dazu verwendet werden, sogenannte Durchschnittshirne zu erstellen; Aufnahmen mehrerer Hirne mit der gleichen zu zeigenden Eigenschaft können zu einem neuen Datensatz kombiniert werden, der die gemeinsamen Charakteristika hervorhebt. Einer der wichtigsten Schritte im Virtual Insect Protocol ist die Alignierung neuer Datensätze auf das Standardgehirn. Nachdem Methoden vorgestellt werden, die üblicherweise im biologischen oder medizinischen Umfeld angewendet werden, um Hirne aufeinander zu alignieren, wird evaluiert, inwiefern dieser Prozess automatisierbar ist. In der Folge werden diverse bildverarbeitende Methoden in dieser Hinsicht beurteilt. Es wird demonstriert, dass diese Verfahren den Anforderungen sinnvoller Alignierungen von Hirnen nicht genügen. Infolgedessen wird genauer analysiert, welche Umstände berücksichtigt werden müssen, um einen Algorithmus zu entwerfen, der diesen Anforderungen genügt. Im letzten Kapitel wird ein solcher Algorithmus mithilfe von Methoden aus der Informationstheorie hergeleitet, deren Verwendung das Verfahren auf eine solide mathematische Basis stellt. Es wird weiterhin gezeigt, wie Bayesische Inferenz angewendet werden kann, um die Ergebnisse darüber hinaus zu verbessern. Sodann wird demonstriert, daß dieser Algorithmus in stark verrauschten Bilddaten ohne zusätzliche Informationen Grenzen zwischen Strukturen erkennen kann, die mit den sichtbaren Grenzen gut übereinstimmen. Das Verfahren kann erweitert werden, um zusätzliche Informationen zu berücksichtigen, wie etwa die relative Position anatomischer Strukturen sowie deren Form. Es wird gezeigt, wie diese Erweiterung zur automatischen Segmentierung eines Hirnes verwendet werden kann. KW - Taufliege KW - Gehirn KW - Segmentierung KW - Bildverarbeitung KW - Drosophila KW - Segmentierung KW - Kantenerkennung KW - Statistik KW - Bildverarbeitung KW - Drosophila KW - segmentation KW - EdgeDetection KW - statistics KW - ImageProcessing Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-15518 ER -