TY - THES A1 - Berner, Götz T1 - Funktionelle oxidische Heterostrukturen aus dem Blickwinkel der Spektroskopie T1 - Functional oxide heterostructures from a spectroscopic perspective N2 - In oxidischen Heterostrukturen rufen Neuordnung von Ladung und Spin eine Vielzahl von unerwarteten physikalischen Eigenschaften hervor. Die Möglichkeit, Leitfähigkeit, Magnetismus oder auch Hochtemperatur-Supraleitung zu kontrollieren, machen diese künstlich hergestellten Materialien vor allem in Hinblick auf eine zukünftige Anwendung in der Mikroelektronik äußerst interessant. Dies erfordert jedoch ein grundsätzliches Verständnis für die zugrunde liegenden Mechanismen. Die vorliegende Doktorarbeit befasst sich mit photonengestützter Spektroskopie, die einen direkten Zugang zur elektronischen Struktur dieser Heterostruktursysteme ermöglicht. Ein weiteres Ziel ist es, geeignete spektroskopische Methoden zur Charakterisierung der vergrabenen Schichten zu etablieren. Zwei prototypische oxidische Mehrschichtsysteme stehen im Zentrum der hier vorgestellten Untersuchungen. Das LaAlO3/SrTiO3-Heterostruktursystem weist ab einer kritischen LaAlO3-Filmdicke an der Grenzfläche ein zweidimensionales Elektronensystem mit hochmobilen Ladungsträgern auf. Als treibender Mechanismus wird die elektronische Rekonstruktion diskutiert. Im Rahmen dieser Arbeit wurde dieses zweidimensionale Elektronensystem mithilfe der Photoelektronenspektroskopie und der resonanten inelastischen Röntgenstreuung charakterisiert. Die daraus bestimmten Ladungsträgerdichten weisen im Vergleich mit Daten aus Transportmessungen auf eine Koexistenz von lokalisierten und mobilen Ladungsträgern an der Grenzfläche hin. Die Analyse von Rumpfniveau- und Valenzbandspektren zeigt, dass man zur Erklärung der experimentellen Resultate ein modifiziertes Bild der elektronischen Rekonstruktion benötigt, bei der Sauerstofffehlstellen an der LaAlO3-Oberfläche als Ladungsreservoir dienen könnten. Mithilfe der resonanten Photoelektronenspektroskopie war es möglich, die metallischen Zustände am chemischen Potential impulsaufgelöst zu spektroskopieren. So gelang es erstmals, die vergrabene Fermi-Fläche einer oxidischen Heterostruktur zu vermessen. Außerdem konnten Titan-artige Zustände identifiziert werden, die höchstwahrscheinlich durch Sauerstofffehlstellen im SrTiO3 lokalisiert sind. Diese werden als mögliche Quelle für den Ferromagnetismus interpretiert, der mit der supraleitenden Phase in der LaAlO3/SrTiO3-Heterostruktur koexistiert. Bei dem anderen hier untersuchten Mehrschichtsystem handelt es sich um die LaNiO3-LaAlO3-Übergitterstruktur. Der Einbau des metallischen LaNiO3 in eine Heterostruktur ist aufgrund seiner Nähe zu einer korrelationsinduzierten isolierenden Phase hinsichtlich einer kontrollierten Ausbildung von neuartigen Phasen besonders interessant. In der Tat beobachtet man unterhalb einer LaNiO3-Schichtdicke von vier Einheitszellen einen kontinuierlichen Metall-Isolator-Übergang, der sich in den Valenzbandspektren durch einen Verlust an Quasiteilchenkohärenz äußert. Auch wenn die impulsaufgelösten Daten am Fermi-Niveau durch Photoelektronenbeugung beeinflusst sind, so lässt sich dennoch eine Fermi-Fläche identifizieren. Ihre Topologie bietet die Möglichkeit eines Fermi-Flächen-Nestings mit der Ausbildung einer Spindichtewelle. Die Resultate unterstützen die Hinweise auf eine magnetische Ordnung im zweidimensionalen Grundzustand. N2 - Oxide heterostructures exhibit a manifold of unexpected physical properties due to charge and spin rearrangement. Because of the possibility to control the conductivity, magnetism or high-temperature superconductivity, these artificial materials are prospective candidates for future application in microelectronics. However, this needs a fundamental understanding of the mechanism leading to such effects. This thesis addresses the investigations of such systems by photoassisted spectroscopy providing a direct access to the electronic structure. The further aim of this study is to establish applicable spectroscopic methods for characterizing the buried layers in heterostructures. The study presented here deals with two prototypical oxide heterostructures. In the prominent LaAlO3/SrTiO3 heterostructure the formation of a two-dimensional electron system at the interface is observed, if the LaAlO3 layer exceeds a critical thickness. The electronic reconstruction is discussed as the driving mechanism. In this study the two-dimensional electron system is characterized by photoelectron spectroscopy and resonant inelastic x-ray scattering. The comparison of the charge carrier densities determined from spectroscopy with data from transport measurements indicates the coexistence of localized and mobile charge carriers at the interface. The analysis of core-level spectra as well as valence band spectra show that a modified electronic reconstruction picture is needed to explain the experimental observations. In such a scenario oxygen vacancies in the LaAlO3 surface layer might provide the extra charge. By using resonant photoelectron spectroscopy momentum-resolved measurements were performed to observe the metallic states at the chemical potential. For the first time a mapping of the buried Fermi surface of an oxide heterostructure has been accomplished. Additionally, some Titanium-derived states were identified in the spectra which are probably localized by surrounding oxygen vacancies in the SrTiO3. They are interpreted as a possible source of the ferromagnetism, which coexists with the superconducting phase in the LaAlO3/SrTiO3 heterostructure. The other multilayer system studied here is the LaNiO3-LaAlO3 superlattice structure. Due to its closeness to the correlation-induced insulating phase the integration of the metallic LaNiO3 in a heterostructure possibly opens the way to novel phases. Actually, a continuous metal-insulator transition is observed below a LaNiO3 layer thickness of four unit cells, which is manifested in a loss of quasiparticle coherence in the valence band spectra. Even though the momentum-resolved data is affected by photoelectron diffraction, a Fermi surface can be identified. Its topology provides the possibility of Fermi surface nesting and the formation of a spin density wave. Thus, the results support the indication for a magnetic ordering in the two-dimensional ground state. KW - Heterostruktur KW - Photoelektronenspektroskopie KW - RIXS KW - Übergitter KW - ARPES Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-121721 ER - TY - THES A1 - Latussek, Volker T1 - Elektronische Zustände in Typ-III-Halbleiterheterostrukturen T1 - Electron states in type III semiconductor heterostructures N2 - Seit 1988 werden mit dem Verfahren der Molekularstrahlepitaxie (MBE: Molecular Beam Epitaxy) am Physikalischen Institut der Universität Würzburg Halbleiterheterostrukturen aus dem Halbleitermaterialsystem Hg(1-x)Cd(x)Te hergestellt. Diese quecksilberhaltige Legierung ist ein II-VI-Verbindungshalbleiter und zeichnet sich durch eine legierungs- und temperaturabhängige fundamentale Energielücke aus. Die Bandstruktur ist je nach Temperatur und Legierungsfaktor x einerseits halbleitend, anderseits aber halbmetallisch. Die schmallückigen Hg(1-x)Cd(x)Te-Legierungen werden als Infrarotdetektoren eingesetzt. Mit dem Verfahren der Molekularstrahlepitaxie ist es möglich Bandstrukturen mit spezifischen Eigenschaften herzustellen (band structure engineering). Unter diesen neuen Materialien stellen die Typ-III-Übergitter eine besondere Klasse dar. Bei diesen zweidimensionalen Materialstrukturen wird eine nur wenige Atomlagen dicke Schicht von 30 °A bis 100 °A aus dem Halbmetall HgTe, dem Trogmaterial, in eine Legierung aus Hg(1-x)Cd(x)Te, dem Barrierenmaterial, eingebettet und zu einem Übergitter aufgebaut. Zweidimensionale Typ-III-Halbleiterheterostrukturen, wie die HgTe-Hg(1-x)Cd(x)Te-Quantentrogstrukturen und HgTe-Hg(1-x)Cd(x)Te-Übergitter, sind von fundamentalen Interesse zum Verständnis von elektronischen Zuständen komplexer Bandstrukturen und zweidimensionaler Ladungsträgersysteme. Darüber hinaus werden HgTe-Hg(1-x)Cd(x)Te-Übergitter in der Sensorik als Infrarotdektoren eingesetzt, deren cut-off-Wellenlänge prozessgesteuert in der Molekularstrahlepitaxie über die Trogbreite, der Schichtdicke des HgTe, eingestellt werden kann. Je nach verwendeten Barrierenmaterial Hg(1-x)Cd(x)Te und Temperatur besitzen die Übergitterstrukturen mit großen Barrierenschichtdicken, das sind die Quantentrogstrukturen, in Abhängigkeit von der Trogbreite, für niedrige Trogbreiten eine normal halbleitende Subbandstruktur, während sich für größere Trogbreiten eine invertiert halbleitende Subbandstruktur einstellt. In der invertiert halbleitenden Subbandstruktur ist ein indirekter Halbleiter realisierbar. Bei Strukturen mit dünnen Barrierenschichtdicken ist die Minibanddispersion stark ausgeprägt und es kann sich zusätzlich eine halbmetallische Subbandstruktur ausbilden. Diese speziellen Eigenschaften sind einzigartig und kennzeichnen die komplexe Bandstruktur von Typ-III-Heterostrukturen. Erst die genaue Kenntnis und ein vertieftes Verständnis der komplexen Bandstruktur erlaubt die Interpretation von Ergebnissen aus (magneto)-optischen Untersuchungen der elektronischen Eigenschaften von Typ-III-Halbleiterheterostrukturen. Die Berechnung der elektronischen Zustände in den HgTe-Hg(1-x)Cd(x)Te-Übergitter wurde in der vorliegenden Arbeit in der Envelopefunktionsnäherung durchgeführt. Seit drei Jahrzehnten wird die Envelopefunktionenn¨aherung (EFA: Envelope Function Approximation) sehr erfolgreich bei der Interpretation der experimentellen Ergebnisse von (magneto)- optischen Untersuchungen an Halbleiterheterostrukturen eingesetzt. Der Erfolg basiert auf der effektiven Beschreibung der quantisierten, elektronischen Zustände an Halbleitergrenzflächen, in Quantentrögen und Übergittern und der Einzigartigkeit, zur Berechnung der experimentellen Ergebnisse, die Abhängigkeit von äußeren Parametern, wie der Temperatur und des hydrostatischen Druckes, aber auch eines elektrischen und magnetischen Feldes, wie auch von freien Ladungsträgern, ein zu arbeiten. Die sehr gute quantitative Übereinstimmung der theoretischen Berechnungen in der Envelopefunktionennäherung und vieler experimenteller Messergebnisse an Halbleiterheterostrukturen baut auf der quantitativen Bestimmung der relevanten Bandstrukturparameter in der k·p-Störungstheorie zur Beschreibung der elektronischen Eigenschaften der beteiligten Volumenhalbleiter auf. In Kapitel 1 der vorliegenden Arbeit wird daher zunächst das Bandstrukturmodell des Volumenmaterials Hg(1-x)Cd(x)Te vorgestellt und daraus die Eigenwertgleichung des Hamilton-Operators in der Envelopefunktionenn¨aherung abgeleitet. Danach wird das L¨osungsverfahren, die Matrixmethode, zur Berechnung der Eigenwerte und Eigenfunktionen beschrieben und auf die Berechnung der elektronischen Subbandzustände der Typ-III-Hg(1-x)Cd(x)Te-Übergitter angewendet. Es folgt eine Diskussion der grundlegenden Eigenschaften der komplexen Bandstruktur in den verschiedenen Regimen der Typ-III-Halbleiterheterostrukturen und der charakteristischen Wellenfunktionen, den Grenzflächenzuständen. An Ende dieses Kapitels wird die Berechnung des Absorptionskoeffizienten hergeleitet und die grundlegenden Eigenschaften der Diplomatrixelemente zur Charakterisierung der optischen Eigenschaften von HgTe-Hg(1-x)Cd(x)Te-Übergitter exemplarisch vorgestellt. In Kapitel 2 sind die wesentlichen Ergebnisse aus dem Vergleich von Infrarotabsorptionsmessungen an HgTe-Hg(1-x)Cd(x)Te-Übergitter mit den berechneten Absorptionskoeffizienten zusammengestellt. N2 - For three decades the envelope function approximation (EFA) has been very successful in the interpretation of experimental results of magneto-transport and optical investigations of semiconducting heterostructures. Its success is based on the ability to describe the quantized electron states in semiconductor interfaces, quantum wells and superlattices combined with its unique ability to include the influence of external parameters such as temperature and hydrostatic pressure as well as electric and magnetic fields and the incorporation of free charge carriers. The excellent quantitative agreement between theoretical calculations using the envelope function approximation and numerous experimental results depends on the quantitative determination of the corresponding band structure parameters in the k · p perturbation theory required to correctly describe the electronic properties of the bulk semiconductors in the heterostructure in question. In order to understand numerous experiments on bulk semiconductors it is not necessary to know the band structure in the entire Brillouin zone. Knowledge is merely required near the corresponding band structure extrema. In the experiments considered here on the II-VI materials of HgTe and CdTe, which crystallize in the zinc blende structure, as well as III-V materials such as GaAs and GaAlAs, the center of the Brillouin zone is of primary importance. Since 1988 Molecular beam epitaxy (MBE) has been employed at the physics department (Physikalisches Institut) of the University of Würzburg to produce semiconducting heterostructures based on Hg(1-x)Cd(x)Te. With this method it is possible to produce materials with a particular band structure and specific properties (band structure engineering). Among these new heterostructures, type III superlattices represent an unique class. In these structures, thin layers (30 - 100)°A of only a few atomic layers of the semimetallic HgTe are alternated with layers of the Hg(1-x)Cd(x)Te alloy to form a superlattice. The resulting growth by the MBE method permits superlattices with the desired band structure to be produced and the corresponding optical absorption in the infrared spectral range. From a comparison of the band structure of these type III superlattices by means of the envelope function approximation and the resulting absorption spectrum with the experimental results from infrared spectroscopy it was possible for the first time to determine a precise value for the valence band offset a characteristic heterostructure parameter, as well as its temperature´dependence. Hereby HgTe thicknesses were determined by high resolution x-ray diffraction. Structure in the absorption spectra could be quantitatively assigned to dipole transitions between the involved subbands of the type III superlattice. The quantitative description of the optical properties of semiconducting heterostructures from the Ansatz that known bulk properties result in new and tailor made properties can also be stated conversely; from known heterostructure properties unknown properties of bulk materials can be determined. Using this corollary, first direct experimental determination of the difference of the hydrostatic deformation potentials, C-a, of HgTe with high precision, (-3.69 ± 0.10) eV, by means of hydrostatic pressure experiments on type III superlattices were carried out. Calculations of the electron states in heterostructures were carried out in this dissertation. Hereby the envelope function approximation was employed whereby the numerical eigenvalue problem was formulated in terms of the matrix method in which the individual components of the envelope functions were expanded from a complete set of functions. Because of the poor convergence in the calculations of interface states in type III quantum well structures, a new set of functions was constructed, which results in the required convergence for all heterostructures: from a p-type inversion channel in Ge bi-crystals, including GaAs-GaAlAs quantum well structures, to type III superlattices. The individual components of the envelope functions were very precisely approximated by only a very few, 10 - 20, basis functions. KW - Quecksilbertellurid KW - Cadmiumtellurid KW - Heterostruktur KW - Übergitter KW - Elektronenzustand KW - Halbleiterheterostrukturen KW - Envelopefunktionennäherung KW - Hg(1-x)Cd(x)Te KW - Semiconductor heterostrctures KW - envelope function approximation KW - Hg(1-x)Cd(x)Te Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-15055 ER -