TY - THES A1 - Baus, Johannes Armin T1 - Synthese, Struktur und Eigenschaften neuer Silicium(II)- und Silicium(IV)-Komplexe T1 - Syntheses, Structure and Properties of new Silicon(II) and Silicon(IV) Complexes N2 - Die vorliegende Arbeit stellt einen Beitrag zur Chemie höherkoordinierter Silicium(II) und Silicium(IV)-Verbindungen dar. Ein wesentlicher Teilaspekt der durchgeführten Untersuchungen betraf das Studium der Reaktivität der beiden donorstabilisierten Silylene 1 und 2. Im Einzelnen wurden die folgenden Teilprojekte bearbeitet: Die neutrale, hexakoordinierte Silicium(IV)-Verbindung 10 und die ionische, pentakoordinierte Silicium(IV)-Verbindung 11 wurden Umsetzung von 5 (dem Chloro-Analogon von 10) mit Me3SiBr bzw. Me3SiI in Transsilylierungsreaktionen dargestellt. Die mit 10 verwandten Verbindungen 5–9 wurden bereits früher synthetisiert und im Rahmen dieser Arbeit zusammen mit 10 erstmalig bezüglich ihrer Moleküldynamik in Lösung untersucht. Die Verbindungen 5–10 zeigten in Lösung bei Raumtemperatur unterschiedlich stark ausgeprägte Dynamikphänomene, die mittels VT-NMR-Experimenten untersucht wurden. Die neutralen, hexakoordinierten Silicium(IV)-Verbindungen 12 und 16 wurden durch sequentielle Umsetzung der entsprechenden sekundären Amine Ph2NH bzw. iPr2NH mit n-Butyllithium und Kohlenstoffdisulfid sowie anschließende Umsetzung mit Tetrachlorsilan dargestellt und als die Acetonitrilsolvate 12·MeCN bzw. 16·MeCN isoliert. Es handelt sich hierbei um die ersten hexakoordinierten Silicium(IV)-Komplexe mit einem SiS4Cl2-Gerüst. Die neutrale, hexakoordinierte Silicium(IV)-Verbindung 17 mit einem SiN4Cl2-Gerüst wurde durch Umsetzung des Silylens 2 mit Chlor dargestellt. Im Gegensatz zu dieser oxidativen Addition schlug die Synthese von 17 durch Umsetzung von Tetrachlorsilan mit zwei Moläquivalenten des entsprechenden Lithiumguanidinats [iPrNC(NiPr2)NiPr]Li fehl: Es entstand lediglich der entsprechende pentakoordinierte Mono(guanidinato)silicium(IV)-Komplex mit drei Chloroliganden. Die Umsetzung von 1,2-Diphenylethin mit dem Silylen 1 lieferte den neutralen, hexakoordinierten Silicium(IV)-Komplex 19. Der neutrale, pentakoordinierte Silicium(IV)-Komplex 20 wurde in einer Redoxreaktion durch Umsetzung des Silylens 2 mit Dimangandecacarbonyl dargestellt. Dabei wurde das Silicium(II)- zu einem Silicium(IV)-Fragment oxidiert und das Dimanganfragment unter Verlust von zwei Carbonylliganden reduziert. Die neutralen, tetrakoordinierten Silicium(II)-Übergangsmetallkomplexe 22, 23 und 24 (isoliert als 24·THF) konnten durch Umsetzung des Silylens 2 mit den entsprechenden Übergangsmetalldibromiden bzw. Nickel(II)-bromid–1,2-Dimethoxyethan dargestellt werden. Im Fall von Nickel gelang die Umsetzung mit dem freien NiBr2 nicht. Die Verbindungen 22 und 23 stellen paramagnetische Komplexe mit jeweils tetraedrisch koordinierte Übergangsmetallatomen dar. Das Nickelatom in Verbindung 24·THF ist dagegen quadratisch-planar koordiniert und damit diamagnetisch, wie es für d8-Metalle auch zu erwarten ist. Den drei Verbindungen 22, 23 und 24·THF gemeinsam ist der besondere Bindungsmodus einer der beiden Guanidinatoliganden, der das Siliciumatom und das Übergangsmetallatom miteinander verbrückt, was zur Ausbildung einer spirocyclischen Struktur führt. Der neutrale, pentakoordinierte Zink–Silylen-Komplex 25 wurde in einer Lewis-Säure/Base-Reaktion durch Umsetzung des Silylens 2 mit Zink(II)-bromid dargestellt und als das Solvat 25·0.5Et2O isoliert. Obwohl sich das Reaktionsprodukt wie auch bei den Verbindungen 22–24 als ein Lewis-Säure/Base-Addukt verstehen lässt, ist der Koordinationsmodus von Verbindung 25 anders: Beide Guanidinatoliganden sind bidentat an das Siliciumatom gebunden. Die neutralen Bis(silylen)palladium(0)- bzw. Bis(silylen)platin(0)-Komplexe 28 und 29 repräsentieren die ersten homoleptischen, dikoordinierten Bis(silylen)-Komplexe dieser Metalle mit N-heterocyclischen Silylenliganden und im Fall des Platin(0)-Komplexes 29 den ersten homoleptischen, dikoordinierten Platin(0)–Silylen-Komplex überhaupt. Verbindung 28 wurde durch Umsetzung von drei Moläquivalenten des Silylens 2 mit dem Palladium(II)-Komplex [PdCl2(SMe2)2] dargestellt. Dabei reduziert ein Moläquivalent des Silylens den Palladium(II)-Komplex und wird selbst zu Verbindung 17 oxidiert und die beiden verbliebenen Moläquivalente des Silylens substituieren die Dimethylsulfidliganden am Palladiumatom. Dieselbe Synthesestrategie ließ sich jedoch nicht auf die Darstellung von Verbindung 29 übertragen. Offenbar reicht das Reduktionspotenzial des Silylens 2 hier nicht aus. Zur Darstellung von Verbindung 29 wurde zunächst der Platin(II)-Komplex [PtCl2(PiPr3)2] mit Natrium/Naphthalin reduziert und anschließend wurden die beiden Triisopropylphosphanliganden durch Silylenliganden substituiert. N2 - This thesis represents a contribution to the chemistry of higher-coordinate silicon(II) and silicon(IV) compounds. A major part oft he investigations performed concerned reactivity studies with the donor-stabilised silylenes 1 and 2. The following subprojects were carried out: The neutral six-coordinate silicon(IV) compound 10 and the ionic five-coordinate silicon(IV) compound 11 were synthesised via transsilylation reactions by treatment of 5 (the chloro analogue of 10) with Me3SiBr and Me3SiI, respectively. The derivatives of 10, compounds 5–9, were already synthesised before and were investigated in this study for the first time (together with 10) for their molecular dynamics in solution. Compounds 5–10 showed interesting dynamic phenomena in solution at ambient temperature, which were studied by VT NMR experiments. The neutral six-coordinate silicon(IV) complexes 12 and 16 were synthesised by sequential treatment of the respective secondary amine Ph2NH and iPr2NH, respectively, with n-butyl¬lithium and carbon disulfide and subsequent treatment with tetrachlorosilane and were isolated as the acetonitrile solvates 12·MeCN and 16·MeCN, respectively. Compounds 12 and 16 represent the first six-coordinate silicon(IV) complexes with an SiS4Cl2 skeleton. The neutral six-coordinate silicon(IV) compound 17 with an SiS4Cl2 skeleton was synthesised by treatment of silylene 2 with chlorine. In contrast to this oxidative addition, the synthesis of 17 by treatment of tetrachlorosilane with two molar equivalents of the respective lithium guanidinate [iPrNC(NiPr2)NiPr]Li failed. Instead, the corresponding five-coordinate mono(guanidinato)silicon(IV) complex with three chloro ligands was obtained. Treatment of 1,2-diphenylethyne with silylene 1 furnished the neutral six-coordinate silicon(IV) complex 19. The neutral five-coordinate silicon(IV) complex 20 was synthesised in a redox reaction by treatment of silylene 2 with dimanganesedecacarbonyl. In this reaction, the silicon(II) fragment was oxidised to a silicon(IV) fragment and the dimanganese moiety was reduced, accompanied by loss of two carbonyl ligands. The neutral four-coordinate transition-metal–silicon(II) complexes 22, 23 and 24 (isolated as 24·THF) were synthesised by treatment of silylene 2 with the respective transition-metal dibromides and the nickel(II)-bromide 1,2-dimethoxyethane adduct, respectively. In case of nickel, the treatment with free NiBr2 was not successful. Compounds 22 and 23 represent paramagnetic complexes with tetrahedrally coordinated transition metal atoms. In contrast, the nickel atom of 24·THF is coordinated in a square-planar fashion, resulting in diamagnetism as expected for d8 metals. The three compounds 22, 23 and 24·THF have the special binding mode of one of the two guanidinato ligands in common; which bridges the silicon atom and the transition metal, resulting in a spirocyclic structure. The neutral five-coordinate zinc–silylene complex 25 was synthesised in a Lewis acid/base reaction by treatment of silylene 2 with zinc(II)-bromide and isolated as the solvate 25·0.5Et2O. Although the product of this reaction can be understood as a Lewis acid/base adduct (as in the case of compounds 22, 23 and 24·THF) the coordination mode of 25·is different: both guanidinato ligands bind in a bidentate fashion to the silicon atom. The neutral bis(silylene)palladium(0) and bis(silylene)platinum(0) complexes 28 and 29, respectively, represent the first homoleptic two-coordinate bis(silylene) complexes of these metals with N-heterocyclic silylene ligands, and the platinum(0) complex is even the first homoleptic two-coordinate silylene–platinum(0) complex at all. Compound 28 was prepared by treatment of three molar equivalents of silylene 2 with the palladium(II) complex [PdCl2(SMe2)2]. In this reaction, one molar equivalent of the silylene reduces the palladium(II) complex and is oxidised itself to compound 17, and the remaining two molar equivalents of silylene 2 substitute the dimethylsulfide ligands at the palladium atom. However, the same synthetic strategy could not be applied to the preparation of compound 29. Obviously, the reduction potential of silylene 2 was sufficient in this case. For the preparation of 29, the platinum(II) complex [PtCl2(PiPr3)2] was reduced by sodium/naphthalene, followed by substitution of the two triisopropylphosphine ligands by two silylene 2 ligands. KW - Siliciumverbindungen KW - Koordinationslehre KW - Silylen KW - Silicium(II) KW - Silicium(IV) KW - Bis(guanidinato)silylen KW - Bis(amidinato)silylen Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-143910 ER - TY - THES A1 - Brandt, Carsten D. T1 - Tripyrrine - Koordinationschemie an einem Porphyrinfragment ; Kristallstrukturanalysen metallorganischer und koordinationschemischer Verbindungen T1 - Tripyrrins - Coordinationchemistry with a porphyrin fragment ; X-ray crystal structural analysis of metallorganic and coordination compounds N2 - Gegenstand der vorliegenden Arbeit ist die Darstellung und Untersuchung von einfachen Triyrrinen. Dabei wurde ein besonderer Schwerpunkt auf die Entwicklung der Koordinationschemie dieses Liganden gelegt. Der zweite Teil der Arbeit beschäftigt sich mit der Durchführung von Röntgenstrukturanalysen metallorganischer und koordinationschemischer Verbindungen. Den Hintergrund für den ersten Teil bilden die jüngsten Versuche anderer Forschergruppen, mit den innerhalb der Porphyrinchemie kaum beachteten offenkettigen Tetrapyrrolen vom Bilen-Typ Phänomene der molekularen Erkennung, der supramolekularen Chemie und der Bioanorganik koordinationschemisch zu bearbeiten. Die Thematik ist zudem von Interesse, da anders als bei tetrapyrrolischen Liganden kaum etwas über das koordinationschemische Verhalten tripyrrolischer Spezies bekannt ist. Gerade das Tripyrrin erscheint hier als interessanter Modellligand, denn durch Wegnahme einer Pyrroleinheit wird eine neue, freie Koordinationsstelle geschaffen, deren Einfluß die Chemie der Tripyrrinate bestimmen sollte. In Kapitel 1 wird die Synthese der Tripyrrine aus pyrrolischen Vorstufen durch eine Kondensationsreaktion in Trifluoressigsäure beschrieben. Der Tripyrrin-Ligand erweist sich gegenüber Nukleophilen als höchst reaktiv, was wahrscheinlich der Grund dafür ist, daß dieser Ligand bislang nur in einer Arbeit beschrieben wurde. Eine Isolierung gelingt zwar nicht, wohl aber eine spektroskopische in situ-Charakterisierung mit Hilfe von NMR- und MS-Methoden. Die direkte Umsetzung der erhaltenen Rohprodukte mit überschüssigen Metall(II)acetaten (M = Fe, Mn, Co, Ni, Pd, Cu, Zn) führt in allen Fällen zu grün gefärbten Lösungen, aus denen sich für M = Co, Pd, Cu und Zn Tripyrrinkomplexe mit zweiwertigem, tetrakoordinierten Metallion und Trifluoracetat als viertem Donor isolieren lassen. Strukturell werden drei unterschiedliche Geometrien beobachtet. Das bevorzugt planar koordinierende Ion Pd(II) liefert Beispiele für den helikalen und den pseudoplanaren Strukturtyp, da aus sterischen Gründen die Ausbildung einer spannungsfreien planaren Molekültopologie unmöglich ist. Auch Cu(II) koordiniert als Trifluoracetat in der pseudoplanaren Variante, während Zn(II) in der nicht gespannten pseudotetraedrischen Form gebunden wird. Die in den Palladium-Komplexen vorhandenen Spannungen bewirken schnelle Ligandenaustauschreaktionen mit Halogeniden und Pseudohalogeniden. Bei den Strukturen der so zugänglichen TrpyPdX-Komplexe mit X = Cl, Br, I, N3, NCO, NCS, NO3, CN und StBu zeigt sich, daß mit zunehmender Größe des anionischen Donors die pseudoplanare Geometrie gegenüber der helikalen zunehmend begünstigt wird. Für Kupfer(II)-Komplexe wird beim Übergang vom Trifluoracetat zum Chlorid ein Wechsel von der gespannten pseudoplanaren zur wenig gespannten pseudotetraedrischen Koordination beobachtet. Die sterisch gespeicherte Spannungsenergie der Tripyrrine läßt tetrakoordinierte Pd(II)-Komplexe wie eine gespannte Feder erscheinen und unterstützt den Austritt des anionischen Liganden unter Bildung eines koordinativ und elektronisch ungesättigten 14 VE-Komplexes. Entscheidend für die Stabilisierung dieser Spezies ist die Verwendung des schwachkoordinierenden Tetrakis[3,5-bis(trifluormethyl)-phenyl]borats [B(Arf)4] als Anion. Der ungesättigte Komplex erweist sich als sehr reaktiv. So koordiniert er bereitwillig an eine Vielzahl von Donoren. Die Umsetzung des Trifluoracetato-Komplexes mit einem halben Äquivalent NaB(Arf)4 führt zu dinuklearen Komplexen, in denen zwei kationische Tripyrrinatopalladium-Fragmente durch ein Trifluoracetat verbunden sind. Mit Trialkylphosphanen bilden sich stabile Komplexe. Eine Besonderheit stellt dabei die Reaktion mit Trimethylphosphan dar. Bei Verwendung überschüssiger Mengen PMe3 beobachtet man die Bildung pentakoordinierter Komplexe. Im Gegensatz dazu führen die Umsetzungen mit Triethyl- und Tri-iso-propylphosphan ausschließlich zur Bildung von Monophosphankomplexen. Die ungewöhnliche Reaktivität des Tripyrrinatopalladium-Kations zeigt sich insbesondere bei der Umsetzung mit Diazoalkanen. So konnten erstmals Carbenpalladium-Komplexe mit nicht-heteroatomstabilisierten Carbenliganden synthetisiert werden. Kapitel 5 beschreibt einen präparativen Einstieg in die Chemie kationischer Kobalt- und Zinkkomplexe von Tripyrrinen. Die Reaktivität und Stabilität des Tripyrrinatokobalt-Kations, die an die Verhältnisse des TrpyPd-Kations erinnern, erlauben dabei die Isolierung von kationischen Phosphan- und Isonitril-Komplexen. Das entsprechende kationische Zink-Chelat konnte isoliert und NMR-spektroskopisch charakterisiert werden. N2 - Part I of the presented work describes the preparation and investigation of simple tripyrrin ligands, with a special emphasis on the development of a functional coordination chemistry of this ligand. Part II deals with x-ray crystallographic work performed on organometallic and classical coordination compounds. The recent attempts from other research groups to use open-chain oligopyrroles related to the bile pigments as ligands for novel developments in the fields of molecular recognition, supramolecular and bioinorganic chemistry provided the motivation for the first part of this work. Since almost nothing was known about the coordination behaviour of open-chain oligopyrroles, especially of those with three pyrrolic subunits, a first principal investigation towards the properties of metallotripyrrins appeared as a suitable entry into this field. With respect to the porphyrins, the formal withdrawal of one of the pyrrolic units should create a new, free coordination site at a bound metal ion. This free site is expected to determine the chemistry of metallotripyrrins largely. The synthesis of tripyrrins from pyrrolic precursors by a condensation reaction in trifluoroacetic acid is described in chapter 1. The tripyrrin ligand system is found to be unusually reactive towards even weak nucleophiles. Isolation of the ligand was not successful. However, tripyrrins could unambigously be characterised by a spectroscopic in situ-characterisation using NMR- and MS-techniques. When treating the raw tripyrrin ligands with excessive metal acetates of Fe, Mn, Co, Ni, Pd, Cu or Zn, green solutions are formed in all cases, from which the tripyrrinato complexes of M = Co, Pd, Cu and Zn with divalent tetracoordinated metal ions and trifluoroacetate as the fourth donor can be isolated. From a structural point of view, three different molecular geometries were observed. The Pd(II) ion with its pronounced tendency to establish a square-planar coordination mode yields examples for the strained helical and the pseudoplanar structures. A non strained square planar complex geometry is prevented for sterical arguments due to the presence of the two methyl termini in all new tripyrrin complexes. The trifluoroacetate derivatives of Cu(II) also are found to form pseudoplanar coordination geometries, while Zn(II) always prefers a non-strained pseudotetrahedral variant. The strain stored in the Pd(II) complexes is responsible for the fast ligand exchange reactions of the trifluoroacetate derivatives against halide and pseudohalide anions. In the group of TrpyPdX compounds with X = Cl, Br, I, N3, NCO, NCS, NO3, CN and StBu the pseudoplanar geometry becomes more important then the helical binding mode with an increasing radius of the donor atom of the fourth ligand. The strain energy stored in the Pd(II) tripyrrins was found to support the dissociation of the fourth ligand, yielding the coordinatively and electronically unsaturated 14 VE complex. In order to stabilise this highly reactive species the use of a weakly coordinating anion is of vital importance, and the well-known tetrakis[3,5-bis(trifluormethyl)phenyl]borat [B(Arf)4] was found to be sufficiently stable to fulfil this task. As expected, the coordinatively and electronically unsaturated Pd(II) complex proofs to be very reactive and binds tenaciously to a variety of different donor ligands. As a special case, the reaction of the cation with one equivalent of the tripyrrinatopalladium trifluoroacetate complex yields a dinuclear species, in which two cationic TrpyPd fragments are connected via one trifluoroacetato ligand. Trialkylphosphanes, however, are able to stabilise cationic tetracoordinated species. While usually only four coordinate PdN3P compounds are obtained, the action of trimethylphosphane is different. Pentacoordinate Pd(II) complexes are formed in the presence of excess PMe3. These species, which could be structurally characterised in this thesis, were found to be in a slow equilibrium with the respective mono PMe3 adducts. The unusual reactivity of the tripyrrinatopalladium cation is particularly well visible in its reactions towards diazoalkanes. When treated with the sterically demanding diaryldiazomethane, the first carbene palladium(II) complexes of non heteroatom stabilised carbene ligands were prepared and found to exist as stable compounds at room temperature. Chapter 5 finally describes a preparative entry into the chemistry of cationic cobalt(II)- and zinc(II) tripyrrins. The reactivity and stability of the tripyrrinatocobalt(II) cation is reminescent of the respective species in the palladium(II) series and allows the preparation and isolation of cationic phosphane- and isonitrile complexes. For zinc(II) as the metal a related tricoordinate cation could be isolated and investigated by nmr spectroscopy. KW - Oligopyrrole KW - Koordinationslehre KW - Metallorganische Verbindungen KW - Kristallstruktur KW - Tripyrrine KW - Oligopyrrole KW - Koordinationschemie KW - Tripyrrins KW - Oligopyrrols KW - coordination chemistry Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-5048 ER - TY - THES A1 - Hanft, Anna T1 - Aminotroponiminate: Koordinationschemie, Reaktivität und Redoxverhalten von Alkalimetall-, Silber-, und Bismut-Komplexen T1 - Aminotroponiminates: Coordination Chemistry, Reactivity and Redox Behaviour of Alkali Metal, Silver and Bismut Complexes N2 - Die Koordinationschemie, die Reaktivität und das Redoxverhalten von Alkalimetall-, Silber- und Bismut-Aminotroponiminat(ATI)-Komplexen wurde untersucht N2 - The coordination chemistry, the reactivity and the redox behaviour of alkali metal, silver and bismut aminotroponiminate (ATI) complexes has been investigated KW - Reaktivität KW - Alkalimetall KW - Silber KW - Bismut KW - Komplexe KW - Aminotroponiminate KW - Redoxverhalten KW - Koordinationschemie KW - Koordinationslehre Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-232049 N1 - Teile der Arbeit wurden veröffentlicht in: WILEY-VCH Verlag GmbH & Co. KGaA; The Royal Society of Chemistry; American Chemical Society; Zeitschrift für Kristallographie - New Crystal Structures ER - TY - THES A1 - Mück, Felix Maximilian T1 - Synthese, Struktur und Eigenschaften neuer Silicium(II)- und Silicium(IV)-Komplexe mit Guanidinato-Liganden T1 - Synthesis, structure, and properties of novel silicon(II) and silicon(IV) complexes with guanidinato ligands N2 - Die vorliegende Arbeit stellt einen Beitrag zur Chemie Donor-stabilisierter Silylene mit Guanidinato-Liganden dar. Im Vordergrund standen die Synthese, Charakterisierung und Reaktivitäts-Untersuchungen der beiden neuartigen Silicium(II)-Komplexe 23 und 24, die sterisch unterschiedlich anspruchsvolle Ligand-Systeme besitzen. Ein weiterer Schwerpunkt betrifft die Charakterisierung daraus resultierender tetra-, penta- und hexakoordinierter Silicium(II)- bzw. Silicium(IV)-Komplexe. Im Rahmen dieser Arbeit wurden die Donor-stabilisierten trikoordinierten Silylene 23 und 24, die neutralen tetrakoordinierten Silicium(II)-Komplexe 25·C4H8O und 26, die neutralen tetrakoordinierten Silicium(IV)-Komplexe 27–36, 38, 47–49 und 51, die neutralen penta-koordinierten Silicium(II)-Komplexe 39·0.5C6H5CH3, 40–42 und 46, die neutralen pentakoordinierten Silicium(IV)-Komplexe 18, 19, 37 und 56, die kationischen penta-koordinierten Silicium(IV)-Komplexe 52 und 53 sowie die neutralen hexakoordinierten Silicium(IV)-Komplexe 20, 55·0.5C6H5CH3, 57 und 58 erstmalig dargestellt. Die Charakterisierung dieser Verbindungen erfolgte durch Elementaranalysen (außer 33), NMR-Spektroskopie im Festkörper (15N-, 29Si-, 31P- (nur 27) und 77Se-VACP/MAS-NMR (nur 32, 35, 50 und 53) sowie 11B- (nur 39·0.5C6H5CH3), 27Al- (nur 40 und 41) und 125Te-HPDec/MAS-NMR (nur 33, 36 und 51)) und in Lösung (außer 39, 40, 52 und 53; 1H-, 13C-, 27Al- (nur 41), 29Si-, 31P- (nur 27), 77Se- (nur 32, 35 und 50) und 125Te-NMR (nur 33, 36 und 51)) sowie durch Kristallstrukturanalysen. Synthese und Charakterisierung zweier neuartiger Donor-stabilisierter Mono- und Bis(guanidinato)silylene Die Donor-stabilisierten Silylene 23 und 24 wurden im Sinne einer reduktiven HCl-Eliminierung durch Umsetzung des pentakoordinierten Dichlorohydrido(guanidinato)-silicium(IV)- (18) bzw. hexakoordinierten Chlorohydridobis(guanidinato)silicium(IV)-Komplexes (20) mit Kaliumbis(trimethylsilyl)amid dargestellt. Die entsprechenden Vorstufen 18 und 20 wurden durch Umsetzung von Trichlorsilan mit einem Moläquivalent Lithium-N,N´´-bis(2,6-diisopropylphenyl)-N´N´-dimethylguanidinat bzw. zwei Moläquivalenten N,N´,N´,N´´-tetraisopropylguanidinat erhalten. Jegliche Versuche, das Donor-stabilisierte Silylen 22 durch Reduktion des entsprechenden pentakoordinierten Trichloro(guanidinato)-silicium(IV)-Komplexes 19 mit Alkalimetallen zu erhalten, schlugen fehl. Die Si-Koordinationspolyeder der pentakoordinierten Silicum(IV)-Komplexe 18 und 19 sind stark verzerrte trigonale Bipyramiden mit einem Chlor- und Stickstoff-Atom in den axialen Positionen. Das Si-Koordinationspolyeder von 20 ist ein stark verzerrter Oktaeder mit dem Chloro- und Hydrido-Liganden in cis-Stellung. Das Silicium-Atom der beiden Silylene 23 und 24 ist verzerrt pseudotetraedrisch von drei Stickstoff-Atomen sowie dem freien Elektronenpaar als vierten „Liganden“ umgeben. Beide Verbindungen liegen sowohl im Festkörper als auch in Lösung trikoordiniert vor (ein bidentater Guanidinato- und ein monodentater Amido-/Guanidinato-Ligand). Die Trikoordination von 24 in Lösung wurde auch durch quantenchemische Rechnungen bestätigt. Im Unterschied zu 24 ist das analoge Bis(amidinato)silylen 1 im Festkörper trikoordiniert und in Lösung tetrakoordiniert. Reaktivitätsstudien des Donor-stabilisierten Mono(guanidinato)silylens 23 Ausgehend von dem Silylen 23 wurden die tetrakoordinierten Silicium(II)-Komplexe 25 und 26, die tetrakoordinierten Silicium(IV)-Komplexe 27–36 und 38 sowie der pentakoordinierte Silicium(IV)-Komplex 37 dargestellt. Die Bildung dieser Produkte basiert auf Lewis-Säure/Base- (25, 26) bzw. oxidativen Additionsreaktionen (27–38). Mit Ausnahme der Bildung von 25, 27 und 34–36 ist das typische Reaktivitätsspektrum des Silylens 23 an zusätzliche Reaktivitätsfacetten gekoppelt: (i) eine Änderung des Koordinationsmodus von einem bidentat an ein Koordinationszentrum bindenden zu einem bidentat an zwei Koordinationsstellen bindenden Guanidinato-Liganden (26), (ii) eine 1,3-SiMe3-Verschiebung einer der beiden SiMe3-Gruppen des Amido-Liganden (28–33) oder (iii) eine nukleophile Reaktion einer der beiden Stickstoff-Ligand-Atome des Guanidinato-Liganden als Teil einer Umlagerungs-reaktion (38). Silylen 23 reagierte mit Zink(II)chlorid und Diethylzink unter Bildung der neutralen tetrakoordinierten Silicium(II)-Verbindungen 25 (isoliert als 25·C4H8O) bzw. 26 mit einer Silicium–Zink-Bindung. Hierbei reagiert 23 mit Zink(II)chlorid und Diethylzink im Sinne einer Lewis-Säure/Base-Reaktion unter Bildung des Lewis-Säure/Base-Adduktes 25 und – nach einer zusätzlichen Umlagerung – Verbindung 26. Die Si-Koordinationspolyeder von 25·C4H8O und 26 im Kristall sind (stark) verzerrte Tetraeder, wobei im Falle von 25·C4H8O der Guanidinato-Ligand bidentat und bei 26 monodentat an das Silicium-Atom gebunden ist. Die tetrakoordinierten Silicium(IV)-Komplexe 27–36 und 38 sowie der pentakoordinierte Silicium(IV)-Komplex 37 wurden im Sinne einer oxidativen Additionsreaktion durch Umsetzung von 23 mit Diphenylphosphorylazid (→ 27), 2,4-Hexadiin (→ 28), 1,4-Diphenyl-butadiin (→ 29), Distickstoffmonoxid (→ 30), Diphenyldisulfid (→ 31), Diphenyldiselenid (→ 32), Diphenylditellurid (→ 33), Schwefel (→ 34), Selen (→ 35), Tellur (→ 36), Kohlenstoffdioxid (→ 37) bzw. Kohlenstoffdisulfid (→ 38) dargestellt. Verbindung 37 konnte außerdem durch Umsetzung von 30 mit Kohlenstoffdioxid synthetisiert werden. Die Reaktion von 23 mit Diphenylphosphorylazid verläuft unter Eliminierung von Stickstoff und Bildung von Verbindung 27 mit einer Silicium–Stickstoff-Doppelbindung, wobei 27 als ein intramolekular Donor-stabilisiertes Silaimin beschrieben werden kann. Bei den Verbindungen 28 und 29 handelt es sich um Donor-stabilisierte Silaimine mit einer an das Silicium-Atom gebundenen dreifach substituierten Vinylgruppe. Es wird angenommen, dass 23 zunächst mit einer der beiden C–C-Dreifachbindungen der Diine in einer [2+1]-Cycloaddition zu den entsprechenden Silacyclopropenen reagiert, welche danach zu 28 bzw. 29 umlagern. Hierbei wandert jeweils eine der beiden SiMe3-Gruppen in einer 1,3-Verschiebung vom Stickstoff-Atom des Amido-Liganden zum Kohlenstoff-Atom des intermediär gebildeten Silacyclopropenringes. Die Verbindungen 30–33 stellen die ersten thermisch stabilen Donor-stabilisierten Silaimine mit einem SiN3El-Gerüst dar (El = O, S, Se, Te). Es wird angenommen, dass bei der Reaktion von 23 mit Distickstoffmonoxid unter Eliminierung von Stickstoff, zunächst ein tetrakoordinierter Silicium(IV)-Komplex mit einer Silicium–Sauerstoff-Doppelbindung gebildet wird, der dann im Sinne einer 1,3-SiMe3-Verschiebung vom Stickstoff- zum Sauerstoff-Atom zu Verbindung 30 umlagert. Für die Bildung von 31–33 postuliert man zunächst eine homolytische El–El-Bindungsaktivierung (El = S, Se, Te) der entsprechenden Diphenyldichalcogenide (Bildung von zwei Si–ElPh-Gruppen). Die anschließende 1,3-Verschiebung einer der beiden SiMe3-Gruppen des Amido-Liganden zu einem der beiden ElPh-Liganden führt dann unter Abspaltung von Me3SiElPh zur Bildung von 31–33. Die Reaktion von 23 mit den elementaren Chalcogenen Schwefel, Selen und Tellur verläuft ebenfalls im Sinne einer oxidativen Addition unter Bildung der Verbindungen 34–36 mit einer Silicium–Chalcogen-Doppelbindung. Für die Bildung von 37 wird ein dreistufiger Mechanismus postuliert, wobei in einem ersten zweistufigen Schritt durch Reaktion von 23 mit einem Molekül Kohlenstoffdioxid unter Eliminierung von Kohlenstoffmonoxid zunächst Verbindung 30 als Zwischenstufe gebildet wird. Durch Addition eines zweiten Moleküls Kohlenstoffdioxid an die Silicium–Stickstoff-Doppelbindung von 30 resultiert dann der pentakoordinierte Silicium(IV)-Komplex 37 mit einem N,O-chelatisierenden Carbamato-Liganden. Der postulierte Mechanismus wird von der Tatsache gestützt, dass 37 ebenfalls durch Umsetzung von 30 mit einem Überschuss an Kohlenstoffdioxid synthetisiert werden kann. Aus der Reaktion des Silylens 23 mit Kohlenstoffdisulfid resultiert die cyclische Verbindung 38. Die Si-Koordinationspolyeder von 27–36 im Kristall sind stark verzerrte Tetraeder mit einem bidentaten Guanidinato-, einem Amido- (nur 27 und 34–36) bzw. Imino-Liganden (nur 28–33) sowie einer Si–El-Einfachbindung (28, 29: El = C; 30: El = O; 31: El = S; 32: El = Se; 33: El = Te) bzw. Si–El-Doppelbindung (27: El = N, 34: El = S; 35: El = Se; 36: El = Te). Das Si-Koordinationspolyeder von 37 ist eine stark verzerrte trigonale Bipyramide, wobei sich das Sauerstoff-Atom des Carbamato-Liganden und ein Stickstoff-Atom des Guanidinato-Liganden in den axialen Positionen befinden. Das Si-Koordinationspolyeder von 38 lässt sich als verzerrtes Tetraeder beschreiben. Reaktivitätsstudien des Donor-stabilisierten Bis(guanidinato)silylens 24 Silylen 24 reagiert mit den Lewis-Säuren Triphenylboran, Triphenylalan und Zink(II)chlorid unter Bildung der entsprechenden pentakoordinierten Silicium(II)-Komplexe 39, 40 und 42, welche eine Silicium–Bor-, Silicium–Aluminium- bzw. Silicium–Zink-Bindung besitzen. Silylen 24 reagiert hierbei als Lewis-Base unter Ausbildung von Lewis-Säure/Base-Addukten. Die Si-Koordinationspolyeder von 39, 40 und 42 im Kristall sind stark verzerrte trigonale Bipyramiden, wobei sich das Bor-, Aluminium- und Zink-Atom jeweils in einer äquatorialen Position befindet. Aus NMR-spektroskopischen Untersuchungen geht hervor, dass die Silicium–Zink-Verbindung 42 auch in Lösung stabil ist, während die Silicium–Bor- und Silicium–Aluminium-Verbindung 39 bzw. 40 in Lösung nicht stabil sind. Beide Komplexe dissoziieren quantitativ zu 24 und ElPh3 (El = B, Al). Die Bis(guanidinato)silicium(II)-Komplexe 39 und 40 besitzen ähnliche Strukturen wie ihre Bis(amidinato)-Analoga 3 und 41, die jeweiligen Amidinato/Guanidinato-Analoga 3/39 bzw. 41/40 unterscheiden sich aber signifikant in ihrer chemischen Stabilität in Lösung. Da 39 und 40 in Lösung auch bei tieferer Temperatur (T = –20 °C) dissoziiert vorliegen und die entsprechenden Amidinato-Analoga 3 und 41 selbst bei höherer Temperatur (T = 70 °C) noch stabil sind, wird vermutet, dass das Bis(amidinato)silylen 1 bessere σ-Donor-Eigenschaften besitzt und somit eine stärkere Lewis-Base im Vergleich zum Bis(guanidinato)silylen 24 ist. Des Weiteren reagiert Silylen 24 als ein Nukleophil mit den Übergangsmetallcarbonyl-verbindungen [M(CO)6] (M = Cr, Mo, W) und [Fe(CO)5] unter Bildung der entsprechenden tetrakoordinierten Silicium(II)-Komplexe 43–45 bzw. des pentakoordinierten Silicium(II)-Komplexes 46. Die Si-Koordinationspolyeder der spirocyclischen Silicium(II)-Verbindungen 43–45 im Kristall sind stark verzerrte Tetraeder, wobei jeweils ein Guanidinato-Ligand bidentat an das Silicium-Atom bindet und der andere Guanidinato-Ligand das Silicium- mit dem Metall-Atom verbrückt. Die beiden Si-Koordinationspolyeder von 46 sind stark verzerrte trigonale Bipyramiden mit dem Eisen-Atom in einer äquatorialen Position. Beim Vergleich der Bis(guanidinato)silicium(II)-Komplexe 43–46 mit den jeweiligen Amidinato-Analoga 4–7 fällt auf, dass sich lediglich die Eisen-Verbindungen 7 und 46 entsprechen. Die Umsetzung des Bis(amidinato)silylens 1 mit [M(CO)6] (M = Cr, Mo, W) führt dagegen im Sinne einer nukleophilen Substitution eines Carbonyl-Liganden zu den pentakoordinierten Silicium(II)-Komplexen 4–6, während die analoge Umsetzung des Bis(guanidinato)silylens 24 zur Substitution von zwei CO-Liganden führt und sich die tetrakoordinierten Silicium(II)-Verbindungen 43–45 mit einem verbrückenden Guanidinato-Liganden bilden. Die tetrakoordinierten Silicium(IV)-Komplexe 47–51 wurden im Sinne einer oxidativen Additionsreaktion durch Umsetzung von Silylen 24 mit Azidotrimethylsilan (→ 47), Distickstoffmonoxid (→ 48), Schwefel (→ 49), Selen (→ 50) bzw. Tellur (→ 51) dargestellt. Die Bildung von 47 und 48 wird dabei von einer Stickstoff-Eliminierung begleitet. Die Si-Koordinationspolyeder von 47–51 im Kristall sind stark verzerrte Tetraeder. Der zweikernige Komplex 48 besitzt jeweils zwei Silicium-gebundene monodentate Guanidinato-Liganden sowie einen Si2O2-Ring. Die Verbindungen 47 und 49–51 sind die ersten tetrakoordinierten Bis(guanidinato)silicium(IV)-Komplexe mit einer Silicium–Stickstoff- bzw. Silicium=Chalcogen-Doppelbindung (S, Se, Te). Am Beispiel der Verbindungen 47–51 wird erneut die unterschiedliche Reaktivität der Amidinato/Guanidinato-analogen Silylene 1 (im Festkörper tri- und in Lösung tetrakoordiniert) und 24 (sowohl in Lösung als auch im Festkörper trikoordiniert) deutlich. Interessanterweise führen die oxidativen Additionsreaktionen der Amidinato/Guanidinato-Analoga 1 und 24 mit Azidotrimethylsilan, Distickstoffmonoxid, Schwefel, Selen und Tellur zu Produkten mit unterschiedlichen Koordinationszahlen des Silicium-Atoms. Die Verbindungen 8 und 10–12 repräsentieren hierbei pentakoordinierte Silicium(IV)-Komplexe mit zwei bidentaten Amidinato-Liganden, wohingegen es sich bei den entsprechenden Analoga 47 und 49–51 um tetrakoordinierte Silicium(IV)-Komplexe mit einem monodentaten und einem bidentaten Guanidinato-Liganden handelt. Zugleich stellt 9 einen dinuklearen pentakoordinierten Silicium(IV)-Komplex mit jeweils einem monodentaten und einem bidentaten Amidinato-Liganden dar, während der zweikernige tetrakoordinierte Komplex 48 jeweils zwei monodentate Guanidinato-Liganden trägt. Ebenfalls im Sinne einer oxidativen Additionsreaktion wurden die kationischen penta-koordinierten Silicium(IV)-Komplexe 52 und 53 durch die Umsetzung von Silylen 24 mit Diphenyldisulfid (→ 52) bzw. Diphenyldiselenid (→ 53) dargestellt. Die Si-Koordinationspolyeder von 52 und 53 sind stark verzerrte trigonale Bipyramiden, wobei sich das Schwefel- bzw. Selen-Atom jeweils in einer äquatorialen Position befindet. Die Reaktion des Bis(guanidinato)silylens 24 mit Diphenyldisulfid und Diphenyldiselenid verläuft formal unter heterolytischer Aktivierung einer Chalcogen–Chalcogen-Bindung und führt zur Bildung der kationischen pentakoordinierten Silicium(IV)-Komplexe 52 und 53. Im Gegensatz dazu führt die Reaktion des analogen Bis(amidinato)silylens 1 mit Diphenyldiselenid unter homolytischer Se–Se-Bindungsaktivierung zu der neutralen hexakoordinierten Silicium(IV)-Verbindung 13. Des Weiteren wurde die Reaktivität des Silylens 24 gegenüber kleinen Molekülen untersucht. Die hexakoordinierten Silicium(IV)-Komplexe 55, 57 und 58 sowie der pentakoordinierte Silicium(IV)-Komplex 56 wurden im Sinne einer oxidativen Additionsreaktion durch Umsetzung von 24 mit einem Überschuss an Kohlenstoffdioxid (→ 55; isoliert als 55·C6H5CH3), einer äquimolaren Menge an Kohlenstoffdisulfid (→ 56), einer stöchio-metrischen Menge an Schwefeldioxid (→ 57) bzw. einem sehr großen Überschuss an Schwefeldioxid (welches auch als Solvens diente; → 58) dargestellt. Verbindung 58 wurde als ein Cokristallisat der Isomere cis-58 und trans-58 isoliert, die sich hinsichtlich der relativen Anordnung der beiden exocyclischen Sauerstoff-Atome voneinander unterscheiden. Die Si-Koordinationspolyeder von 55·C6H5CH3, 57 und 58 im Kristall sind stark verzerrte Oktaeder. Die Sauerstoff-Ligand-Atome der bidentaten O,O´-chelatisierenden Carbonato- (55), Sulfito- (57) und Dithionito-Liganden (58) stehen jeweils in cis-Position zueinander. Verbindung 58 ist die zweite strukturell charakterisierte Silicium-Verbindung mit einem bidentat O,O´-chelatisierenden Dithionito-Liganden, und die Verbindungen 55, 57 und 58 repräsentieren sehr seltene Beispiele für Hauptgruppenelement-Verbindungen mit einem O,O´-chelatisierenden Carbonato-, Sulfito- und Dithionito-Liganden. Der Komplex 57 und sein Amidinato-Analogon 16 repräsentieren zwei von drei Hauptgruppenelement-Verbindungen mit einem O,O´-chelatisierenden Sulfito-Liganden. Die Komplexe 55 und 58 stellen zusammen mit ihren Amidinato-Analoga 14 und 17 die einzigen bekannten Verbindungen mit einem O,O´-chelatisierenden Carbonato- bzw. nicht verbrückenden Dithionito-Liganden dar. Die Bildung von 55, 57 und 58 ist eines der wenigen Beispiele für Reaktionen der Amidinato/Guanidinato-analogen Silylene 1 und 24, die zu Struktur-analogen Produkten führen (Amidinato/Guanidinato-Analoga 14/55, 16/57 und 17/58), während in der Mehrzahl der Fälle unterschiedliche Reaktionsprofile beobachtet wurden. Das Si-Koordinationspolyeder von 56 ist eine stark verzerrte trigonale Bipyramide, mit dem Kohlenstoff-Ligand-Atom in einer äquatorialen Position. Der pentakoordinierte Silicium(IV)-Komplex 56 repräsentiert mit seinem über das Kohlenstoff-Atom bindenden CS22–-Liganden eine bisher einzigartige Koordinationsform in der Siliciumchemie, und die Bildung von 56 ist ein weiteres Beispiel für das unterschiedliche Reaktionsprofil der Amidinato/Guanidinato-analogen Silylene 1 und 24. Das Bis(amidinato)silylen 1 reagiert mit Kohlenstoffdisulfid zu dem hexakoordinierten Silicium(IV)-Komplex 15 mit einem S,S´-chelatisierenden Trithiocarbamato-Liganden und unterscheidet sich damit von seinem Guanidinato-Analogon sowohl in der Silicium-Koordinationszahl als auch in der Bindungsform. N2 - This thesis is a contribution to the chemistry of donor-stabilized silylenes with guanidinato ligands. The main focus of this work was the synthesis, characterization, and reactivity studies of the two novel silicon(II) complexes 23 and 24 with different sterically demanding ligand systems. A second focus was the characterization of the resulting four-, five-, and six-coordinate silicon(II) or silicon(IV) complexes. In the course of these studies, the donor-stabilized three-coordinate silylenes 23 and 24, the neutral four-coordinate silicon(II) complexes 25·C4H8O and 26, the neutral four-coordinate silicon(IV) complexes 27–36, 38, 47–49, and 51, the neutral five-coordinate silicon(II) complexes 39·0.5C6H5CH3, 40–42 and 46, the neutral five-coordinate silicon(IV) complexes 18, 19, 37, and 56, the cationic five-coordinate silicon(IV) complexes 52 and 53, and the neutral six-coordinate silicon(IV) complexes 20, 55·0.5C6H5CH3, 57, and 58 were prepared for the first time. These compounds were characterized by elemental analyses (except 33), NMR spectroscopic studies in the solid state (15N, 29Si, 31P (27 only), and 77Se VACP/MAS NMR (32, 35, 50, and 53 only) as well as 11B (39·0.5C6H5CH3 only), 27Al (40 and 41 only), and 125Te HPDec/MAS NMR (33, 36, and 51 only)) and in solution (except 39, 40, 52, and 53; 1H, 13C, 27Al (41 only), 29Si, 31P (27 only), 77Se (32, 35, and 50 only), and 125Te NMR (33, 36, and 51)), and single-crystal X-ray diffraction. Synthesis and characterization of two novel donor-stabilized mono- and bis(guanidinato)-silylenes The donor-stabilized silylenes 23 and 24 were synthesized by treatment of the five-coordinate dichlorohydrido(guanidinato)silicon(IV) complex 18 and six-coordinate chlorohydrido-bis(guanidinato)silicon(IV) complex 20, respectively, with potassium bis(trimethylsilyl)amide (reductive hydrogen chloride elimination). Compound 18 was prepared by treatment of trichlorosilane with one molar equivalent of lithium N,N´´-bis(2,6-diisopropylphenyl)-N´N´-dimethylguanidinate, and 19 was obtained by treatment of trichlorosilane with two molar equivalents of lithium N,N´,N´,N´´-tetraisopropylguanidinate. All attempts to synthesize silylene 22 by reduction of the corresponding five-coordinate trichloro(guanidinato)silicon(IV) complex 19 with alkali metals failed. The silicon coordination polyhedra of the five-coordinate silicon(IV) complexes 18 and 19 are strongly distorted trigonal bipyramids, with a chlorine and nitrogen atom in the axial positions. The silicon coordination polyhedron of 20 is a strongly distorted octahedron, with the chloro and hydrido ligands in cis positions. The silicon atoms of silylenes 23 and 24 are coordinated in a pseudo-tetrahedral fashion by three nitrogen atoms and the lone electron pair as the fourth “ligand”. Both silylenes are three-coordinate both in the solid state and in solution (one bidentate guanidinato and one monodentate amido/guanidinato ligand). The three-coordination of 24 in solution was also confirmed by quantum chemical calculations. This is in contrast to the analogous bis(amidinato)silylene 1, which is three-coordinate only in the solid state and four-coordinate in solution. Reactivity studies of the donor-stabilized mono(guanidinato)silylene 23 Starting from silylene 23, the four-coordinate silicon(II) complexes 25 and 26, the four-coordinate silicon(IV) complexes 27–36 and 38, and the five-coordinate silicon(IV) complex 37 were synthesized. The formation of these products is based on Lewis acid/base (25, 26) or oxidative addition reactions (27–38). Except for the formation of 25, 27, and 34–36, the typical silylene reactivity of 23 is coupled with additional reactivity facets, such as (i) a switch of the coordination mode of the guanidinato ligand from bidentate binding to only one coordination center to bidentate binding to two different coordination centers (→ 26), (ii) a 1,3-SiMe3 shift of one of the two SiMe3 groups of the amido ligand (→ 28–33), or (iii) a nucleophilic reaction of one of the two nitrogen ligand atoms of the guanidinato ligand as part of a rearrangement reaction (→ 38). Silylene 23 reacts with zinc chloride and zinc diethyl to give the neutral four-coordinate silicon(II) complexes 25 (isolated as 25·C4H8O) and 26, respectively, with a silicon–zinc bond. In these transformations silylene 23 reacts as a Lewis base to furnish the Lewis acid/base adducts 25 and (upon an additional rearrangement) compound 26. The silicon coordination polyhedra of 25·C4H8O and 26 are (strongly) distorted tetrahedra. In the case of 25, the guanidinato ligand binds in a bidentate and in 26 in a monodentate fashion to the silicon atom. The four-coordinate silicon(IV) complexes 27–36 and 38 and the five-coordinate silicon(IV) complex 37 were formed in an oxidative addition reaction by treatment of 23 with diphenylphosphoryl azide (→ 27), 2,4-hexadiyne (→ 28), 1,4-diphenylbutadiyne (→ 29), dinitrogen monoxide (→ 30), diphenyl disulfide (→ 31), diphenyl diselenide (→ 32), diphenyl ditelluride (→ 33), sulfur (→ 34), selenium (→ 35), tellurium (→ 36), carbon dioxide (→ 37), and carbon disulfide (→ 38) respectively. Additionally, compound 37 could also be synthesized by treatment of 30 with carbon dioxide. The reaction of 23 with diphenylphosphoryl azide proceeds with a nitrogen elimination and formation of 27 with a silicon–nitrogen double bond. Compound 27 and can be formally described as an intramolecularly donor-stabilized silaimine. Compounds 28 and 29 can be formally described as donor-stabilized silaimines with a silicon-bound trisubstituted vinyl group. The reaction mechanism is postulated to be a [1+2] cycloaddition of 23 with one of two C–C triple bonds of the diynes to form the corresponding silacyclopropenes, which then undergo a rearrangement with a 1,3-shift of one of the two SiMe3 groups from the nitrogen atom of the amido ligand to the carbon atom of the silacyclopropene ring. Compounds 30–33 represent the first thermally stable donor-stabilized silaimines with an SiN3El skeleton (El = O, S, Se, Te). The formation of 30 can be rationalized in terms of an oxidation of 23 with dinitrogen monoxide to give a four-coordinate silicon(IV) complex with an silicon–oxygen double bond, which then undergoes a 1,3-shift of one of the two SiMe3 groups from the nitrogen to the oxygen atom to give 30 (including elimination of nitrogen). The formation of 31–33 can be rationalized in terms of a homolytic El–El bond activation (El = S, Se, Te) of the corresponding diphenyl dichalcogenides (formation of two Si–ElPh groups), followed by a 1,3-shift of one of the two SiMe3 groups to one of the two Si–ElPh moieties and elimination of Me3SiElPh. Reaction of 23 with the elemental chalcogens sulfur, selenium, and tellurium proceeds also in terms of an oxidative addition to form compounds 34–36 with a silicon–chalcogen double bond. For the formation of 37, a three-step process is proposed. In a first two-stage step, silylene 23 reacts with one molecule of carbon dioxide to give the stable four-coordinate silicon(IV) complex 30 as an intermediate (elimination of carbon monoxide). Addition of a second carbon dioxide molecule to the silicon–nitrogen double bond of 30 finally afforded the five-coordinate silicon(IV) complex 37 with an N,O-chelating carbamato ligand. This mechanism is strongly supported by the finding that treatment of 30 with an excess of CO2 also afforded compound 37. Reaction of 23 with carbon disulfide leads to the cyclic silicon(IV) complex 38. The silicon coordination polyhedra of 27–36 in the crystal are strongly distorted tetrahedra, with a bidentate guanidinato ligand, an amido ligand (27 and 34–36 only), and an imino ligand (28–33), respectively, and with an Si–El single bond (28, 29: El = C; 30: El = O; 31: El = S; 32: El = Se; 33: El = Te) and an Si–El double bond (27: El = N, 34: El = S; 35: El = Se; 36: El = Te), respectively. The silicon coordination polyhedron of 37 is a strongly distorted trigonal bipyramid, with the oxygen atom of the carbamato ligand and a nitrogen atom of the guanidinato ligand in the axial positions. The silicon coordination polyhedron of 38 is a distorted tetrahedron. Reactivity of the donor-stabilized silylene 24 Silylene 24 reacts with the Lewis acids triphenylborane, triphenylalane, and zinc chloride to give the respective five-coordinate silicon(II) complexes 39, 40, and 42, which contain an Si–B, Si–Al, and Si–Zn bond, respectively. In these transformations, silylene 24 reacts as a Lewis base to afford Lewis acid/base adducts. The silicon coordination polyhedra of 39, 40, and 42 in the crystal are strongly distorted trigonal bipyramids, with the boron, aluminum, and zinc atom in an equatorial position. NMR spectroscopic studies demonstrated that the silicon–zinc compound 42 is also stable in solution, whereas the silicon–boron and silicon–aluminum compounds 39 and 40, respectively, are unstable in solution. Both complexes dissociate quantitatively to form 24 and ElPh3 (El = B, Al). The bis(guanidinato)silicon(II) complexes 39 and 40 and the analogous bis(amidinato)silicon(II) complexes 3 and 41 are characterized by similar structures each. However, the respective amidinato/guanidinato analogues 3/39 and 41/40 differ significantly in their chemical stability in solution. As 39 and 40 even dissociate at lower temperature (T = –20 °C) and the corresponding amidinato analogues 3 and 41 are stable at higher temperatures (T = 70 °C), the bis(amidinato)silylene 1 is suggested to be a better σ-donor and thus a stronger Lewis base compared to the bis(guanidinato)silylene 24. Furthermore, silylene 24 reacts as a nucleophile with the transition-metal carbonyl complexes [M(CO)6] (M = Cr, Mo, W) and [Fe(CO)5] to form the corresponding four-coordinate silicon(II) complexes 43–45 and the five-coordinate silicon(II) complex 46. The silicon coordination polyhedra of 43–45 are strongly distorted tetrahedra, with one silicon-bound bidentate guanidinato ligand and a second guanidinato ligand that bridges the silicon and the transition-metal atom. The two silicon coordination polyhedra of 46 are strongly distorted trigonal bipyramids, with the iron atom in an equatorial site. Comparison of the bis(guanidinato)silicon(II) complexes 43–46 with the respective amidinato analogues 4–7 reveals that only the iron complexes 7 and 46 have analogous structures. In contrast, the bis(amidinato)silylene 1 reacts with [M(CO)6] (M = Cr, Mo, W) in terms of a monosubstitution (replacement of one of the six carbonyl ligands) to give the five-coordinate silicon(II) complexes 4–6, whereas treatment of [M(CO)6] with the bis(guanidinato)silylene 24 leads to a disubstitution (replacement of two carbonyl ligands) to afford the four-coordinate silicon(II) complexes 43–45. The four-coordinate silicon(IV) complexes 47–51 were synthesized in terms of an oxidative addition reaction by treatment of 24 with trimethylsilyl azide (→ 47), dinitrogen monoxide (→ 48), sulfur (→ 49), selenium (→ 50), and tellurium (→ 51), respectively. The formation of 47 and 48 proceeds with the elimination of nitrogen. The silicon coordination polyhedra of 47–51 in the crystal are strongly distorted tetrahedra. The dinuclear complex 48 contains two monodentate guanidinato ligands each and an Si2O2 ring. Compounds 47 and 49–51 represent the first four-coordinate bis(guanidinato)silicon(IV) complexes with a silicon–nitrogen or silicon–chalcogen double bond (S, Se, Te), respectively. The formation of compounds 47–51 once again emphasizes the different reactivities of the amidinato/guanidinato-analogous silylenes 1 (three-coordinate in the solid-state and four-coordinate in solution) and 24 (three-coordinate both in the solid state and in solution). It is interesting to note that the oxidative addition reactions of the amidinato/guanidinato analogues 1 and 24 with trimethylsilyl azide, dinitrogen monoxide, sulfur, selenium and tellurium lead to products with different silicon coordination numbers. Compounds 8 and 10–12 represent five-coordinate silicon(IV) complexes with two bidentate amidinato ligands, whereas the corresponding analogues 47 and 49–51 are four-coordinate silicon(IV) complexes that contain one bidentate and one monodentate guanidinato ligand. Likewise, compound 9 is a dinuclear five-coordinate silicon(IV) complex with one bidentate and one monodentate amidinato ligand, whereas the dinuclear four-coordinate complex 48 contains two monodentate guanidinato ligands each. The cationic five-coordinate silicon(IV) complexes 52 and 53 were also synthesized in terms of an oxidative addition reaction by treatment of 24 with diphenyl disulfide (→ 52) and diphenyl diselenide (→ 53), respectively. The silicon coordination polyhedra of 52 and 53 are strongly distorted bipyramids, with the sulfur or the selenium atom in an equatorial position. The formation of 52 and 53 is formally based on a heterolytic chalcogen–chalcogen bond activation of diphenyl disulfide and diphenyl diselenide by the bis(guanidinato)silylene 24. In contrast, a homolytic Se–Se bond activation was observed for the reaction of diphenyl diselenide with the analogous bis(amidinato)silylene 1 (formation of the six-coordinate silicon(IV) complex 13). Furthermore, the reactivity of silylene 24 towards small molecules was investigated. The six-coordinate silicon(IV) complexes 55, 57, and 58 and the five-coordinate silicon(IV) complex 56 were prepared in terms of an oxidative addition reaction by treatment of 24 with an excess of carbon dioxide (→ 55), with an equimolar amount of carbon disulfide (→ 56), with a stoichiometric amount of sulfur dioxide (→ 57), and with a vast excess of liquid sulfur dioxide (which served also as the solvent; → 58), respectively. Compound 58 was isolated as a co-crystallizate of the isomers cis-58 and trans-58, which differ in their relative orientation of the two exocyclic oxygen atoms. The silicon coordination polyhedra of 55·C6H5CH3, 57, and 58 are strongly distorted octahedra. The oxygen ligand atoms of the bidentate O,O´-chelating carbonato (55), sulfito (56), and dithionito (57) ligands are found in cis positions each. Compound 58 is the second structurally characterized silicon compound with a bidentate O,O´-chelating dithionito ligand, and 55, 57, and 58 represent very rare examples of main-group element compounds with an O,O´-chelating carbonato, sulfito, or dithionito ligand. Complex 57 and its amidinato analogue 16 represent two of three main-group element compounds with an O,O´-chelating sulfito ligand, and complexes 55 and 58 (together with their amidinato analogues 14 and 17) are even the only known molecular compounds that contain an O,O´-chelating carbonato and non-bridging dithionito ligand, respectively. The formation of 55, 57, and 58 is one of the rare examples of reactions of the amidinato/guanidinato-analogous silylenes 1 and 24 that lead to structurally analogous products (amidinato/guanidinato analogues 14/55, 16/57, and 17/58), whereas in most cases different reactivity profiles were observed. The silicon coordination polyhedron of 56 is a strongly distorted trigonal bipyramid, with the carbon atom in an equatorial position. The five-coordinate silicon(IV) complex 56 with its carbon-bound CS22– ligand represents an unprecedented coordination mode in silicon chemistry, and the formation of 56 is a further example of the different reactivity profiles of the amidinato/guanidinato-analogous silylenes 1 and 24. The bis(amidinato)silylene 1 reacts with carbon disulfide to give the six-coordinate silicon(IV) complex 15 with an S,S´-chelating trithiocarbonato ligand and thereby differs from its guanidinato analogue 56 by both the silicon-coordination number and the coordination mode. KW - Siliciumkomplexe KW - Komplex-Chemie KW - Silylene KW - Hauptgruppen-Chemie KW - Silandiylverbindungen KW - Koordinationslehre Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-136377 ER - TY - THES A1 - Seiler, Oliver T1 - Beiträge zur Chemie des höherkoordinierten Siliciums und Germaniums : Synthese, Struktur und Eigenschaften dianionischer lambda-6-Si-Silicate und lambda-6-Ge-Germanate sowie neutraler penta- und hexakoordinierter Silicium-Verbindungen T1 - Contributions to the Chemistry of Higher-coordinate Silicon and Germanium: Synthesis, Structure, and Properties of Dianionic lambda-6-Si-Silicates and lambda-6-Ge-Germanates, as well as of Neutral Penta- and Hexacoordinate Silicon Compounds N2 - Im Rahmen der vorliegenden Arbeit wurden Beiträge zur Chemie des höherkoordinierten Siliciums und Germaniums geleistet. Neben der Synthese zwitterionischer lambda-5-Si-Silicate sowie hexakoordinierter Silicium- und Germanium-Verbindungen mit SiO6- oder GeO6-Gerüst stellt die Synthese neutraler höherkoordinierter Silicium-Verbindungen ausgehend von Tetra(cyanato-N)silan und Tetra(thiocyanato-N)silan sowie deren umfassende Charakterisierung einen Schwerpunkt dieser Arbeit dar. N2 - This thesis deals with the chemistry of higher-coordinate silicon and germanium. Besides the synthesis of zwitterionic lambda-5-Si-silicates and hexacoordinate silicon and germanium compounds with SiO6 and GeO6 skeletons, the synthesis of neutral higher-coordinate silicon compounds starting from tetra(cyanato-N)silane or tetra(thiocyanato-N)silane and their complete characterization is the major topic of this thesis. KW - Silicium KW - Hypervalentes Molekül KW - Koordinationslehre KW - Germanium KW - Silicium KW - Germanium KW - Pentakoordination KW - Hexakoordination KW - Koordinationschemie KW - Silicon KW - Germanium KW - Pentacoordination KW - Hexacoordination KW - Coordination Chemistry Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-14784 ER - TY - THES A1 - Theis, Bastian Markus T1 - Beiträge zur Chemie des höherkoordinierten Siliciums und Germaniums: Synthese, Struktur und Eigenschaften neuer penta- und hexakoordinierter Silicium(IV)-Komplexe sowie pentakoordinierter Germanium(IV)-Komplexe T1 - Contributions to the Chemistry of Higher-Coordinate Silicon and Germanium: Synthesis, Structure, and Properties of New Penta- and Hexacoordinate Silicon(IV) Complexes and Pentacoordinate Germanium(IV) Complexes N2 - Die vorliegende Dissertation stellt einen Beitrag zur Chemie des höherkoordinierten Siliciums dar. Im Rahmen dieser Untersuchungen wurden neuartige zwitterionische spirocyclische lambda5Si,lambda5Si'-Disilicate, zwitterionische spirocyclische lambda5Si-Silicate und neutrale pentakoordinierte Silicium(IV)-Komplexe dargestellt. Weiterhin wurden neutrale hexakoordinierte Silicium(IV)-Komplexe sowie neutrale pentakoordinierte Germanium(IV)-Komplexe synthetisiert. Die Charakterisierung dieser Verbindungen erfolgte durch Elementaranalysen, Festkörper-NMR-Spektroskopie (13C-, 15N-, 29Si- und 77Se-VACP/MAS-NMR) und Kristallstrukturanalysen. Ergänzend wurden einige Verbindungen durch NMR-Spektroskopie in Lösung (1H, 13C, 19F, 29Si, 31P und 77Se) charakterisiert. N2 - This dissertation deals with the chemistry of higher-coordinate silicon. In the course of these studies, novel zwitterionic spirocyclic lambda5Si,lambda5Si'-disilicates, zwitterionic spirocyclic lambda5Si-silicates, and neutral pentacoordinate silicon(IV) complexes were prepared. Furthermore, neutral hexacoordinate silicon(IV) complexes and neutral pentacoordinate germanium(IV) complexes were synthesized. These compounds were characterized by elemental analyses, solid-state NMR spectroscopy (13C, 15N, 29Si, and 77Se VACP/MAS NMR), and single-crystal X-ray diffraction. In addition, some of these compounds were characterized by NMR spectroscopy in solution (1H, 13C, 19F, 29Si, 31P, and 77Se). KW - Silicium KW - Hypervalentes Molekül KW - Koordinationslehre KW - Germanium KW - Selen KW - Zwitterion KW - Siliciumkomplexe KW - Germaniumkomplexe KW - Pentakoordination KW - Hexakoordination KW - Koordinationschemie KW - Höherkoordination KW - Silicat KW - Pentacoordination KW - Hexacoordination KW - Coordination Chemistry KW - higher-coordinate KW - Silicate Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-40737 ER - TY - THES A1 - Weiß, Jörg T1 - Beiträge zur Chemie des höherkoordinierten Siliciums: Synthese, Struktur und Eigenschaften neuer penta- und hexakoordinierter Silicium(IV)-Komplexe T1 - Contributions to the Chemistry of Higher Coordinate Silicon: Syntheses, Structures and Properties of Novel Penta- and Hexacoordinate Silicon(IV) Complexes N2 - Die vorliegende Dissertation stellt einen Beitrag zur Chemie des höherkoordinierten Siliciums dar. Im Rahmen dieser Untersuchungen wurden neue neutrale penta- und hexakoordinierte Silicium(IV)-Komplexe, sowie deren benötigte Vorstufen dargestellt. Weiterhin wurde ein kationischer und ein zwitterionischer Silicium(IV)-Kompex synthetisiert. Die Charakterisierung dieser Verbindungen erfolgte durch Elementaranalysen, Festkörper-NMR-Spektroskopie (13C-, 15N-, 29Si- und 77Se-VACP/MAS-NMR) und Kristallstrukturanalysen. Ergänzend wurden einige Verbindungen durch NMR-Spektroskopie in Lösung (1H, 13C, 19F, 29Si, und 77Se) charakterisiert. N2 - This dissertation deals with the chemistry of higher-coordinate silicon. In the course of these studies, novel neutral penta- and hexacoordinate silicon(IV) complexes and the needed precursors were prepared. Furthermore, one kationic and one zwitterionic silicon(IV) complex was synthesized. These compounds were characterized by elemental analyses, solid-state NMR spectroscopy (13C, 15N, 29Si, and 77Se VACP/MAS NMR), and single-crystal X-ray diffraction. In addition, some of these compounds were characterized by NMR spectroscopy in solution (1H, 13C, 19F, 29Si, and 77Se). KW - Hypervalentes Molekül KW - Silicat Coordination Chemistry KW - Siliciumkomplexe KW - Chemische Synthese KW - Silicate KW - higher-coordinate KW - Pentacoordination KW - Hexacoordination KW - Höherkoordination KW - Koordinationschemie KW - Selen KW - Silicium KW - Siliciumkomplexe KW - Zwitterion KW - Koordinationslehre Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-93250 ER -