TY - THES A1 - Degenhardt, Birgit T1 - Wachstum und physiologisches Verhalten von Zea mays bei multiplem Streß unter besonderer Berücksichtigung des Wurzelsystems T1 - Growth and physiological behaviour of Zea mays under multiple stress with special focus on the root system N2 - In der vorgestellten Arbeit wurden das Wachstum und das physiologische Verhalten von Zea mays auf Müllheizkraftwerk (MHKW) -Schlacke im Vergleich zu Gartenerde als Kulturmedium untersucht. Dabei stand das Wurzelsystem der Maispflanzen im Mittelpunkt des Interesses. Da feste Bodensubstrate verwendet wurden, mußten diese zu Beginn der Experimente chemisch, physikalisch und bodenbiologisch charakterisiert werden. Die Analyse der Schlacke zeigte, daß Schlacke ein multifaktorielles Streßsystem darstellt: Sie enthält einen hohen Gehalt an leicht löslichen Salzen, v.a. NaCl (bis zu 220 mM in der Bodenlösung). MHKW-Schlacke ist dagegen arm an Stickstoff und pflanzenverfügbarem Phosphat. Der pH-Wert der Bodenlösung von Schlacke ist stark alkalisch (pH 8.4 - 9.0). Darüber hinaus besitzt Schlacke einen hohen Gehalt an potentiell toxischen Schwermetallen und weist im Vergleich zum Kontrollsubstrat Gartenerde eine verdichtete Bodenstruktur mit erhöhtem mechanischen Widerstand auf. Im Vergleich zu der Kontroll-Anzucht auf Gartenerde reagierten die auf Schlacke kultivierten Mais-Pflanzen mit vermindertem Wachstum: Sproß und Wurzel erreichten nur die Hälfte der Länge der Kontrollpflanzen. Ein Vergleich der Biomassen von Sproß und Wurzel zeigte, daß das Sproßwachstum der Schlacke-Pflanzen stärker eingeschränkt ist als das Wurzelwachstum, woraus ein vergrößertes Wurzel / Sproß-Verhältnis resultiert. Das Wachstum von jungen Mais-Pflanzen auf Schlacke ist jedoch nicht in dem Maß eingeschränkt, wie es aufgrund der hohen Salzbelastung zu erwarten wäre. In einem Vergleichsexperiment mit Mais-Pflanzen, die in einer Nährlösung mit Zusatz von 100 mM NaCl kultiviert wurden, war das Wachstum erheblich schlechter und in den Blättern akkumulierte weitaus mehr Natrium als in Schlacke-Pflanzen. Hier wird der positive Einfluß des hohen Calciumgehaltes der Schlacke deutlich. Die Beeinträchtigung des Wachstums von Mais bei Kultur auf Schlacke wird hauptsächlich auf Phosphatmangel zurückgeführt, da durch Düngung eine beträchtliche Wachstumsverbesserung erzielt werden kann. Zudem wurden keine toxischen Konzentrationen an Schwermetallen im Blattgewebe von auf Schlacke kultivierten Pflanzen gefunden. Der Photosynthese-Apparat der Schlacke-kultivierten Pflanzen war sehr leistungsfähig: Es bestand keine Beeinträchtigung in der Energieverfügbarkeit (Quantenausbeute des Photosystems II) und die Lichtsättigung der photo-synthetischen Elektronentransportrate lag sogar höher als bei den Kontrollpflanzen. Die Bestimmung des „adenylate energy charge“ bestätigte diesen Sachverhalt. Das Wurzelsystem von Zea mays auf Schlacke wies strukturelle Veränderungen auf. Neben der verkürzten Wurzellänge und dem vergrößerten Wurzeldurchmesser der Schlacke-Pflanzen ergaben mikroskopische Untersuchungen, daß die Wurzeln durch Kultur auf Schlacke mit einer mechanischen Verstärkung reagieren: Stärker ausgeprägte tangentiale Zellwandverdickungen der Endodermis im tertiären Zustand und Zellwandmodifikationen in den radialen Zellwänden der Rhizodermis (Phi-Verdickungen). Für monokotyle Arten, insbesondere für Mais, gibt es bisher keine Beschreibung von Phi-Verdickungen in der Literatur. Gaschromatographische und massenspektrometrische Untersuchungen belegen, daß sich die Zellwände von auf Erde und Schlacke kultivierten Maiswurzeln im Hinblick auf den Gesamtgehalt an Lignin (endodermale Zellwandisolate) und in der Ligninzusammensetzung (hypodermale Zellwandisolate) unterscheiden: In Schlacke-kultivierten Maiswurzeln wurde ein höherer Anteil an dem Lignin-Monomer p Hydroxyphenyl gefunden, was zu einem höher verdichteten Lignin führt (Streßlignin). Die endodermalen Zellwände von auf Schlacke-kulivierten Pflanzen hatten dagegen einen höheren Gesamtlignin-Gehalt als die entsprechenden Kontrollen, was ebenfalls eine mechanische Verstärkung der Wurzel bewirkt. In Bezug auf Suberin konnten keine Unterschiede zwischen den verschiedenen Anzuchten gefunden werden, weder in den hypodermalen noch in den endodermalen Zellwandisolaten. Die verschiedenen Streßfaktoren führen demnach nicht zu einer verstärkten Imprägnierung der Zellwände mit lipophilem Material. Die Zellwände von Mais spielen eine wichtige Rolle bei der Immobilisierung von Schwermetallen. Die Zellwandisolate von auf Erde und Schlacke kultivierten Mais-Pflanzen wiesen je nach Schwermetall-Element 43 - 100 % des Gesamtgehaltes auf. Die absoluten Gehalte in den Zellwandisolaten von auf Schlacke angezogenen Pflanzen waren dabei höher als die entsprechenden Werte der Kontrolle. Eine Anreicherung in den Zellwänden wurde hauptsächlich für die Schwermetalle Zink, Blei, Nickel und Chrom beobachtet. Als unspezifische Streßantwort reagierten Maispflanzen auf die Kultur in Schlacke mit einer erhöhten Peroxidaseaktivität in der interzellulären Waschflüssigkeit. Die Peroxidaseaktivität des Symplastens der Wurzel unterscheidet sich zwischen den beiden Anzuchten dagegen nicht. Die Konzentration des Phytohormons Abscisinsäure (ABA) war in Blättern von auf Schlacke kultivierten Pflanzen von Zea mays und Vicia faba im Vergleich zu den Kontrollpflanzen erhöht. Dieser Anstieg ist eine Folge der erhöhten Salzbelastung der Schlacke, da die ABA-Gehalte entsprechender Blätter von auf gewaschener Schlacke kultivierten Pflanzen annähernd den Kontrollwerten entsprachen. Bei der Verteilung von ABA zwischen der Wurzel und der Bodenlösung der umliegenden Rhizosphäre konnte das als Anionenfalle bekannte Prinzip bestätigt werden. Nach diesem Modell reichert sich ABA im alkalischten Kompartiment an (hier: Schlacke-Bodenlösung). In den Wurzeln konnte nur in der Maiskultur auf Schlacke ein erhöhter Gehalt gefunden werden, nicht dagegen in der Vicia faba-Kultur. Dieser Unterschied liegt daran, daß Mais im Gegensatz zu Vicia faba eine exodermale Spezies ist und die Exodermis für ABA eine Barriere darstellt, was den ABA-Efflux in die Rhizosphäre verhindert. Im Wurzelgewebe von auf Schlacke kultivierten Maispflanzen wurde ein im Vergleich zur Kontrolle 15-facher Gehalt an wasserlöslichen, nicht proteingebundenen Sulfhydrylgruppen nachgewiesen. Diese auf Schwermetallstreß zurückzuführende Reaktion impliziert, daß die in der Schlacke-Bodenlösung vorhandenen Schwermetalle nicht ausreichend im Apoplasten zurückgehalten werden und bis in den Symplasten vordringen können. N2 - In the present thesis the growth and physiological behaviour of Zea mays cultivated on municipal solid waste incinerator bottom slag and garden mould were investigated. Thereby the root system of the maize plants was of main interest. Since solid soil substrates were used, experiments started with the chemical, physical and microbiological characterisation. The analysis represents the bottom incinerator slag as a multifactorial stress system: Slag contains a considerable amount of highly soluble salts, mainly sodium chloride (up to 220 mM in the soil solution). However, slag is poor in nitrogen and plant available phosphate. The pH-value of the slag soil solution is very alkaline (pH 8.4 – 9.0). Furthermore, slag exhibits high levels of potential toxic heavy metals and presents a condensed soil matrix with strong mechanical impedance. Compared to the control culture on garden mould, maize plants cultivated on slag showed a reduced growth: shoot and root of slag cultivated plants reached only one half of the length of the control plants. On the other hand the comparison of the shoot and root biomass revealed, that the shoot growth of the slag plants was more reduced than the root growth, resulting in an increased root to shoot ratio. Observing young corn plants on slag, the growth is not decreased as such extensively as it would be expected by this high salt burden. In a comparative experiment maize plants were cultivated in hydroponic culture supplemented by 100 mM NaCl. Here the plant growth was considerable inferior and the maize leaves accumulated sodium in much higher amounts. This emphasises the positive influence of the high calcium content of the slag. The long lasting impaired growth from corn plants cultivated on slag is mainly due to phosphate deficiency, because a substantial amendment of growth can be obtained by fertilising. Furthermore, no toxic concentration of heavy metals was detected in the leaves of slag grown plants. The photosynthetic performance of slag cultivated plants is very efficient: the energy availability (quantum yield of the photosystem II) was not reduced and the light saturation of the photosynthetic electron transport rate was even higher than for the control plants. The determination of the adenylate energy charge confirms that fact. Cultivating corn on slag, structural modifications can be observed in the root system. Besides the reduced root length and the enlargement of the root diameter microscopic examinations revealed, that roots response with a mechanical strengthening. They form more intensive tangential cell wall thickenings of the endodermis in the tertiary state of development and cell wall modifications in the radial cell walls of the rhizodermis (phi thickenings). Phi thickenings in monocotyledons species especially for maize haven’t been reported in the literature to date. Gaschromatographic and mass spectrometric investigations showed, that cell walls of maize roots cultivated on garden mould and slag differ in the total amount of lignin (endodermal cell wall isolates) and in lignin composition (hypodermal cell wall isolates): In slag cultivated corn roots a larger proportion of the lignin monomer p hydroxyphenyl was detected, which results in higher condensed lignin. The higher amount of total lignin of the endodermal cell walls from slag grown plants also causes a mechanical strengthening of the root. With regard to suberin no differences were found between the cultures, neither in hypodermal nor in endodermal cell wall isolates. Therefore the various stress factors do not induce a stronger impregnation of the cell walls with lipophilic material. The cell walls of maize play an important role by immobilisation of heavy metals. Depending on the metal species, 43 - 100 % of the total amount of the metals was recovered in cell wall isolates of garden mould and slag cultivated maize plants. The absolute amounts in the cell wall isolates of slag cultivated plants were higher than the corresponding control values. An accumulation in the cell walls were found for the heavy metals zinc, lead, nickel and chrome. As a non specific answer to stress, roots of maize plants react on slag cultivation with a rise in activity of peroxidase. This increase was only manifested in the intercellular wash fluid but not in the symplast. The investigation of the phytohormone abscisic acid (ABA) revealed a higher concentration of ABA in leaves of Zea mays and Vicia faba plants cultivated on slag than for the control plants. That increase is due to the high salt burden of slag, because the ABA values of leaves of plants cultivated on washed slag correspond approximately to the control values. The distribution of ABA between roots and the soil solution of the rhizosphere match to the anion trap concept. In accordance with that model ABA is enriched in alkaline compartments (here slag-soil solution). However, in roots an increased amount of ABA was only detected for maize cultivated on slag, but not for Vicia faba. The reason for that difference between the two plant species is, that Zea mays is an exodermal species and its exodermis represents a barrier for ABA, reducing the ABA efflux into the rhizosphere. In the root tissue of slag cultivated maize plants a 15-fold amount of water soluble, non-proteinogen sulfhydrylgroups was detected. This may be an indication for heavy metal stress and implies, that heavy metal ions in slag soil solution can not be retained sufficiently by the apoplast and enter the symplast. KW - Mais KW - Wurzel KW - Stressreaktion KW - Schlacke KW - Pflanzenwachstum KW - Gartenerde KW - Zea mays KW - Wachstum KW - Physiologie KW - Stress KW - Wurzelsystem KW - Zea mays KW - growth KW - physiology KW - stress KW - rootsystem Y1 - 2000 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-16964 ER - TY - THES A1 - Rother, Tobias T1 - Die Plasmamembran-Kalzium-ATPase im Myokard T1 - The plasma membrane calcium ATPase in the myocardium N2 - Die Plasmamembran Kalzium-ATPase (PMCA) ist ein in den meisten eukaryontischen Zellen exprimiertes Enzym. Sie katalysiert den Transport von Kalziumionen aus der Zelle und besitzt gegenüber Kalzium eine hohe Affinität jedoch geringe Transportkapazität. Trotz der guten biochemischen Charakterisierung der Pumpe ist ihre Funktion in Zellen wie Kardiomyozyten, die zusätzlich über andere Kalzium-Transportsysteme wie den Natrium/Kalzium-Austauscher verfügen, weiterhin unklar. Erste Ergebnisse aus dem eigenen Labor an PMCA-überexprimierenden L6-Myoblasten zeigten einen Einfluss des Enzyms auf deren Wachstum und Differenzierung. Um diese Erkenntnisse auf den Herzmuskel zu übertragen war im Vorfeld ein transgenes Rattenmodel generiert worden, welches die hPMCA4CI unter einem myokardspezifischen Promotor überexprimierte. Dieses Modell stand für die vorliegende Arbeit zur weiteren Charakterisierung zur Verfügung. Untersucht wurde zunächst das Wachstumsverhalten von Primärkulturen neonataler Kardiomyozyten unter Stimulation mit fetalem Kälberserum, Noradrenalin und dem Platelet Derived Growth Factor BB, jeweils im Vergleich zwischen transgenen und Wildtyp-Kardiomyozyten. Dabei zeigte sich ein beschleunigtes Wachstum der PMCA-überexprimierenden Zellen. In einem zweiten Ansatz wurden Untersuchungen angestellt, um die subzelluläre Lokalisation der PMCA innerhalb der Herzmuskelzelle aufzudecken. Dabei wurden im Speziellen die Caveolae als Ort der möglichen Lokalisation untersucht, kleine, ca. 50-100 nm große Einstülpungen der Plasmamembran, mit charakteristischer Lipid- und Proteinzusammensetzung, darunter auch viele Rezeptoren und Signaltransduktionsmoleküle. Insgesamt konnte mit den Methoden der Detergenzextraktion, Doppelimmunfluoreszenz, Präparation Caveolae-reicher Membranen und Immunpräzipitation gezeigt werden, dass die PMCA zu einem großen Teil in Caveolae lokalisiert ist. Zusätzlich konnte in der Immunpräzipitation eine Interaktion der PMCA mit dem Caveolae-assoziierten Zytoskelettprotein Dystrophin dargestellt werden. Zusammenfassend deuten die Ergebnisse darauf hin, dass die PMCA über eine Steuerung der lokalen Kalziumkonzentration im Bereich der Caveolae modulierend in wachstumsregulierende Signaltransduktionswege von Kardiomyozyten eingreifen kann. N2 - The plasma membrane calcium ATPase (PMCA) is an enzyme expressed in most eucariotic cells. It catalyses the transport of calcium ions out of the cell and has a high calcium affinity but only a low transportation capacity. Despite the good biochemical characterization of the pump, its function remains unclear in cells like cardiomyocytes that have other calcium transporting systems like the sodium-calcium-exchanger. First results from the own laboratory examining PMCA overexpressing L6-myoblasts showed an influence of the enzyme on cellular growth and differentiation. To transfer these results to the heart muscle, a transgene rat model, overexpressing the hPMCA4CI under the control of a myocardium specific promoter, had been generated in advance. This model was now available for further characterization. First the growth pattern of primary cultures of neonatal cardiomyocytes was studied under stimulation with fetal calf serum, norepinephrine and the platelet derives growth factor BB in comparison of transgene and wildtype cardiomyocytes. These experiments showed an accelerated growth of the PMCA-overexpressing cells. Additionally to these experiments further tests were done to unravel the PMCA’s subcellular localization within the cardiomyocyte. The caveolae were especially examined as places of the potential localization, small invaginations of the plama membrane, about 50-100 nm in diameter, with a characteristic lipid and protein pattern, among them many receptors and signal transduction molecules. With the methods of detergent extraction, double immunofluorescence staining, preparation of caveolae-rich membranes and immunoprecipitation it was shown, that a high percentage of the PMCA is localized in caveolae. In addition to that an interaction of the PMCA with the caveolae associated cytoskeletal protein dystrophin could be shown. In conclusion these results indicate, that the PMCA can modulate growth regulating signal transduction pathways of cardiomyocytes by controlling the local caveolar calcium concentration. KW - Plasmamembran-Kalzium-ATPase KW - PMCA KW - Kalzium KW - Myocard KW - Caveolae KW - Wachstum KW - transgene Ratten KW - plasma membrane calcium ATPase KW - PMCA KW - calcium KW - myocardium KW - caveolae KW - growth KW - transgene rats Y1 - 2001 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-916 ER -