TY - THES A1 - Bögelein, Anna T1 - Einfluss systemischer Therapeutika auf die CXCR4-Expression von Myelomzellen T1 - Influence of therapeutic agents on CXCR4 expression of myeloma cells N2 - Im Zuge der Bemühungen um neue, tumorspezifische Therapieansätze für die Myelomerkrankung hat sich der C-X-C-Chemokinrezeptor 4 (CXCR4) aufgrund seiner zentralen Rolle in der Tumorgenese als vielversprechender Angriffspunkt hervorgetan. Im Sinne eines theranostischen Konzepts wird der Rezeptor mithilfe eines radioaktiv markierten Liganden quantifiziert und anschließend von rezeptorspezifischen Radiotherapeutika als Zielstruktur genutzt. Die CXCR4-Expression ist allerdings ein höchst dynamischer Prozess mit großer inter- und intraindividueller Heterogenität, der u.a. durch eine begleitende Chemotherapie beeinflusst werden kann. Ob sich therapieinduzierte Veränderungen der Rezeptorexpression gezielt nutzen lassen, um die CXCR4-Expression zu optimieren und so die Effektivität der CXCR4-gerichteten Strategien zu steigern, wurde bislang nicht untersucht. Vor diesem Hintergrund wurden in der vorliegenden Arbeit verschiedene, in der Myelomtherapie etablierte Substanzen sowohl einzeln als auch in Kombination hinsichtlich ihres Einflusses auf die CXCR4-Expression von MM-Zelllinien und primären MM-Zellen unter in vitro Bedingungen analysiert. In den durchgeführten Experimenten zeigte sich eine hohe Variabilität der CXCR4-Expression der MM-Zellen nach Therapieinduktion, die sich als substanz-, dosis- und zeitabhängig herausstellte. Die Ergebnisse bestätigten das große Potenzial der therapieinduzierten Modulation der CXCR4-Expression. Im weiteren Verlauf sind translationale Forschungsansätze gerechtfertigt, die die Übertragbarkeit der in vitro gewonnenen Ergebnisse auf die komplexen Vorgänge im lebenden Organismus überprüfen. Langfristiges Ziel ist der Entwurf eines patientenzentrierten, multimodalen Therapiekonzepts, welches das CXCR4-gerichtete theranostische Konzept mit einer individuell angepassten, medikamentösen MM-Therapie kombiniert. N2 - In the course of developing new tumor specific therapeutic approaches for non-yet curable myeloma disease C-X-C chemokine receptor 4 (CXCR4) has emerged as a promising target due to its crucial role in myeloma tumorigenesis. Within a theranostic concept CXCR4 is quantified using radioactively labeled ligands and afterwards targeted by receptor-specific radiopharmaceuticals. However, CXCR4 expression is a very dynamic process with a high inter- and intraindividual heterogeneity which can be influenced by concomitant chemotherapy. Whether therapy induced changes in receptor expression can be used to enhance CXCR4 expression and thus to improve efficacy of CXCR4-based theranostics has not been examined so far. In this context the present study evaluated the effect of several anti-myeloma drugs (bortezomib, cyclophosphamide, dexamethasone, doxorubicin, lenalidomide) on CXCR4 expression of different human myeloma cell lines as well as patient-derived CD138+ plasma cells under in vitro conditions. Findings disclosed a high variability of CXCR4 expression on myeloma cells after drug application which turned out to be substance-, dose- and time-dependent. The results confirmed the high potential of therapy-induced modulation of CXCR4 expression. In further course, translational research approaches are justified to verify the transferability of the in vitro findings to the complex macro- and microenvironment in vivo. Long-term goal is the development of a patient-centered, multimodal therapy concept which combines CXCR4 based theranostics with a personalized drug-based therapy. KW - Plasmozytom KW - In vitro KW - Multiples Myelom KW - Theranostik KW - CXCR4 KW - Gallium-68 Pentixafor Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-241746 ER - TY - THES A1 - Seibold, Marcel T1 - Funktionelle Charakterisierung des Ras family small GTP binding protein RAL im Multiplen Myelom T1 - Functional characterization of the Ras family small GTP binding protein RAL in multiple myeloma N2 - Die monoklonale Proliferation maligner Plasmazellen im Knochenmark ist charakteristisch für das multiple Myelom (MM) und kann bei Erkrankten zu Störungen in der Hämatopoese sowie zu Knochenläsionen und Niereninsuffizienz führen. Die Weiterentwicklung und der Einsatz neuer Therapieoptionen konnten das Überleben von MM-Patienten zwar erheblich verbessern, jedoch gilt diese Krankheit weiterhin als unheilbar. Onkogene Mutationen und das Knochenmarkmikromilieu führen in MM-Zellen zur Entstehung eines onkogenen Signalnetzwerks, das das Wachstum und Überleben der Zellen aufrechterhält. Mutationen der GTPase RAS treten bei bis zu 50 % der MM-Patienten auf und tragen zum Überleben von MM-Zellen bei. Trotz der Häufigkeit und Bedeutsamkeit von onkogenem RAS, auch in anderen Tumorentitäten, ist die GTPase nach wie vor therapeutisch nicht angreifbar. Die GTPase RAL aus der Familie der RAS-GTPasen wird als Downstream-Effektor von RAS angesehen, der damit ebenfalls zur Aufrechterhaltung des Tumorzellüberlebens beitragen könnte. In einigen Tumorentitäten konnte bisher gezeigt werden, dass eine Überexpression von RAL in den Tumorzellen vorliegt und die Proliferation und Apoptose von Tumorzellen durch RAL beeinflusst wird. Daher stellte sich die Frage, ob RAL im MM ebenfalls das Überleben von Tumorzellen beeinflusst und ob eine direkte Verbindung zwischen onkogenem RAS und RAL besteht. In dieser Arbeit wurde die funktionelle Rolle von RAL sowie dessen Zusammenhang mit onkogenem RAS im MM untersucht. Hierbei konnte eine Überexpression von RAL in MM-Zellen im Vergleich zu MGUS oder normalen Plasmazellen beobachtet werden. In Knockdown-Analysen wurde gezeigt, dass RAL überlebensnotwendig für MM-Zellen ist. Dabei wurde in Western Blot-Analysen festgestellt, dass diese Überlebenseffekte unabhängig von MAPK/ERK-Signaling vermittelt werden. Es konnte teilweise jedoch eine Abhängigkeit von der AKT-Aktivität beobachtet werden. Da RAL-Knockdown Einfluss auf das Überleben von MM-Zellen hat, wurde eine pharmakologische Inhibition von RAL durch den Inhibitor RBC8 untersucht. RBC8 zeigte in höheren Dosen nur bei einem Teil der MM-Zelllinien eine Wirkung auf das Zellüberleben sowie auf die RAL-Aktivierung. Die Weiterentwicklung potenter RAL-Inhibitoren ist daher für eine klinische Translation einer RAL-Inhibition von großer Bedeutung. Zur Untersuchung des Zusammenhangs zwischen onkogenem RAS und der RAL-Aktivierung wurden RAL-Pulldown-Analysen nach Knockdown von onkogenem RAS durchgeführt. In diesen Experimenten wurde keine Abhängigkeit der RAL-Aktivierung von onkogenem RAS festgestellt. Darüber hinaus zeigten Genexpressionsanalysen nach RAS- bzw. RAL-Knockdown unterschiedliche Genexpressionsprofile. In Massenspektrometrie-Analysen wurden mögliche Effektoren, die mit RAL an der Beeinflussung des Zellüberlebens beteiligt sein könnten, untersucht. Hierbei wurden die Komponenten des Exozyst-Komplexes EXO84 und SEC5 als Interaktionspartner von RAL identifiziert. Nachdem gezeigt wurde, dass RAL ausschlaggebend für das Überleben von MM-Zellen ist, wurde eine Kombination von RAL-Knockdown mit klinisch relevanten Wirkstoffen analysiert. Diese zeigte bei der Kombination mit PI3K oder AKT-Inhibitoren verstärkte Effekte auf das Zellüberleben der MM-Zellen. Zusammenfassend wurde die Bedeutung von RAL für das Überleben von Tumorzellen im MM gezeigt und RAL als potentielles therapeutisches Target im MM beschrieben, welches unabhängig von onkogenem RAS reguliert wird. N2 - Multiple myeloma (MM) is a hematologic neoplasia which is characterized by monoclonal proliferation of malignant plasma cells in the bone marrow leading to hematopoetic failure, bone lesions and renal failure. Although continuous development of existing therapeutics and new therapeutic options vastly improved MM patient survival, MM still remains an incurable disease. Oncogenic mutations and the bone marrow microenvironment contribute to a signaling network which sustains MM cell proliferation and survival. Within this network mutations of the RAS oncogene account for up to 50 % of MM patients. Despite its prevalence and importance not only in MM, RAS still remains undruggable. The GTPase-family Member RAL is considered as a RAS effector which might also influence maintainance of tumor cell survival. In several tumor entities RAL is overexpressed in tumor cells and influences proliferation and apoptosis. Therefore, in MM RAL might also be controlled by oncogenic RAS and mediate cell survival of tumor cells. In this work, RAL’s functional role as well as the potential interconnection with oncogenic RAS was investigated. In MM cells RAL is ovexpressed compared to non-malignant MGUS or plasma cells. Knockdown analyses showed that RAL is essential for MM cell survival. These survival effects are transferred independently of MAPK/ERK signaling as shown by Western Blot analysis. However, to some extent RAL influenced MM cell survival dependently of AKT activity. Because RAL knockdown had a significant effect on MM cell survival a pharmacological inhibition was tested using the inhibitor RBC8. In a portion of MM cell lines RBC8 exerts effects on cell survival. But the effects of RBC8 on RAL activation were only visible at higher concentrations as shown by pulldown assays. Thus, subsequent development of potent RAL inhibitors is of major importance for clinical translation. To investigate whether RAL is directly activated by oncogenic RAS, RAL pulldown assays were performed after knockdown of oncogenic RAS. Strikingly, there was no direct connection between the presence of oncogenic RAS and RAL activation. Furthermore, gene expression profiles after RAS or RAL knockdown showed differing expression signatures. Potential effectors of RAL which might also influence MM cell survival were investigated in mass spectrometric analyses where the exocyst complex components EXO84 and SEC5 were identified as RAL interaction partners. Since RAL is of importance for MM cell survival, RAL knockdown was combined with clinically relevant agents. There was an enhanced induction of apoptosis upon combination of PI3K or AKT inhibitors with RAL knockdown. Taken together, the influence of RAL as a crucial mediator of MM cell survival was shown in this work. Therefore, RAL represents a potential therapeutic target which is regulated independently of oncogenic RAS. KW - Kleine GTP-bindende Proteine KW - Signaltransduktion KW - Plasmozytom KW - RAL KW - Multiples Myelom KW - Zellüberleben KW - Knochenmark Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-208003 ER - TY - THES A1 - Diegmann [geb. Weißbach], Susann T1 - Identifizierung des Mutationsspektrums und Charakterisierung relevanter Mutationen im Multiplen Myelom T1 - Identification of Mutation Spectrum and Characterization of relevant Mutations in Multiple Myeloma N2 - Das Multiple Myelom (MM) ist eine maligne B-Zell-Erkrankung, welche von einer großen Heterogenität auf der biologischen und klinischen Ebene sowie in der Therapieantwort geprägt ist. Durch die biologische Interpretation von whole exome sequencing (WES)-Daten der Tumor- und Normalproben von fünf MM-Patienten und sechs MM-Zelllinien (ZL) sowie dem Einbezug von publizierten next generation sequencing (NGS)-Daten von 38 MM-Patienten konnten in dieser Dissertation sowohl somatische tumorrelevante Mutationen identifiziert als auch ein MM-spezifisches Signaltransduktionsnetzwerk definiert werden. Interessanterweise wurde in fast 100 % der MM-Patienten mindestens eine Mutation und in ~50 % der MM-Patienten sogar mehr als eine Mutation innerhalb dieses Netzwerkes beobachtet, was auf eine inter- und intra-individuelle Signalweg-Redundanz hinweist, die für die individuelle Therapieentscheidung möglicherweise von Bedeutung sein könnte. Außerdem konnte bestätigt werden, dass identische, positionsspezifische und genspezifische Mutationen im MM selten wiederholt auftreten. Als häufig mutierte Gene im MM konnten KRAS, NRAS, LRP1B, FAM46C, WHSC1, ALOX12B, DIS3 und PKHD1 identifiziert werden. Interessanterweise wurde die DIS3-Mutation in der MM-ZL OPM2 gemeinsam mit einer copy neutral loss of heterozygosity (CNLOH) im DIS3-Lokus detektiert, und in der MM-ZL AMO1 wurde eine noch nicht näher charakterisierte KRAS-Mutation in Exon 4 in Verbindung mit einem copy number (CN)-Zugewinn und einer erhöhten KRAS-Genexpression gefunden. DIS3 ist ein enzymatisch aktiver Teil des humanen RNA-Exosom-Komplexes und KRAS ein zentrales Protein im RTK-Signalweg, wodurch genetische Aberrationen in diesen Genen möglicherweise in der Entstehung oder Progression des MMs eine zentrale Rolle spielen. Daher wurde die gesamte coding sequence (CDS) der Gene DIS3 und KRAS an Tumorproben eines einheitlich behandelten Patientensets der DSMM-XI-Studie mit einem Amplikon-Tiefen-Sequenzierungsansatz untersucht. Das Patientenset bestand aus 81 MM-Patienten mit verfügbaren zytogenetischen und klinischen Daten. Dies ergab Aufschluss über die Verteilung der Mutationen innerhalb der Gene und dem Vorkommen der Mutationen in Haupt- und Nebenklonen des Tumors. Des Weiteren wurde die Assoziation der Mutationen mit weiteren klassischen zytogenetischen Alterationen (z.B. Deletion von Chr 13q14, t(4;14)-Translokation) untersucht und der Einfluss der Mutationen in Haupt- und Nebenklonen auf den klinischen Verlauf und die Therapieantwort bestimmt. Besonders hervorzuheben war dabei die Entdeckung von sieben neuen Mutationen sowie drei zuvor unbeschriebenen hot spot-Mutationen an den Aminosäure (AS)-Positionen p.D488, p.E665 und p.R780 in DIS3. Es wurde des Weiteren die Assoziation von DIS3-Mutationen mit einer Chr 13q14-Deletion und mit IGH-Translokationen bestätigt. Interessanterweise wurde ein niedrigeres medianes overall survival (OS) für MM-Patienten mit einer DIS3-Mutation sowie auch eine schlechtere Therapieantwort für MM-Patienten mit einer DIS3-Mutation im Nebenklon im Vergleich zum Hauptklon beobachtet. In KRAS konnten die bereits publizierten Mutationen bestätigt und keine Auswirkungen der KRAS-Mutationen in Haupt- oder Nebenklon auf den klinischen Verlauf oder die Therapieantwort erkannt werden. Erste siRNA vermittelte knockdown-Experimente von KRAS und Überexpressionsexperimente von KRAS-Wildtyp (WT) und der KRAS-Mutationen p.G12A, p.A146T und p.A146V mittels lentiviraler Transfektion zeigten eine Abhängigkeit der Phosphorylierung von MEK1/2 und ERK1/2 von dem KRAS-Mutationsstatus. Zusammenfassend liefert die vorliegende Dissertation einen detaillierten Einblick in die molekularen Strukturen des MMs, vor allem im Hinblick auf die Rolle von DIS3 und KRAS bei der Tumorentwicklung und dem klinischen Verlauf. N2 - Multiple Myeloma (MM) is a malignant B-cell neoplasm that is characterized by a great heterogeneity on the biological and clinical level as well as by a heterogeneous response to therapeutic approaches. Biological interpretation of whole exome sequencing (WES) data of tumor and normal samples of five MM patients and six MM cell lines (CL), as well as the inclusion of published next generation sequencing (NGS) data of 38 MM patients, identified somatic tumor relevant mutations as well as a signal transduction network that was commonly affected in MM. Interestingly, almost 100 % of the MM patients harbored one mutation and ~50 % of the MM patients harbored more than one mutation in different genes of this defined network, which predicted an inter- and intra-individual pathway redundancy that might be of particular importance for individual therapeutic approaches. Furthermore, it was confirmed that the recurrent occurrence of point-specific mutations and even gene specific mutations are rare events in MM. KRAS, NRAS, LRP1B, FAM46C, WHSC1, ALOX12B, DIS3 and PKHD1 were among the most recurrently mutated genes in MM. Of note, one of the DIS3 mutations was accompanied by a copy neutral loss of heterozygosity (CNLOH) in the CL OPM2 and a so far undefined exon 4 mutation in KRAS was associated with an increased copy number (CN) and gene expression level of KRAS in the CL AMO1. DIS3 is one of the active parts of the human RNA exosome complex and KRAS is a central protein in the RTK pathway leading to the hypothesis that one or more genetic abberations within these genes may play an important role in the development and progression of MM. To further investigate this hypothesis the whole coding sequence (CDS) of DIS3 and KRAS of tumor samples of a uniquely treated patient set of the DSMM XI was sequenced using an amplicon deep sequencing approach. The study included 81 MM patients for whom cytogenetic and clinical data were available. This approach revealed information about the mutational landscape within DIS3 and KRAS and the occurrence of mutations in major and minor clones. In addition, we were able to investigate the association of the DIS3 and KRAS mutations with additional cytogenetic alterations (such as deletion of chr 13q14, translocation t(4;14)) and we studied the impact of mutations in major and minor clones on the clinical outcome and response to therapy. In particular, we discovered seven unknown mutations and three previously undescribed hot spot mutations at amino acid positions p.D488, p.E665 and p.R780 in DIS3. An association of DIS3 mutations with deletion of chr 13q14 and IGH-translocations, that was described previously, was confirmed. Interestingly, a trend towards a lower median overall survival of MM patients with a DIS3 mutation was observed. Patients with a DIS3 mutation in the minor clone also showed a worse response to therapy as compared to patients with a mutation in the major clone. Published mutations in KRAS were confirmed. Moreover, we revealed no impact of these mutations (in major or minor clones) on the clinical outcome or response to therapy. First siRNA mediated knockdown experiments on KRAS and lentivirus mediated overexpression of KRAS WT and mutated KRAS (p.G12A, p.A146T and p.A146V) showed that the phosphorylation status of MEK1/2 and ERK1/2 is dependent on the mutation status of KRAS. In summary, this present doctoral thesis allowed more detailed insights into the molecular structure of MM, specifically with regard to the role of DIS3 and KRAS in tumor development and outcome. KW - Plasmozytom KW - Multiples Myelom Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-114800 ER - TY - THES A1 - Müller, Elisabeth T1 - Pan-Raf-Inhibition als neue therapeutische Strategie im Multiplen Myelom T1 - Pan-Raf-Inhibition as a new therapeutical strategy in Multiple Myeloma N2 - Das Multiple Myelom (MM) ist eine durch monoklonale Vermehrung terminal differenzierter Antikörper-produzierender B-Lymphozyten (Plasmazellen) im Knochenmark charakterisierte maligne Krankheit, die sich v.a. in osteolytischen Knochendestruktionen, hämatopoetischer und Niereninsuffizienz äußert. Verbesserte Therapieansätze wie die Hochdosis-Chemotherapie mit Melphalan und anschließender autologer Stammzelltransplantation sowie die Einführung neuer pharmakologischer Substanzklassen (Proteasom-Inhibitoren, Cereblon-bindende Thalidomidderivate) führten zu einer Verlängerung der durchschnittlichen Überlebenszeit, für die meisten der Patienten ist die Erkrankung jedoch derzeit unheilbar. Die Erforschung neuer potenzieller therapeutischer Angriffspunkte auf Grund pathobiologischer Erkenntnisse bleibt daher unabdingbar. Ein Ansatz zur Verbesserung des Verständnisses der Pathogenese ist die funktionelle, molekulare und genetische Analyse des Signalnetzwerkes im MM. Im Zusammenhang mit diesem Konzept wurde entdeckt, dass wachstums-regulierende Signalwege in MM Zellen aktiviert oder dereguliert sind und zum Überleben und der Proliferation des Tumors beitragen. So konnte beispielsweise von unserer Arbeitsgruppe bereits gezeigt werden, dass onkogenes Ras essentiell zum Überleben der MM Zellen beiträgt. Da Ras derzeit mangels spezifischer Inhibitoren pharmakologisch nicht angreifbar ist, stellen weitere funktionelle Bestandteile des Signalweges eine potenzielle therapeutische Zielstruktur dar. Während die Blockade von MEK1/2 in MM Zellen keinen Einfluss auf das Überleben hatte, konnte durch die Blockade von Raf in ersten Tests unserer Arbeitsgruppe Apoptose hervorgerufen werden. Aus diesem Grund habe ich in der vorliegenden Arbeit zur Evaluation eines neuen Therapieansatzes die Rolle der Raf-abhängigen Signaltransduktion eingehend untersucht. Als Grundlage diente dabei die Hypothese, dass die Raf-Kinasen entscheidende Effektoren der durch onkogenes Ras vermittelten apoptotischen Effekte darstellen. In einem ersten Schritt konnte ich nachweisen, dass alle drei Raf-Isoformen (A-, B- und C-Raf) in humanen MM Zelllinien und in primären MM Zellen aktiviert sind. Mittels shRNA-vermittelter, Isoform-spezifischer Raf-Knockdown-Experimente konnte ich zeigen, dass nur ein simultaner Knockdown aller Isoformen, d.h. ein Pan-Raf-Knockdown, zu einer De-Phosphorylierung von MEK1/2 und ERK1/2 führte. Dieser Versuch ließ sich mittels pharmakologischer Raf-Inhibition, bei der ebenfalls nur eine Pan-Raf-Blockade zu einer Herunterregulation von MEK1/2 und ERK1/2 in MM Zellen führte, bestätigen. Das MEK/ERK-Modul stellte somit einen hervorragenden Surrogat- und Biomarker für die Pan-Raf-Aktivität dar. Im Gegensatz zur Blockade des MEK/ERK-Moduls führte eine Hemmung der Pan-Raf-Aktivität mittels shRNA oder pharmakologischer Inhibitoren in allen untersuchten Zelllinien und in der Mehrheit der primären MM Zellen zu einer starken Induktion von Apoptose. Da das Ansprechen auf eine Pan-Raf-Blockade nicht mit dem Ras-Mutationsstatus korrelierte, könnten die Raf-Kinasen eine von onkogenem Ras unabhängie Qualität als therapeutische Zielstruktur aufweisen. Zur Untersuchung möglicher MEK/ERK-unabhängiger Effektormechanismen der Pan-Raf-Inhibition habe ich die mRNA-basierten Genexpressionsprofile von INA-6 Zellen nach pharmakologischer Pan-Raf- oder MEK-Inhibition verglichen. Dabei führte die Pan-Raf-Inhibition zu einer Regulation von wesentlich mehr Genen, wobei sich auch die Art der regulierten Gene unterschied, darunter Gene mit tumorrelevanten Funktionen wie Regulation von Proliferation, Zellzyklus und Apoptose. Für eine dieser Gengruppen, die Gruppe der PI3K-abhängigen, mTOR-assoziierten Gene, konnte ich eine Regulation auch auf der Proteinebene nachweisen: die Phosphorylierungen von mTOR, p70S6K, Rb und AKT und die Expression von CyclinD1 und PDK1 waren nach Pan-Raf-Inhibition, nicht jedoch nach MEK-Blockade herunterreguliert. Dieses Ergebnis deutet auf eine Ko-Regulation der PI3K-abhängigen Signaltransduktion durch die Raf-kinasen hin. Mittels spezifischer PI3K-Inhibitoren ließ sich sowohl bei der Regulation der untersuchten Proteine als auch bei der Induktion von Apoptose eine deutliche Verstärkung der Pan-Raf-Inhibition in HMZL und in primären Zellen erzielen. Zusammengefasst zeigt diese Arbeit, dass die Pan-Raf-Blockade eine neue Therapiemöglichkeit darstellt, die durch Kombination mit einer PI3K/AKT-Inhibition noch verstärkt werden kann. N2 - Multiple Myeloma (MM) is a malignant disease which is characterized by monoclonal expansion of terminally differentiated, antibody-producing B-lymphocytes (plasma cells) and results mostly in bone lesions, haematopoietic and renal insufficiency. Improved therapeutic approaches like high-dose melphalan chemotherapy followed by autologous stem-cell transplantation and the introduction of new pharmacological compounds (proteasome inhibitors, cereblon-binding Thalidomide derivates) increased the mean survival time. Nevertheless, the disease remains incurable for most of the patients. Therefore, the exploration of new potential therapeutical targets based on pathobiologic insights becomes vital. One approach to improve the understanding of the pathogenesis is to analyze functionally, molecularly and genetically the signaling network in MM. In the context of this concept, it was discovered, that growth-regulating pathways are activated or deregulated in MM cells and contribute to tumor survival and proliferation. Our working group could already proof that oncogenic Ras is crucial for cell survival. Since Ras itself does not yet represent a druggable target, therapeutical approaches should aim at other functional parts of the pathway. While blocking of MEK1/2 has no influence on MM cell survival, early reports of our working group showed that inhibiting Raf induced apoptosis. For this reason I investigated the role of Raf-dependent signaling in order to evaluate a new therapeutic approach. This was based on the hypothesis that Raf kinases act as important effectors for the apoptotic effects of oncogenic Ras. As a first step, I could prove, that all three Raf isoforms (A-, B- and C-Raf) are activated in human MM cell lines and in primary MM cells. By using of shRNA-mediated, isoform-specific Raf knockdown experiments I could reveal that only the simultaneous knockdown of all three isoforms, i.e. a Pan-Raf knockdown, led to de-phosphorylation of MEK1/2 and ERK1/2. Also pharmacological Raf inhibition showed that only Pan-Raf blockage decreases the phosphorylation of MEK1/2 and ERK1/2 and thereby confirmed the knockdown experiment. These experiments also proved that the MEK/ERK module is a strong surrogate and biomarker for Pan-Raf activity. Contrary to inhibiting the MEK/ERK module the inhibition of Pan-Raf activity by shRNAs or pharmacological inhibitors led on to a strong induction of apoptosis in the tested cell lines and in the majority of primary cells. Since the response to Pan-Raf inhibition did not correlate with Ras mutational status, the Raf kinases could probably represent a Ras-independent therapeutical target of high quality. In order to decode possible MEK/ERK-independent effector mechanisms I compared the mRNA-based gene expression profiles of INA-6 cells after pharmacological inhibition of Pan-Raf or MEK. Pan-Raf inhibition led to the regulation of a greater number of genes, taking into account that the character of the regulated genes also varied. This included genes with functions relevant for tumors like regulation of proliferation, cell cycle and apoptosis. For one of these groups, the PI3K-dependent, mTOR-associated genes, I could show the regulation on the level of the proteins: phosporylation of mTOR, p70S6K, Rb and AKT as well es the expression of cyclinD1 and PDK1 decreased after Pan-Raf inhibition, but not after MEK inhibition. This result suggests a co regulation of the PI3K-dependent signal transduction by Raf kinases. In summary, this thesis presents a rationale for Pan-Raf inhibition as a new therapeutical option, which can be enhanced by combination with PI3K/AKT-inhibition. KW - Plasmozytom KW - Raf-Kinasen KW - Inhibition KW - Multiples Myelom KW - Pan-Raf-Inhibition KW - Behandlungsoption Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-124666 ER - TY - THES A1 - Ok [geb. Hofmann], Claudia Barbara T1 - Isoform-spezifische Analyse der PI3-Kinase (Klasse I) im Multiplen Myelom T1 - Isoform-specific analysis of the PI3-kinase (class I) in multiple myeloma N2 - Das Multiple Myelom (MM) ist eine unheilbare Erkrankung, die aus einer klonalen Proliferation maligner Plasmazellen im Knochenmark hervorgeht. Dabei liegt ein komplexes Signalnetzwerk vor, das zum Überleben und Wachstum der MM-Zellen führt. Das MM ist durch eine enorme genetische und phänotypische Heterogenität gekennzeichnet. Die konstitutive Aktivierung des PI3K/Akt-Signalwegs spielt bei ungefähr der Hälfte der Patienten mit MM eine wichtige Rolle für das Überleben der MM-Zellen und ist daher ein potentieller therapeutischer Ansatzpunkt. Isoform-spezifische Untersuchungen der katalytischen Untereinheiten der Klasse I-PI3K (p110α, p110β, p110γ, p110δ) sollten zur Erkenntnis führen, welche dieser Isoformen für das MM Zellüberleben wichtig sind, um spezifischere Behandlungen mit möglichst geringen Nebenwirkungen zu erlauben. Dafür wurden zunächst Isoform-spezifische Knockdown-Experimente mit MM Zelllinien durchgeführt und sowohl deren Überleben als auch die Aktivierung der nachgeschalteten Komponenten im PI3K Signalweg untersucht. Zur Verifizierung der Ergebnisse wurden sowohl MM Zelllinien als auch Primärzellen mit Isoform-spezifischen PI3K-Inhibitoren behandelt (BYL 719 für p110α, TGX 221 für p110β, CAY10505 für p110γ und CAL 101 für p110δ) und in gleicher Weise untersucht. In beiden Versuchsansätzen stellte sich die katalytische Untereinheit p110α als wichtigste Isoform für das Überleben von MM Zellen mit konstitutiv phosphoryliertem Akt Signal heraus. Weder der Knockdown noch die pharmakologische Inhibition der anderen drei Isoformen (p110β, p110γ, p110δ) führten in MM-Zelllinien zur Beeinträchtigung des Zellüberlebens. Auch reagierten die Primärzellen von MM Patienten größtenteils nicht mit Apoptose auf eine Behandlung mit TGX 221, CAY10505 oder CAL 101. Aufbauend auf der postulierten Bedeutung von p110α, wurde der dafür spezifische Inhibitor BYL 719 mit bereits klinisch etablierten Therapeutika in Kombination verwendet, woraus eine im Vergleich zur Einzelbehandlung verstärkte Apoptose resultierte. Insgesamt deuten diese Daten darauf hin, dass PI3K/p110α eine therapeutisch nutzbare Zielstruktur zur Behandlung des Multiplen Myeloms darstellt. Daher scheinen weitergehende prä-klinische Studien mit p110α Inhibitoren erfolgversprechend. N2 - Multiple myeloma (MM) is an incurable disease, which results from clonal proliferation of malignant plasma cells in the bone marrow. Thereby, a complex signaling network regulates the survival and growth of MM cells. This malignant hematological disease is characterized by profound genetic and phenotypical heterogeneity. The PI3K/Akt signaling pathway is constitutively activated in about 50% of patients with MM and therefore plays an important role for the survival of MM cells. Accordingly, treatment of MM patients with the most isoform-specific drugs may be a desirable goal to achieve therapeutic utility with a minimum of undesired side effects. Therefore, an isoform-specific analysis of the catalytic subunits of the PI3K class I (p110α, p110β, p110γ, p110δ) was undertaken to reveal their individual role(s) for MM cell survival. Initially, isoform-specific knockdown experiments in MM cell lines were performed to assess their survival and the activation states of down-stream components of the PI3K pathway. These experiments were then complemented using isoform-specific pharmacological inhibitors (BYL 719 for p110α, TGX 221 for p110β, CAY10505 for p110γ and CAL 101 for p110δ) in MM cells and primary MM cells. Cell lines with constitutively phosphorylated Akt reduced this signal after p110α knockdown or pharmacologic inhibition and these treatments also affected their survival. Conversely, neither knockdown nor drug-mediated inhibition of any of the other three p110 isoforms influenced MM cell survival. In addition, whereas most primary MM samples were sensitive against BYL-719 only a few samples displayed apoptotic effects when treated with TGX 221, CAY10505 or CAL-101. These results showed that p110α is the major contributor of PI3K-mediated cell survival, and therefore the inhibitor BYL 719 was tested in combination with clinically relevant therapeutics for MM. Such treatment led to increased rates of apoptosis in MM cell lines in comparison to the respective single drug treatments. Taken together, we assume that PI3K/p110α is a therapeutically valuable target structure for the treatment of MM that would warrant more extensive pre-clinical studies. KW - Phosphatidylinositolkinase KW - Isomer KW - Signaltransduktion KW - Plasmozytom KW - p110alpha KW - BYL-719 KW - Carfilzomib KW - Melphalan KW - Lenalidomid KW - Pomalidomid KW - Bortezomib KW - synergistische Effekte KW - Phospho-Akt KW - Zellüberleben KW - pi3kinase KW - Multiples Myelom KW - Knochenmark KW - Isoform Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-108466 ER -