TY - THES A1 - Reiss, Harald T1 - Strahlungstransport in dispersen nicht-transparenten Medien T1 - Radiative transfer in disperse non-transparent media N2 - In dieser Habilitationsschrift wird das Gesamtgebiet des Wärmetransports in dispersen Medien untersucht, kompakt, ohne Anspruch auf Vollständigkeit, jedoch mit Schwerpunkt auf Strahlungstransport in nicht-transparenten Medien; hier sind es bevorzugt hochporöse Substanzen, die aus Festkörperteilchen bestehen. Die Ergebnisse lassen sich auf andere disperse nicht-transparente Medien wie dichte Gasatmosphären oder einige Zweiphasengemische übertragen, wenn Nicht-Strahlungsanteile und Gesamt-Energieerhaltung korrekt formuliert werden. Die vorliegenden Untersuchungen konzentrieren sich auf stationäre Randbedingungen und Strahlungsquellen. Die Motivation zu dieser Arbeit ist mindestens zweifach: Die Trennung des totalen Wärmestroms in seine Komponenten, in irgendeinem kontinuierlichen oder dispersen Medium, ist eines der herausfordernden, gleichzeitig schwierigsten physikalischen Probleme bei der Analyse des Wärmetransports; zum zweiten ist es für die Verringerung von Wärmeverlusten (z. B. in thermischen Isolierungen) dringend erforderlich, die einzelnen Komponenten der Wärmeverlustströme zu kennen, um sie einzeln zu minimieren (das geht offensichtlich nur, wenn man den totalen Wärmstrom in seine Komponenten zerlegen kann). Die Trennung kann erfolgreich sein, wenn die optische Dicke des untersuchten Mediums sehr groß ist (das Medium ist dann nicht-transparent). In dieser idealen, in der Energietechnik jedoch häufig auftretenden Situation (und nicht nur dort), liefert das Strahlungsdiffusionsmodell den korrekten Ansatz zur Beschreibung des Strahlungsanteils und dessen Temperaturabhängigkeit. Wegen Energieerhaltung und mit der additiven Näherung erlaubt dieses Ergebnis umgekehrt die Berechnung auch der Nichtstrahlungsanteile im totalen Wärmestrom; diese sind demnach alle gleichzeitig in kalorimetrischen Messungen zugänglich. Damit wird nachfolgende separate Analyse dieser Komponenten mittels geeigneter theoretischer Modelle möglich. Da das Temperaturprofil im Medium alle Wärmestromkomponenten zum totalen Wärmestrom miteinander koppelt, ist für diesen Ansatz die Kenntnis der Temperaturabhängigkeit auch aller Nicht-Strahlungsanteile erforderlich. Neben der kalorimetrischen Methode kann die Bestimmung der Extinktion des dispersen Mediums und hiermit des Strahlungstransports auch mittels Spektroskopie sowie Berechnung nach der strengen Mie-Theorie der Lichtstreuung und mit dem Rosseland-Mittelwert vorgenommen werden. Dadurch wird ein Vergleich möglich zwischen Ergebnissen, die mittels drei voneinander völlig unabhängiger Methoden, nämlich kalorimetrisch, spektroskopisch und analytisch/numerisch erzielt wurden. Die Ergebnisse stimmen überein, wenn das Medium nicht-transparent ist; dieser Nachweis wird in der vorliegenden Habilitationsschrift geführt. Im ersten Teil der Habilitationsschrift wird in breit angelegtem Review die Fachliteratur zum Strahlungstransport bis zum Jahr 1985 diskutiert und Methoden zur Lösung der Strahlungstransportgleichung auch im Fall stark anisotroper Streuung beschrieben. Wegen der Forderung nach Energieerhaltung und mit dem oben genannten Ziel, auch die Nicht-Strahlungskomponenten zu analysieren, muß diese Diskussion die theoretischen Aspekte auch dieser Anteile (hier Gas- und Festkörperkontakt-Wärmetransport) einschließen. Den Schluß des ersten Teils bildet ein Katalog offener Fragen, die im zweiten Teil der Habilitationsschrift angegangen werden. Dort werden mittels experimenteller und analytisch/numerischer Ergebnisse das Strahlungsdiffusionsmodell und seine Anwendbarkeit auf disperse nicht-transparente Medien bestätigt. Die Analysen sind gerichtet auf reine oder mit Infrarot-Trübungsmitteln dotierte Pulver und Faserpapiere; beide sind leicht zugängliche, wohl-definierte Testsubstanzen disperser Medien. Ein wichtiger Teil dieser Untersuchungen enthält Messungen ihrer Wärmeleitfähigkeit unter Vakuum und unter externer mechanischer Druckbelastung. Mit evakuierten, druckbelasteten Faserpapieren wurden Wärmeleitfähigkeiten erzielt, die zu den niedrigsten gehören, die bis 1985 an solchen Medien bei hohen Temperaturen gemessen wurden. Weiter sollen optimale Teilchendurchmesser gefunden werden, mit denen das Extinktionsvermögen solcher Schüttungen signifikant erhöht werden kann. Insbesondere ist eine exotische Vorhersage der Mie-Theorie zu prüfen, nach welcher die Extinktion perfekt elektrisch leitender, langer, extrem dünner Zylinder (unter 50 nm) um Größenordnungen über derjenigen herkömmlicher (nichtleitender) Pulver oder Fasern liegt; hierfür sind Materialproben herzustellen. In der Habilitationsschrift wird aufgezeigt, welcher Weg für diesen Nachweis beschritten werden muß (wenige Jahre nach Vorlage der Habilitationsschrift wurden Gustav Mies und Milton Kerkers Vorhersagen auf diesem Weg mit feinsten metallisierten Glasfasern und mit Nickelfasern in Veröffentlichungen des Autors gemeinsam mit J. Fricke, M. Arduini-Schuster, H.-P. Ebert, R. Caps, D. Büttner und A. Kreh erstmalig bestätigt). N2 - The present thesis for habilitation investigates, in compact form, without claiming completeness, the field of heat, in particular radiative, transfer in disperse media if they are non-transparent. Preference is given to high porosity substances being composed of solid particles. The obtained results can be applied to other disperse media like dense gas atmospheres or some two-phase fluids provided non-radiative components of total heat flow, and corresponding total energy balances, are appropriately modelled. The present investigations are concentrated on stationary boundary conditions and radiation sources. Motivation for this work is at least two-fold: First, splitting of total heat flow into its components is one of the most challenging and difficult problems of experimental physics in any, continuous or disperse, medium, and, secondly, reduction of total heat losses (e. g. in thermal insulations) inevitably requests minimisation steps simultaneously to be taken with all its separated components (this of course works only if separation really is successful). Separation can be successful if the optical thickness of the medium is large (the medium then is non-transparent). In this ideal situation that, nonetheless, frequently arises, not only in energy technology, the radiative diffusion model delivers correct expressions for the radiative heat flow component and its temperature dependency. By conservation of energy, this result together with the additive approximation in turn allows determination, from calorimetric measurements, of also the non-radiative contributions to total heat transfer. The approach thus provides a key to subsequently analyse all heat transfer components by appropriate theoretical models. Since the temperature profile in the medium couples all heat transfer components to total heat flow, knowledge of the temperature dependence of also the non-radiative components is indispensable for this purpose. Besides calorimetric methods, spectral measurements of radiation extinction coefficient, and calculation of spectral extinction properties of disperse media by application of rigorous Mie-theory of scattering and of the Rosseland mean, provide another approach to radiative heat flow and to temperature dependent radiation extinction properties. Accordingly, comparison between results obtained from three different, completely independent methods (calorimetric, spectroscopic and theoretical) to determine extinction coefficients can be made and indeed proves to be successful if the medium is non-transparent; this proof of concept shall be demonstrated in the present thesis. In its first part, this thesis for habilitation presents a general review covering the literature on radiative transfer up to the year 1985 and evaluates methods for solution of the equation of radiative transfer also in case of strongly anisotropic scattering. Because of conservation of energy, and in view of the goal to analyse also the non-radiative heat transfer components, the analysis necessarily must include a description of the theoretical aspects of gaseous and solid/solid contact conduction heat transfer mechanisms. At the end of its first part, a catalogue of open questions is presented that will be tackled in the second part of the thesis. There, experimental and analytical/numerical results that verify the radiation diffusion model and its applicability to disperse media are reported. The analysis is focused on heat transfer in pure and opacified powders and fibrous media; both are easily accessible, disperse sample substances with well defined physical/thermal properties. An important part of these investigations covers thermal conductivity measurements under vacuum and under external mechanical load. Experimental results obtained with load-bearing, evacuated boards of glass fibre paper demonstrate smallest values of thermal conductivity that have been obtained until 1985 in such disperse media at high temperatures. The thesis further deals with the problem of how to substantially increase radiation extinction by optimum particle diameters. In particular, an exotic prediction of Mie theory of scattering shall be confirmed according to which the extinction properties of perfectly electrically conducting, long, extremely thin cylinders (below 50 nm) shall be larger, by orders of magnitude, than those of conventional, non-conducting powders or fibres, and samples shall be prepared. The thesis describes the way how to successfully prove this prediction (few years after submission of the thesis, following the methods suggested here and using finest metallised glass fibres, and with very thin Ni-fibres, Gustav Mie’s and Milton Kerker's predictions for the first time were confirmed in publications of the present author together with J. Fricke, M. Arduini-Schuster, H.-P. Ebert, R. Caps, D. Büttner und A. Kreh). KW - Strahlungstransport KW - Disperse Phase KW - Extinktion KW - Mie-Streuung KW - Wärmeleitung KW - Diffusionsmodell KW - Wirkungsquerschnitt KW - optimale Teilchendurchmesser KW - Superisolierung KW - Diffusion model KW - reaction cross section KW - optimum particle diameter KW - superinsulation Y1 - 1985 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-66669 N1 - Würzburg, Univ., Habil.-Schr., 1988 ER - TY - THES A1 - Weinläder, Helmut T1 - Optische Charakterisierung von Latentwärmespeichermaterialien zur Tageslichtnutzung T1 - Optical characterization of phase change materials for daylighting N2 - In dieser Arbeit wurde untersucht, inwieweit sich durch den Einsatz von Latentwärmespeichermaterialien (kurz PCM = phase change material) Tageslichtelemente realisieren lassen, welche einen Teil der eingestrahlten Solarenergie zwischenspeichern und zeitverzögert während der Abend- und Nachtstunden wieder an den Innenraum abgeben. Hierdurch lassen sich mehrere Effekte erzielen: Der bei Verglasungen auftretende starke Wärmeeintrag während des Tages wird gedämpft und bis in die Abend- und Nachtstunden ausgedehnt. Im Sommer führt dies zu geringeren Kühllasten. Die zeitlich verzögerten abends auftretenden Wärmeeinträge können bei Bedarf über Nachtlüftung abgeführt werden. Im Winter sind die solaren Gewinne zeitlich besser mit den Wärmeverlusten korreliert was ihren Nutzungsgrad erhöht. Dies führt zu geringerem Heizenergiebedarf. Weiter wird im Winter aufgrund der Erhöhung der Systemoberflächentemperatur durch den Phasenwechsel des PCM die thermische Behaglichkeit in den Abendstunden vor allem in Systemnähe gesteigert. Im Sommer bleiben die Oberflächentemperaturen tagsüber niedrig, sofern ein PCM mit entsprechender Schmelztemperatur (<30°C) gewählt wird, so dass auch zu diesen Zeiten die thermische Behaglichkeit verbessert wird. Es wurden drei Latentwärmespeichermaterialien untersucht: ein Paraffin (RT25), sowie zwei Salzhydrate auf Basis von Kalziumchloridhexahydrat (S27) und Lithiumnitrattrihydrat (L30). Aus Messwerten des Transmissions- und Reflexionsgrades im flüssigen Zustand wurden die spektralen Daten der Brechungsindizes ermittelt. Strukturuntersuchungen der PCMs im festen Zustand erfolgten mittels Lichtmikroskopie und anhand von Streuverteilungsmessungen. Diese wurden mit der Mie-Theorie ausgewertet. Es wurde bei allen Materialien die Ausbildung einer Makrostruktur festgestellt, die wiederum mit einer Mikrostruktur unterlegt ist. Die Makrostruktur entsteht durch Grenzflächen Festkörper-Luft beim Erstarren und Zusammenziehen der Materialien, die Mikrostruktur durch sehr feine Lufteinschlüsse und Grenzflächen innerhalb des Festkörpergerüsts. Während die Makrostruktur vor allem bei den Salzhydraten in ihrer Größe variiert und sich an die Behälterdicke anpasst, liegt die Größe der Mikrostrukturen bei allen drei Materialien relativ konstant im Bereich um die 5-20 µm. Die Mikrostrukturen sind für die Lichtstreuung verantwortlich. Unter der Annahme, dass die Werte der Brechungsindizes im festen und flüssigen Zustand gleich sind, wurden mit dem 3-Fluss-Modell die spektralen effektiven Streukoeffizienten der festen PCMs bestimmt. Mit den ermittelten Größen lassen sich die optischen Eigenschaften der Materialien im festen und flüssigen Zustand für Schichtdicken zwischen 1,5 mm und 4 cm berechnen. Alle drei Materialien zeigen eine hohe Transmission im sichtbaren Spektralbereich und eine starke Absorption im Nahinfraroten. Dieses Verhalten ist für den Einsatz in Tageslichtelementen günstig, da man dort das sichtbare Licht zur Raumausleuchtung nutzen und den nahinfraroten Anteil in Form von Wärme speichern will. Für den Einsatz im Tageslichtelement müssen die PCMs auslaufsicher in Behälter eingebracht werden. Hierfür wurden Stegdoppelplatten (SDP) aus Plexiglas verwendet. Zwei Funktionsmuster mit RT25 und S27, bestehend aus einer Wärmeschutzverglasung, hinter der die PCM-befüllten SDPs angebracht waren, wurden unter natürlichen Klimabedingungen vermessen. Die Messdaten dienten zur Validierung eines Simulationsprogramms, mit dem das Verhalten der drei PCM-Tageslichtelemente unter genormten Bedingungen im Sommer- und Winterbetrieb untersucht wurde. Messungen und Simulationsrechnungen ergaben, dass die gewünschten Effekte (Dämpfung der Energiegewinne tagsüber, Verschiebung der Gewinne vom Tag in die Abend- und Nachtstunden, sowie Verbesserung der thermischen Behaglichkeit) mit den PCM-Tageslichtelementen erreicht werden. Anhand von Optimierungsrechnungen wurde gezeigt, dass die Energieeinkopplung in das PCM erhöht werden muss. Dies kann durch Beimengung absorbierender Materialien in das PCM oder durch Verwendung von Behältern mit höherer Absorption geschehen. Bei derart optimierten Tageslichtelementen sind Schichtdicken von rund 5 mm PCM ausreichend. Lichttechnische Untersuchungen ergaben, dass die Tageslichtelemente mit PCM oft ein stark inhomogenes optisches Erscheinungsbild zeigen, vor allem während des Phasenwechsels. Deshalb sollten für den Einsatz in der Praxis Möglichkeiten zur Kaschierung vorgesehen werden. Dies lässt sich z.B. durch streuende Behälter erreichen. Problematisch ist die Dichtigkeit der Behälter, vor allem wenn Salzhydrate als PCM verwendet werden. Die Kristalle üben beim Wachstum starke Kräfte auf die Behälterwandungen aus, so dass diese besonders bei größeren Behälterabmessungen dem Druck nicht standhalten und Risse bilden. Hier ist noch Entwicklungsarbeit zu leisten. N2 - This thesis investigates the suitability of phase change materials (PCMs) as energy storage in daylighting elements. PCMs store part of the incoming solar radiation on sunny days while releasing the stored heat during the evening hours and the night. This time shift in solar energy gains reduces cooling loads in summer, especially if combined with night-time ventilation. In winter, solar energy gains correlate much better with the heating demand of buildings, thus reducing fuel consumption. In addition, the higher system temperatures due to the phase change improve thermal comfort during the evening hours. If PCMs with low melting points (<30°C) are used, the system temperatures stay cool even on hot summer days. This improves thermal comfort in summer as well. Three different PCMs were investigated: a paraffin wax (RT25) and two salt hydrates with calciumchloridehexahydrate (S27) and lithiumnitratetrihydrate (L30) as base materials. The spectral refractive indices in liquid state were calculated from measured transmittance and reflectance values. In solid state, microscopy and scattering measurements in combination with Mie-calculactions were used to determine the size of the structures responsible for scattering. All three PCMs showed macroscopic structuring with microstructures embedded. Air gaps generated through volume decrease during solidification of the materials cause the macroscopic structuring. The microstructures are due to very fine air bubbles and solid-solid boundaries. While the macroscopic structuring varies in size - especially the salt hydrates adjust to the dimensions of the confinement - the size of the microstructures is in the range between 5-20 µm for all of the materials. The microstructures are responsible for the scattering of light. With the assumption of non-changing refractive indices in liquid and solid state, the spectral effective scattering coefficients were calculated for the three PCMs in solid state via 3-flux-theory. The determined optical data were sufficient to calculate the optical properties of all three materials in liquid and solid state for a layer thickness between 1.5 mm and 4 cm. All PCMs show high transmission values in the visible wavelength range and high absorption in the NIR. This makes them very suitable for daylighting applications where the visible light is needed for room illumination and the NIR needs to be stored in the PCM as heat. For application as daylighting elements the PCM must be encapsulated. This was done by use of plastic containers, so-called double-skin sheets. Two samples with RT25 and S27 were built and incorporated into an outdoor measurement facility. The samples consisted of PCM-filled double-skin sheets behind a low-e-glazing. A simulation program was validated with the recorded data. This program was used to investigate the performance of the three PCM-daylighting-elements for winter and summer conditions. The above-mentioned effects (decrease in energy gains during the day, time-shift of energy gains into the evening hours and improvement of thermal comfort) could be verified. To optimize the daylighting-elements, the energy input into the PCM should be enhanced. This can be done by adding high-absorbing materials into the PCM or by using containers with higher absorption. In such optimized panels a PCM-thickness of 5 mm is sufficient. The system visual performance often had a very inhomogeneous appearance, especially during the melting and freezing process of the PCM. Therefore it is recommended to conceal these effects by using translucent containers with scattering properties instead of transparent ones. A major problem is the container tightness, especially if a salt hydrate is used as PCM. The crystal growth during the freezing process causes considerable stress on the containers which leads to cracks in bigger ones. This has to be worked on. KW - Tageslichtelement KW - Latentwärmespeicher KW - Strahlungstransport KW - Tageslichtnutzung KW - Latentwärmespeicher KW - PCM KW - Verglasung KW - radiation transport KW - daylighting KW - latent heat KW - phase change material KW - energy storage Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-7872 ER -