TY - THES A1 - Engelhardt, Stefan T1 - Transgene Mausmodelle zur Charakterisierung der Funktion kardialer beta-adrenerger Rezeptoren T1 - Characterization of cardiac beta-adrenergic receptors through the use of transgenic mouse models N2 - In der vorliegenden Arbeit wurde die Funktion kardialer beta-adrenerger Rezeptoren mit Hilfe einer Kombination aus transgenen Mausmodellen und physiologischen und molekularbiologischen Methoden untersucht. Durch gezielte Überexpression des humanen beta1-adrenergen Rezeptors im Herzen transgener Mäuse konnte gezeigt werden, daß die chronische Aktivierung dieses Rezeptors eine trophische Wirkung auf die Herzmuskelzellen hat. Über einen Zeitraum von mehreren Monaten führte dies zur Entwicklung einer Herzinsuffizienz. In der menschlichen Herzinsuffizienz kommt es zu einem ähnlichen Phänomen: Durch deutlich erhöhte Freisetzung von endogenen Katecholaminen kommt es zu einer chronischen Dauerstimulation kardialer beta1-adrenerger Rezeptoren. Daß diese schädlich ist belegen das hier beschriebene Mausmodell und zudem einige neuere klinische Studien, die zeigen daß eine pharmakologische Blockade beta-adrenerger Rezeptoren zu einer Verminderung der Herzinsuffizienzmortalität führt. Dieses Mausmodell erlaubte es erstmals den beta1-adrenergen Rezeptor hinsichtlich seiner spontanen Rezeptoraktivität in einem physiologischen Modell zu untersuchen. Dabei zeigte sich, daß der humane beta1-adrenerge Rezeptor spontane Aktivität aufweist, jedoch in einem deutlich geringeren Ausmaß als der beta2-adrenerge Rezeptor. Dies könnte klinisch relevant sein, da klinisch verwendete beta-Rezeptor-Antagonisten die spontane Aktivität des beta1-adrenergen Rezeptors in unserem Modell unterschiedlich stark unterdrückten. In der vorliegenden Arbeit wurde zudem untersucht, ob sich die beiden kardial exprimierten Beta-Rezeptor-Subtypen Beta1 und Beta2 hinsichtlich ihrer Signaltransduktion unterscheiden. Ausgehend von dem Befund, daß die chronische Aktivierung der beiden Subtypen in transgenen Mausmodellen zu deutlich unterschiedlichen Phänotypen führt, wurden verschiedene intrazelluläre Signalwege auf ihre Aktivierung hin überprüft. Abweichend von publizierten, in vitro nach kurzzeitiger Rezeptorstimulation erhobenen Daten zeigte sich, daß die chronische Aktivierung der Rezeptorsubtypen zu einer unterschiedlichen Aktivierung der kardialen MAP-kinasen (ERK) führt. Die beta1-spezifische Aktivierung dieser Kinasen könnte die beobachtete unterschiedliche Hypertrophieentwicklung in diesen beiden Mausmodellen erklären. Einen weiteren Schwerpunkt bei der Aufklärung des Mechanismus beta-adrenerg induzierter Hypertrophie bildete die Untersuchung der zellulären Calcium-homöostase. Als früheste funktionelle Veränderung in der Entwicklung einer beta-adrenerg induzierten Herzhypertrophie und -insuffizienz trat dabei eine Störung des intrazellulären Calciumtransienten auf. Als möglicher Mechanismus für die Störung des Calciumhaushalts konnte eine zeitgleich auftretende veränderte Expression des Calcium-regulierenden Proteins Junctin beschrieben werden. Einen neuen therapeutischen Ansatz für die Therapie der Herzinsuffizienz könnten schließlich vielleicht die Untersuchungen zum kardialen Na/H-austauscher ergeben: Es konnte erstmals gezeigt werden, daß der kardiale Na/H-Austauscher maßgeblich an der beta-adrenerg induzierten Herzhypertrophie- und Fibrose-entstehung beteiligt ist und daß die pharmakologische Inhibition dieses Proteins sowohl Hypertrophie als auch die Fibrose wirksam unterdrücken kann. KW - Beta-Rezeptor KW - Maus KW - Transgene Tiere KW - Herzinsuffizienz KW - Transgene Mäuse KW - beta-adrenerge Rezeptoren KW - Hypertrophie KW - Fibrose KW - Na/H-Austauscher KW - Herzinsuffizienz KW - transgenic mice KW - cardiac hypertrophy KW - fibrosis KW - Na/H-exchanger KW - heart failure Y1 - 2001 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-1181950 ER - TY - THES A1 - Schickinger, Stefanie T1 - Funktionsanalyse alpha2-adrenerger Rezeptoren auf molekularer und transgener Ebene T1 - Analysis of functions of alpha2-adrenergic receptors at molecular and transgenic levels N2 - alpha2-adrenerge Rezeptoren, von denen drei verschiedene Subtypen (alpha2A, alpha2B, alpha2C) kloniert wurden, gehören zur Familie der G-Protein-gekoppelten Rezeptoren und vermitteln vielfältige physiologische Funktionen der Transmitter Adrenalin und Noradrenalin. Im Rahmen dieser Arbeit sollte untersucht werden, inwieweit Rezeptorsubtypen, die subzelluläre Lokalisation von Rezeptoren oder der Differenzierungsstatus einer Zelle für die funktionelle Diversität der alpha2-Rezeptor-Effekte in vivo verantwortlich sind. Im ersten Teil des Projektes wurde ein transgenes Mausmodell untersucht, bei dem selektiv alpha2A-Rezeptoren unter Kontrolle des Dopamin-beta-Hydroxylase Promotors in adrenergen Neuronen exprimiert wurden. In diesem Modell sollte getestet werden, ob ein einzelner Rezeptorsubtyp in den verschiedenen Neuronen des sympathischen Nervensystems in vivo identische Funktionen hat. Transgene alpha2A-Rezeptoren hemmten in vivo zwar die Freisetzung von Noradrenalin aus sympathischen Nervenfasern nicht aber die Exozytose von Adrenalin aus dem Nebennierenmark. Deshalb stellte sich die Frage, ob die Rezeptorfunktion von der Morphologie, dem Differenzierungsstatus der Zellen oder von der subzellulären Lokalisation der Rezeptoren abhängt. Hierfür wurden alpha2A-Rezeptoren durch Varianten des grün fluoreszierenden Proteins markiert und mittels FRET-Fluoreszenzmikroskopie untersucht. In PC12 Phäochromozytomzellen, die durch NGF zum Auswachsen neuronaler Fortsätze stimuliert wurden, waren die Agonist-bedingten Konformationsänderungen von alpha2A-Rezeptoren jedoch weder vom Differenzierungsstatus der Zellen noch von deren subzellulärer Lokalisation abhängig. Lediglich in transient transfizierten Zellen waren im Vergleich zu stabil transfizierten Zellen höhere Agonist-Konzentrationen zur Rezeptoraktivierung erforderlich. Diese Befunde zeigen, dass zusätzlich zur Diversität der Rezeptorsubtypen auf Proteinebene der zelluläre Kontext, in dem ein Rezeptor exprimiert wird, eine ganz wesentliche Rolle für dessen Funktion spielt. N2 - alpha2-adrenergic receptors of which three different subtypes were cloned (alpha2A, alpha2B, alpha2C), are part of the family of G-protein coupled receptors and mediate many physiological functions of the transmitters adrenaline and noradrenaline. This study was initiated to determine whether receptor subtypes, their subcellular localization or the status of differentiation of a cell are responsible for the functional diversity of effects of alpha2-adrenergic receptors in vivo. In the first part of this project a transgenic mouse model was characterized, in which alpha2-adrenergic receptors were expressed under control of the dopamine-beta-hydroxylase-promotor in adrenergic neurons selectively. This model was used to test whether a single receptor subtype has identical functions in different neurons of the sympathetic nervous system in vivo. Transgenic alpha2A-adrenergic receptors inhibited the release of noradrenaline from sympathetic nerves in vivo, but not the exocytosis of adrenaline from the adrenal medulla. Therefore the question arose whether the functions of receptors are dependent on cell morphology, the status of differentiation of cells or the subcellular localization of receptors. To address this question, alpha2A-receptors were tagged with variants of the green fluorescent protein and investigated by means of FRET fluorescence microscopy. In PC12 rat pheochromocytoma cells which were stimulated by nerve growth factor to develop neurites, the conformational changes of alpha2A-adrenergic receptors upon agonist activation, however, did not dependent on the status of cellular differentiation or on the subcellular localization of receptors. Only in transiently transfected cells, higher agonist concentrations were necessary for the activation of receptors as determined by FRET microscopy. These findings demonstrate that the cellular context in which receptor subtypes are expressed play an essential role for their function. KW - Fluoreszenz-Resonanz-Energie-Transfer KW - Adrenergisches System KW - Alpha-2-Rezeptor KW - Transgene Tiere KW - Grün fluoreszierendes Protein KW - Sympathikus KW - Noradrenalin KW - Adrenalin KW - G-Protein-gekoppelter-Rezeptor KW - Dopamin-beta-Hydroxylase Promotor KW - Phäochromozytomzellen KW - G-protein coupled receptor KW - dopamine-beta-hydroxylase-promotor KW - pheochromocytoma cells Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-31667 ER -