TY - BOOK A1 - Bock, Stefanie A1 - Gauch, Fabian A1 - Giernat, Yannik A1 - Hillebrand, Frank A1 - Kozlova, Darja A1 - Linck, Lisa A1 - Moschall, Rebecca A1 - Sauer, Markus A1 - Schenk, Christian A1 - Ulrich, Kristina A1 - Bodem, Jochen T1 - HIV-1 : Lehrbuch von Studenten für Studenten T1 - HIV-1 : a textbook for students written by students N2 - Dies ist ein Lehrbuch über die HIV-1 Replikation, Pathogenese und Therapie. Es richtet sich an Studenten der Biologie und der Medizin, die etwas mehr über HIV erfahren wollen und stellt neben virologischen Themen auch die zellulären Grundlagen dar. Es umfasst den Viruseintritt, die reverse Transkription, Genom-Integration, Transkriptionsregualtion, die Kotrolle des Spleißens, der Polyadenylierung und des RNA-Exportes. Die Darstellung wird abgerundet mit Kapiteln zum intrazellulärem Transport, zu Nef und zum Virusassembly. In zwei weiteren Kapitel wird die HIV-1 Pathogenese und die Therapie besprochen. Zur Lernkontrolle sind den Kapiteln Fragen und auch Klausurfragen angefügt. KW - HIV KW - Retroviren KW - Lehrbuch KW - Viren KW - Virologie KW - Transkription KW - RNS KW - Therapie KW - Pathogenese KW - Epidemiologie KW - RNA-Export KW - Polyadenylierung KW - Reverse Transkription KW - Transkription Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-78980 SN - 978-3-923959-90-7 ER - TY - THES A1 - Effenberger, Madlen T1 - Funktionelle Charakterisierung von YB-1 im Zytoplasma des Multiplen Myeloms T1 - Functional Characterization of YB-1 in the Cytoplasm of Multiple Myeloma N2 - Das Y-Box-bindende Protein 1 (YB-1) ist ein Vertreter der hochkonservierten Familie eukaryotischer Kälteschockproteine und ein DNA/RNA-bindendes Protein. In Abhängigkeit von seiner Lokalisation übernimmt es Aufgaben bei der DNA-Transkription oder mRNA-Translation. YB-1 ist ein potentielles Onkogen beim Multiplen Myelom (MM), dass in primären MM-Zellen exprimiert ist. Für die funktionellen Untersuchungen von YB-1 in der vorliegenden Arbeit wurden humane Myelomzelllinien (HMZL) verwendet, die als in vitro Modell dieser malignen B Zell-Erkrankung dienen. Aufgrund der potentiellen Expression von YB-1 im Zellkern und/oder Zytoplasma von HMZL, wurde zunächst die Lokalisation des Proteins bestimmt. Es konnte gezeigt werden, dass YB 1 in den HMZL ausschließlich im Zytoplasma lokalisiert ist. Eine Translokation von YB-1 in den Nukleus kann durch die Serin-Phosphorylierung (Aminosäure 102) in der Kälteschockdomäne induziert werden. Die analysierten Myelomzelllinien zeigen jedoch kein nukleäres YB 1 und keine S102-Phosphorylierung. Diese Ergebnisse stützen die These, dass die Regulation der mRNA-Translation im Zytoplasma die vorherrschende Funktion von YB-1 beim MM ist. YB-1 könnte über diesen Mechanismus seine anti-apoptotische Wirkung vermitteln und die MM-Zellen vor genotoxischem Stress schützen. Um YB-1-regulierte mRNAs zu identifizieren wurden YB 1-Immunpräzipitationen mit zwei HMZL, einer Maus-Plasmozytomzelllinie und einem primären Maus-Plasmazelltumor durchgeführt. Zu den YB-1-gebundenen mRNAs gehören Translationsfaktoren und ribosomale Proteine, die eine starke Beteiligung von YB-1 beim RNA-Metabolismus bestätigen. In der vorliegenden Arbeit wurden spezifisch zwei mRNA-Kandidaten untersucht, die für den malignen Phänotyp von MM-Zellen wichtig sein können: das translationell kontrollierte Tumorprotein TCTP und MYC. Sowohl TCTP als auch MYC wurden bereits in Zusammenhang mit der Proliferation und Apoptose-Resistenz von malignen Zellen beschrieben. Die immunhistochemische Untersuchung der Knochenmarkbiopsien von MM-Patienten ergab eine gute Ko-Expression von YB-1 und TCTP in intramedullären MM-Zellen, während MYC erst in extramedullärem MM-Tumormaterial verstärkt mit der hohen YB 1-Expression korreliert. Die funktionellen Analysen der Arbeit haben gezeigt, dass YB 1 für die Translation der TCTP- und MYC-mRNA essentiell ist. Es kontrolliert die Verteilung dieser mRNAs zwischen translationell aktiven und inaktiven messenger Ribonukleoprotein-Partikeln. Die shRNA-vermittelte Reduktion von YB-1 führte zur Hemmung der TCTP- und MYC-Translation in der Phase der Initiation. Um den Einfluss der Kandidaten auf das Überleben der HMZL zu untersuchen, wurden proteinspezifische Knockdown-Experimente durchgeführt. Beim shRNA-vermittelten TCTP-Knockdown konnten keine Auswirkungen auf die Proliferation oder Viabilität von MM-Zellen beobachtet werden. Im Gegensatz dazu ist MYC für das Überleben und Wachstum der HMZL ausschlaggebend, denn der MYC-Knockdown induzierte Apoptose. Wie beim YB 1-Knockdown war ein Anstieg der Caspase-Aktivität und der Zusammenbruch des mitochondrialen Membranpotentials in den HMZL nachweisbar. Da es beim MYC-Knockdown gleichzeitig zur einer Reduktion der YB 1-Protein- und mRNA-Expression kam, wurde der Einfluss von MYC auf die Transkription des YB-1-Gens untersucht. Mit Hilfe von embryonalen Mausfibroblasten, die ein induzierbares MYC als Transgen besitzen, konnte gezeigt werden, dass die Aktivierung von MYC mit einer Zunahme der YB-1-mRNA einher geht. YB-1 ist somit ein direktes Zielgen des Transkriptionsfaktors MYC. Die Ergebnisse der vorliegenden Arbeit haben zum ersten Mal ein gegenseitiges regulatorisches Netzwerk aufgezeigt, in dem YB 1 transkriptionell durch MYC reguliert wird und YB-1 für die Translation der MYC-mRNA essentiell ist. Die Ko-Expression beider Proteine trägt zum Wachstum und Überleben von malignen Plasmazellen bei. N2 - The Y-box binding protein 1 (YB-1) is a member of the highly conserved coldshock-domain protein family and a DNA/RNA-binding protein. Therefore YB-1 can be involved in DNA transcription or mRNA translation depending on its localization in the cell. YB-1 is a potential oncogene in Multiple Myeloma (MM) and is expressed in primary MM cells. Human myeloma cell lines (HMCLs), which serve as the in vitro model for this B-cell malignancy, were used to functionally characterize YB-1 in MM. In this study it was shown that the YB-1 protein is expressed exclusively in the cytoplasm of HMCLs. Its translocation into the nucleus can be induced through the phosphorylation of a serine residue (amino acid 102) in the coldshock-domain of the protein. The analyzed myeloma cell lines are negative for nuclear YB-1 and the S102-phosphorylation. These results support the hypothesis that the regulation of mRNA translation in the cytoplasm is the primary function of YB-1 in MM. Through this mechanism YB-1 could mediate its anti-apoptotic effects and protect MM cells against genotoxic stress. To identify YB-1 regulated mRNAs in the cytoplasm immunoprecipitations of two HMCLs, one mouse plasmacytoma cell line and one primary mouse plasma cell tumor were performed. YB-1 bound mRNAs include translation factors and ribosomal proteins, which confirms the strong participation of YB-1 in the metabolism of RNAs. In the present study two mRNA candidates were specifically investigated which might be important for the malignant phenotype of MM cells: the translationally controlled tumor protein (TCTP) and MYC. Both, TCTP and MYC have been described in conjunction with proliferation and apoptosis-resistance of malignant cells. The immunohistochemical staining of bone marrow biopsies from MM patients revealed a good co-expression of YB-1 and TCTP in intramedullary MM cells, whereas MYC and YB-1 correlate strongly with each other in extramedullary MM tumors. The functional analysis of this study showed, that YB-1 is essential for the translation of TCTP and MYC mRNA. It controls the distribution of these mRNAs between translationally active and inactive messenger ribonucleoprotein particles. The shRNA-mediated reduction of YB-1 expression inhibits TCTP and MYC translation in the initiation phase. To investigate the influence of the candidates for HMCL survival protein-specific knockdown experiments were performed. The TCTP knockdown showed no effect on proliferation or viability of the analyzed MM cells. In contrast, MYC is crucial for MM cell survival and growth, as the knockdown induced apoptosis. Comparable with the performed YB-1 knockdown experiments apoptosis induction was verified here by an increase of activated caspases and disruption of the mitochondrial membrane potential in HMCLs. Interestingly, the knockdown of MYC also reduced YB-1 protein and mRNA expression. To investigate the influence of MYC on YB-1 gene transcription mouse embryonic fibroblasts (MEFs) from MYC transgenic animals were used. The activation of MYC protein in these cells induced YB-1 mRNA expression, showing that YB-1 is a direct target of the transcription factor MYC. The work presented here revealed for the first time a feed-forward loop of YB-1 and MYC expression in MM cells. In this loop YB-1 is transcribed by MYC and YB-1 is essential for MYC mRNA translation. Consequently, both proteins mutually up-regulate each other via combined transcriptional/translational activity to support cell growth and survival of malignant plasma cells. KW - Plasmozytom KW - Apoptosis KW - RNS-Bindungsproteine KW - Myc KW - Cytoplasma KW - YB-1 KW - mRNA-Translation KW - TCTP KW - Multiples Myelom KW - Transkription KW - YB-1 KW - mRNA translation KW - TCTP KW - multiple myeloma KW - transcription Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-76816 ER - TY - THES A1 - Fischer, Thomas Horst T1 - Die transkriptionelle Regulation der microRNA-21 im Herzen T1 - The transcriptional regulation of microRNA-21 in the heart N2 - MicroRNAs sind kleine, nicht kodierende RNA-Moleküle, die posttranskriptionell die Genexpression regulieren. Sie binden hierfür spezifisch an 3’-UTRs von messenger-RNAs und führen entweder direkt zu deren Abbau oder inhibieren deren Translation. Über die Mechanismen, die die Expression von microRNAs regulieren, ist jedoch noch wenig bekannt. Die Tatsache, dass sie als lange Vorläufermoleküle (pri-microRNAs) durch die RNA-Polymerase-II transkribiert werden, legt die Existenz eines Promotorbereiches nahe, der dem proteinkodierender Gene ähnelt. Mit Hilfe von microRNA-Arrays konnten wir im linksventrikulären Myokard mehrere bei Herzinsuffizienz deutlich verändert exprimierte microRNAs identifizieren. Die microRNA-21 ist dabei bereits im Frühstadium der Herzinsuffizienz verstärkt exprimiert (Northern Blot). Auch in primären, kardialen Zellen (Fibroblasten, Kardiomyozyten) wird die microRNA-21 nach Induktion einer Hypertrophie verstärkt exprimiert. Weiterführendes Ziel dieser Arbeit war es nun, diejenigen Mechanismen aufzuklären, die der starken Induktion der microRNA-21 im erkrankten Myokard zu Grunde liegen. Durch bioinformatische Analyse des zugehörigen Promotorbereiches (Trans-Spezies-Konservierung) und Klonierung danach ausgerichteter Fragmente in Luciferase-basierte Reporter-Plasmide konnte ein 118 Basen langer Bereich identifiziert werden, der maßgeblich die Expression der microRNA-21 im Herzen bedingt. Durch Deaktivierung einzelner cis-Elemente konnte die kardiale Expression auf zwei essentielle Transkriptionsfaktorbindungsstellen zurückgeführt werden. Es handelt sich dabei um Erkennungssequenzen für die im Herz bedeutsamen Transkriptionsfaktoren CREB und SRF. Sie liegen in enger räumlicher Nachbarschaft ungefähr 1150 bp vor der Transkriptionsstartstelle. Die Suppression der Expression dieser beiden Transkriptionsfaktoren mittels geeigneter siRNAs führte jeweils zu einer signifikanten Aktivitätsminderung des microRNA-21-Promotors und konnte somit die vorangehenden Ergebnisse validieren. Durch Generierung einer transgenen Tierlinie, die lacZ unter der Kontrolle des microRNA-21-Promotors exprimiert, werden in naher Zukunft nähere Aufschlüsse über die gewebsspezifische Verteilung der microRNA-21-Expresssion in vivo möglich sein. Zusammenfassend beschreiben wir hier erstmals den Mechanismus der transkriptionellen Regulation der microRNA-21 im Herzen. Dieser Mechanismus bedingt wahrscheinlich die starke Induktion dieser microRNA bei kardialer Hypertrophie und Herzinsuffizienz. N2 - MicroRNAs are small, non-coding RNA molecules that posttranscriptionally regulate gene expression. They specifically bind to 3’-UTRs of messenger RNAs and either directly lead to the degradation of the bound messenger-RNA or inhibit its translation. Only little is known, however, about the mechanisms that control the expression of microRNAs. The fact that they are being transcribed as long precursor-molecules (primary microRNAs, pri-microRNAs) by type-II-RNA-polymerase suggests that they have a promoter region similar to those of protein-coding genes. Using microRNA arrays, we were able to identify several differentially expressed microRNAs in the left ventricular myocardium of mice suffering from heart failure. MicroRNA-21 was found to be strikingly upregulated even in early stages of disease (Northern blot) and the induction of hypertrophy in vitro also elevated its expression. The aim of this study was to learn more about the molecular mechanisms that are responsible for the strong induction of microRNA-21 in the failing heart. Bioinformatic analysis of the microRNA-21 promoter region (trans species conservation) and cloning of several fragments into luciferase-based reporter plasmids revealed a 118 bp region to be fundamental to the activity of this promoter in cardiac cells. By deactivating single cis elements we were able to identify two transcription factor binding sites that are essential for microRNA-21 expression. These are recognition sites for the transcription factors CREB and SRF, both of which are known to be important in the heart. They are located in close proximity about 1150 bp upstream of the transcription start site. The suppression of these transcription factors through siRNAs lead to a strong reduction of the microRNA-21 promoter activity and thus validated the preceding results. Summing up we were able to describe the mechanisms that underlie the transcriptional regulation of microRNA-21 in the heart. This mechanism most likely leads to the strong induction of this microRNA in hypertrophy and heart failure. KW - Small RNA KW - Genregulation KW - microRNA-21 KW - miR-21 KW - Herz KW - Transkription KW - microRNA-21 KW - miR-21 KW - Herz KW - transcription Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-50702 ER - TY - THES A1 - Markert, Andreas T1 - LARP7 – ein La ähnliches Protein reguliert die Elongation der PolII Transkription durch das 7SK RNP T1 - LARP7 - a La related protein regulates the elongation of polII transcription by the 7SK RNP N2 - Genexpression in Eukaryoten beschreibt einen mehrstufigen Prozess, welcher auf Ebene der Transkription durch den positiven Transkriptionselongationsfaktor P-TEFb entscheidend reguliert wird. PTEFb bildet einen heterodimeren Komplex aus der Cyclin abhängigen Kinase 9 und deren Kofaktor Cyclin T1/2. Dieser Komplex aktiviert die Elongation der Transkription durch Phosphorylierung der negativen Elongationsfaktoren DSIF und NELF. Darüber hinaus phosphoryliert PTEFb Serin2 Reste in der C-terminalen Domäne von RNA PolII und stimuliert so die kotranskriptionelle Prozessierung der synthetisierten prä-mRNA. In Anpassung an unterschiedliche Wachstumsbedingungen wird die Aktivität dieses Faktors durch reversible Interaktion mit 7SK RNA und HEXIM Proteinen innerhalb eines katalytisch inaktiven Ribonukleoproteinpartikels (7SK RNP) streng kontrolliert. Dieses sensible Gleichgewicht zwischen P-TEFb auf der einen und dem 7SK RNP auf der anderen Seite bildet die Grundlage der Regulation der Transkriptionselongation. Trotz der hohen Abundanz von 7SK RNA in der Zelle, assoziiert in vivo jedoch nur ein relativ kleiner Teil hiervon mit P-TEFb, sodass die effektiv zur Verfügung stehende RNA-Menge für die Bildung des 7SK RNP vermutlich limitierend wirkt. Ziel der vorliegenden Arbeit war es daher neue 7SK RNA interagierende Faktoren zu identifizieren, welche die Interaktion von PTEFb mit dem 7SK RNP steuern und so die PolII abhängige Transkription regulieren. Anhand verschiedener chromatographischer Reinigungen konnte zunächst ein bislang uncharakterisiertes La ähnliches Protein (LARP7) mit einer spezifischen Affinität für Pyrimidinreiche RNAs isoliert werden. LARP7 bindet, wie durch immunbiochemische Analysen und RNA- Bindungsstudien gezeigt werden konnte, quantitativ an das hoch konservierte uridylreiche 3´- Ende von 7SK RNA. Diese Assoziation erfordert dessen La- und RRMDomänen und erhöht wesentlich die Stabilität der RNA. Darüber hinaus kofraktioniert LARP7 mit weiteren Faktoren des 7SK RNP, bindet direkt an HEXIM1 und P-TEFb und stellt somit ebenfalls eine integrale Komponente des 7SK RNP dar. Die gewonnenen Daten weisen außerdem erstmals darauf hin, dass P-TEFb durch einen vorgeformten trimeren Komplexes, bestehend aus HEXIM1, 7SK RNA und LARP7 inhibiert wird. Reportergenanalysen in TZMbl-Zellen, welche Luziferase unter der Kontrolle des streng P-TEFb abhängigen HIV-1-LTRPromotors exprimieren zeigten, dass diese Inhibition im Wesentlichen durch LARP7 vermittelt wird. So ließ sich nach Reduktion der LARP7 Expression mittels RNAi eine signifikante Steigerung der Transkription vom HIV-1-LTR-Promotor beobachten. Eine ähnliche Stimulation der Transkription von PolII konnte in LARP7 defizienten HeLa-Zellen durch quantitative Real-Time-PCR auch für eine Reihe zellulärer Gene nachgewiesen werden. Die Beobachtung, dass LARP7 die generelle PolII Transkription reprimiert, korreliert zudem mit einer bereits beschriebenen Tumorsupressorfunktion des LARP7 homologen mxc Proteins aus D. melanogaster. Somit beeinflusst LARP7 das zelluläre Gleichgewicht zwischen freiem und 7SK RNP-gebundenem P-TEFb und fungiert somit als negativer Regulator der PolII Transkription in vivo. N2 - Eucaryotic gene expression is a multistep process, which is critically regulated on the level of RNA polII transcription by the positive transcription elongation factor P-TEFb. P-TEFb forms a heterodimeric complex, consisting of the cyclin-dependent kinase 9 and its cofactor cyclin T1/2. This complex stimulates transcriptional elongation as well as the cotranscriptional processing of the synthesized pre-mRNA by phosphorylation of negative elongation factors and the RNA polII Cterminal domain. To accommodate different growth conditions, P-TEFb activity is kept under tight control through its reversible interaction with 7SK RNA and HEXIM proteins in a catalytically inactive ribonucleoprotein particle (RNP). This sensitive balance between PTEFb on the one hand and the 7SK RNP on the other represents the basis of transcriptional regulation of elongation. Despite the high abundance of 7SK RNA in the cell, only a small part is associated with P-TEFb in vivo, suggesting that the actual amount of RNA available limits the formation of the 7SK RNP. Hence, the objective of the present study was to identify novel 7SK RNA interacting factors, which direct the interaction of P-TEFb with the 7SK RNP, thereby regulating polII dependent transcription. At first, using different chromatographic purification strategies, an as yet uncharacterized La related protein (LARP7) with an affinity to pyrimidine- rich RNAs was isolated. Immunobiochemical analysis and RNA binding studies revealed, that LARP7 quantitatively associates with the highly conserved 3´-UUU-OH terminus of 7SK RNA. This binding requires its La- and RRM-domain and dramatically increases RNA stability. Moreover, LARP7 co-fractionates with additional factors of the 7SK RNP, binds directly to HEXIM1 and P-TEFb and therefore likewise constitutes an integral component of the 7SK RNP. Data presented here indicate that P-TEFb is inhibited upon association with a trimeric complex consisting of HEXIM1, 7SK RNA and LARP7. Furthermore, reporter gene analysis in TZMbl cells - cells expressing luciferase under the control of the strictly P-TEFb dependent HIV-1-LTR promoter - demonstrated this inhibition to be mainly mediated by LARP7. Thus, reduction of LARP7 expression by RNA-interference led to a significant stimulation of transcription in TZMbl cells. In addition, quantitative real time pcr revealed a similar effect on transcription for a series of cellular genes in LARP7 deficient HeLa cells. Moreover, the observation, that LARP7 represses polII transcription in general correlates well with a known function of the d. melanogaster LARP7 homologue mxc as a tumor suppressor. Thus, LARP7 affects the cellular P-TEFb/7SK RNP equilibrium und serves as a negative regulator of polII transcription in vivo. KW - LARP7 KW - P-TEFb KW - 7SK RNA KW - Transkription KW - Elongation KW - LARP7 KW - P-TEFb KW - 7SK RNA KW - transcription KW - elongation Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-41773 ER - TY - THES A1 - Mauder, Norman T1 - Vergleichende Untersuchung der Internaline und PrfA-abhängigen Transkription in Listeria monocytogenes, L. ivanovii und L. seeligeri T1 - comparative study of internalins and PrfA-dependent transcription in Listeria monocytogenes, L. ivanovii and L. seeligeri N2 - Die Gattung Listeria umfasst sechs bekannte Arten ubiquitär vorkommender Gram-positiver, nicht sporulierender Stäbchenbakterien. Von diesen Spezies sind Listeria monocytogenes und L. ivanovii in der Lage bei Mensch und Tier das Krankheitsbild der Listeriose zu verursachen (Rocourt & Seeliger, 1985; Vázquez-Boland et al., 2001b; Weis & Seeliger, 1975), wobei L. ivanovii vorwiegend bei Tieren als Krankheitserreger vorkommt (Cummins et al., 1994; Hof & Hefner, 1988). L. monocytogenes gilt als wichtiges Modell für ein intrazelluläres Pathogen, das mit Hilfe seiner Internaline auch in nicht-professionelle Phagozyten invadieren (Gaillard et al., 1991; Lingnau et al., 1995) und sich dank einer Reihe weiterer Virulenzfaktoren im Zytoplasma vermehren, fortbewegen und Nachbarzellen infizieren kann (Tilney & Portnoy, 1989). Die beiden pathogenen Arten und das apathogene L. seeligeri besitzen eine als LIPI-1 bezeichnete Pathogenitätsinsel (Gouin et al., 1994; Kreft et al., 2002). Internalingene sind bei L. monocytogenes teilweise geclustert und bei L. ivanovii zu einem großen Teil in einer LIPI-2 genannten Pathogenitätsinsel organisiert (Domínguez-Bernal et al., 2006; Dramsi et al., 1997; Gaillard et al., 1991; Raffelsbauer et al., 1998). Die Expression vieler dieser Virulenzgene wird durch das zentrale Regulatorprotein PrfA gesteuert, dessen Gen prfA selbst Teil der LIPI-1 ist (Domínguez-Bernal et al., 2006; Leimeister-Wächter et al., 1990; Lingnau et al., 1995; Mengaud et al., 1991a). Im Rahmen dieser Arbeit sollten die Internaline InlC, InlE, InlG und InlH von L. monocytogenes näher untersucht werden. Dazu wurden rekombinante His6-markierte Internaline aufgereinigt und polyklonale Antiseren gegen die Internaline A, B, E, G und H hergestellt. Darüber hinaus gelang die Herstellung zweier monoklonaler Antikörper gegen InlG. Obwohl die Antikörper gegen InlG und InlE ihre rekombinanten Antigene gut dekorieren, konnten mit ihnen keine Proteine in Zellwand- oder Überstandspräparaten von L. monocytogenes EGD und EGDe detektiert werden. Das Antiserum gegen InlH kreuzreagierte mit InlA und auch schwach mit anderen Internalinen. In Zellwandpräparaten von L. monocytogenes dekorierte es ein ~50 kDa schweres Protein, welches mit InlH identisch sein könnte. Es fehlt in inlG/H/E Deletionsmutanten und wird in einer inlA/B Deletionsmutante stärker exprimiert. Im Kulturüberstand ist es etwas schwerer, wie man es von einem Protein mit LPXTG Motiv erwartet, das nicht von Sortase (Bierne et al., 2002; Garandeau et al., 2002) prozessiert wurde. In L. monocytogenes EGDe wird dieses ~50 kDa Protein um ein bis zwei dekadische Größenordungen stärker exprimiert als in L. monocytogenes EGD. Die Expression des Proteins war bei 30 und 37 °C gleich stark und wurde nicht durch PrfA reguliert. In Zellwandpräparaten von L. ivanovii ATCC 19119 dekorierten die Seren gegen InlA und InlH ein Protein das in seiner Größe dem InlA von L. monocytogenes entspricht. Mit Hexosaminidase Assays zur Untersuchung von Zelladhärenz (nach Landegren, 1984) an rekombinante His6-markierte Internaline konnte keine Interaktion der Internaline InlE, InlG oder InlH mit Oberflächenfaktoren von Caco-2, HeLa oder HepG2 Zellen nachgewiesen werden, während Positivkontrollen mit InlA und InlB weitestgehend erwartungsgemäß ausfielen. InlC besitzt jedoch offenbar einen bisher noch nicht genauer identifizierten Rezeptor auf der Zelloberfläche. An InlC und EGF adhärierten Caco-2 Zellen stark wachstumsphasenabhängig und etwa tausendfach schwächer als an InlA. Die beste Bindung erfolgte bei semikonfluent gewachsenen Zellen, die am Vortag ausgesät wurden. Unter diesen Bedingungen war auch die von Bergmann et al. beobachtete unterstützende Wirkung von InlC auf die InlA-abhängige Invasion am größten (Bergmann et al., 2002). In dieser Arbeit wurden außerdem die Promotoren von Internalingenen aus L. ivanovii, sowie weitere Virulenzgene (plcA, hly, actA) der Spezies L. monocytogenes, L. ivanovii und L. seeligeri mit Hilfe eines zellfreien in vitro Transkriptionssystems (Lalic-Mülthaler et al., 2001) untersucht, um deren PrfA-Abhängigkeit und Aktivität unabhängig von physiologischen Faktoren analysieren zu können, da die PrfA-Aktivität in vivo pleiotrop reguliert wird (Dickneite et al., 1998; Ermolaeva et al., 2004; Milenbachs et al., 1997; Milenbachs Lukowiak et al., 2004; Renzoni et al., 1997; Ripio et al., 1996). Dafür wurde in dieser Arbeit RNA-Polymerase aus L. monocytogenes ΔprfA ΔsigB (Stritzker et al., 2005) isoliert. Gleichzeitig wurde die Aktivität von rekombinanten His6-markierten PrfA Proteinen untersucht. Dazu wurden die PrfA Proteine von L. monocytogenes (m-PrfA und hyperaktives m-PrfA* (Ripio et al., 1997b)), L. ivanovii (i-PrfA) und L. seeligeri (s-PrfA), so wie ein Hybridprotein (sm-PrfA) aufgereinigt. Das Hybridprotein sm-PrfA entspricht s-PrfA bis auf die letzten 38 Aminosäurereste, die durch jene von m-PrfA ersetzt wurden. ... N2 - The genus Listeria comprises six known species of ubiquitous Gram-positive, non-sporulating, rod-shaped bacteria. Of these species Listeria monocytogenes and L. ivanovii are able to cause the clinical picture of listeriosis in humans and animals (Rocourt & Seeliger, 1985; Vázquez-Boland et al., 2001b; Weis & Seeliger, 1975) with L. ivanovii predominantly occurring in animals (Cummins et al., 1994; Hof & Hefner, 1988). L. monocytogenes is considered as important model of an intracellular pathogen that can also invade non-professional phagocytes with the aid of internalins (Gaillard et al., 1991; Lingnau et al., 1995) and can multiply and spread due to a set of virulence factors (Tilney & Portnoy, 1989). The two pathogenic species and the apathogenic L. seeligeri possess a pathogenicity island termed LIPI-1 (Gouin et al., 1994; Kreft et al., 2002). In L. monocytogenes internalin genes are partially clustered and mainly form a pathogenicity island termed LIPI-2 in L. ivanovii (Domínguez-Bernal et al., 2006; Dramsi et al., 1997; Gaillard et al., 1991; Raffelsbauer et al., 1998). The expression of many virulence genes is controlled by the central regulatory protein PrfA which gene prfA is part of LIPI-1 (Domínguez-Bernal et al., 2006; Leimeister-Wächter et al., 1990; Lingnau et al., 1995; Mengaud et al., 1991a). In the context of this work the internalins InlC, InlE, InlG and InlH of L. monocytogenes should be further investigated. Therefore recombinant His6-tagged internalins were purified and polyclonal antisera against the internalins A, B, E, G and H were raised. In addition the creation of two monoclonal antibodies against InlG succeeded. While the antibodies against InlG and InlE decorated well their recombinant antigens, they could not detect proteins in cell wall preparations or culture supernatant of L. monocytogenes EGD and EGDe. The antiserum against InlH cross-reacted with InlA and weakly also with other internalins. In cell wall preparations of L. monocytogenes it decorated a ~50 kDa protein which could be identical with InlH. This protein is missing in inlG/H/E deletion mutants and is stronger expressed in inlA/B deletion mutants. It is slightly bigger in the supernatant as expected for a protein with LPXTG motif that was not processed by sortase (Bierne et al., 2002; Garandeau et al., 2002). In L. monocytogenes EGDe the ~50 kDa protein was expressed stronger than in L. monocytogenes EGD by two orders of magnitude. The expression of this protein was equal at 30 and 37 °C and was not regulated by PrfA. In cell wall preparations of L. ivanovii ATCC 19119 the antisera against InlA and InlH decorated a protein matching the size of InlA of L. monocytogenes. Hexosaminidase assays for analysis of cell adherence (after Landegren, 1984) with recombinant His6-tagged internalins showed no interaction of the internalins InlE, InlG or InlH with surface factors of Caco-2, HeLa or HepG2 cells while positive controls with InlA and InlB mainly resulted as expected. However InlC has a not yet identified receptor on the eukaryotic cell surface. Caco-2 cells adhered to InlC and EGF in a strongly growth phase dependent manner and roughly thousand fold weaklier then to InlA. Best binding was observed with semi confluent grown cells which were prepared one day before the assay. Under these conditions the supportive effect of InlC in InlA-dependent invasion reported by Bergmann et al. was also maximal (Bergmann et al., 2002). Furthermore in this work the promoters of internalin genes from L. ivanovii and other virulence genes (plcA, hly, actA) from the species L. monocytogenes, L. ivanovii and L. seeligeri were investigated with the aid of the cell free in vitro transcription assay (Lalic-Mülthaler et al., 2001) to analyze their PrfA-dependency and activity independent of metabolic factors because PrfA activity is pleiotropicly regulated in vivo (Dickneite et al., 1998; Ermolaeva et al., 2004; Milenbachs et al., 1997; Milenbachs Lukowiak et al., 2004; Renzoni et al., 1997; Ripio et al., 1996). Therefore RNA polymerase from L. monocytogenes ΔprfA ΔsigB (Stritzker et al., 2005) was isolated in this work. Simultaneously the activity of recombinant His6-tagged PrfA proteins was investigated. For this purpose PrfA proteins of L. monocytogenes (m-PrfA and hyperactive m-PrfA* (Ripio et al., 1997b)), L. ivanovii (i-PrfA), L. seeligeri (s-PrfA) and the hybrid protein (sm-PrfA) were purified. The hybrid protein sm-PrfA corresponds to s-PrfA except for the last 38 amino acid residues which were substituted by those of m-PrfA. ... KW - Listeria KW - Virulenz KW - Internaline KW - Transkription KW - Listeria KW - Internaline KW - PrfA KW - Transkription KW - Listeria KW - internalins KW - PrfA KW - transcription Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-21659 ER - TY - THES A1 - Osterloh, Lisa T1 - Identifizierung und Charakterisierung LIN-9 regulierter Gene im humanen System - Die Rolle von LIN-9 in der Regulation des Zellzyklus T1 - Identification and characterization of LIN-9 regulated genes in the human system - The role of LIN-9 in the regulation of the cell cycle N2 - Das humane LIN-9 wurde zuerst als pRB-interagierendes Protein beschrieben und spielt eine Rolle als Tumorsuppressor im Kontext des pRB-Signalweges. Über die molekulare Funktion von LIN-9 ist jedoch wenig bekannt. Die Homologe von LIN-9 in D. melanogaster und in C. elegans, sind an der transkriptionellen Regulation verschiedener Genen beteiligt. Dies und die Tatsache, dass LIN-9 mit pRB in der Aktivierung differenzierungspezifischer Gene kooperiert, ließ vermuten, dass humanes LIN-9 einen bedeutenden Einfluss auf die transkriptionelle Regulation von Genen haben könnte. Primäres Ziel dieser Arbeit war daher die Identifizierung LIN-9 regulierter Gene. Dazu sollte mit Hilfe von cDNA-Microarray Analysen, das Genexpressionsprofil LIN-9 depletierter primärer humaner Fibroblasten (BJ ET Zellen) im Vergleich zu Kontrollzellen untersucht werden. Hierfür wurde zunächst ein RNAi-basierendes System etabliert, um die posttranskriptionelle Expression von LIN-9 in BJ-ET Zellen effizient zu reprimieren. Auf dem Ergebnis der cDNA-Microarray Analysen aufbauende Untersuchungen sollten Aufschluss über die molekularbiologische Funktion von LIN-9 geben. In dieser Arbeit konnte erstmals gezeigt werden, dass der Verlust von LIN-9 zu einer verminderten Expression einer Gruppe G2/M-spezifischer Gene führt, deren Produkte für den Eintritt in die Mitose benötigt werden. Bekannt war, dass ein Teil dieser Gene durch den Transkriptionsfaktor B-MYB koreguliert wird. Zudem konnten Untersuchungen in unserem Labor eine Interaktion von LIN-9 und B-MYB auf Proteinebene, sowie die Bindung beider Proteine an die Promotoren der LIN-9 regulierten G2/M-Gene nachweisen. Dies lässt vermuten, dass LIN-9 und B-MYB gemeinsam die Expression der G2/M-Gene kontrollieren. Die verminderte Expression von G2/M-Genen in LIN-9 bzw. B-MYB depletierten Zellen geht mit einer Reihe phänotypischer Veränderungen einher, wie einer deutlich verlangsamten Proliferation und einer Akkumulation der Zellen in der G2/M-Phase. Mit Hilfe eines Durchflusszytometers erstellte Zellzykluskinetiken ergaben, dass die Progression LIN-9 bzw. B-MYB depletierter Fibroblasten von der S-Phase durch die G2/M-Phase und in die nächste G1-Phase deutlich verzögert ist. Es konnte weder ein Arrest dieser Zellen in der Mitose noch eine veränderte Länge der S-Phase nach LIN-9 oder B-MYB Depletion festgestellt werden. Daher ist die verlangsamte Zellzyklusprogression nach LIN-9 bzw. B-MYB Verlust höchstwahrscheinlich auf einen Defekt in der späten G2-Phase zurückzuführen, welcher in einem verzögerten Eintritt in die Mitose resultiert. In D. melanogaster und in C. elegans sind die Homologe von LIN-9 und B-MYB zusammen, als Bestandteile hoch konservierter RB/E2F-Komplexe, an der Regulation von Genen entscheidend beteiligt. Daher liegt es nahe, dass im humanen System LIN-9 und B MYB ebenfalls Bestandteile eines ähnlichen Komplexes sind und dadurch die Aktivierung der LIN 9 abhängigen G2/M-Gene vermitteln. Die Tatsache, dass LIN-9 sowohl als Tumorsuppressor, als auch als positiver Regulator des Zellzyklus fungiert, lässt vermuten, dass LIN-9 zu einer stetig größer werdenden Gruppe von Proteinen gehört, welche in Abhängigkeit vom zellulären und genetischen Kontext sowohl tumorsuppressive als auch onkogene Funktionen besitzen. N2 - The human LIN-9 Protein was first identified as a novel pRB-interacting Protein which acts as a tumorsuppressor in context of the pRB-pathway. But the molecular function of LIN-9 is poorly unterstood. The homologs of LIN-9 in D. melanogaster and C. elegans are required for the transcriptional regulation of different genes. This and the fact, that LIN 9 cooperates with pRB in the activation of differentiation specific genes let to the hypothesis, that human LIN-9 could play an important role in the transcriptional regulation of genes. Thus, the primary goal of this thesis was to identify genes which are regulated by LIN-9. For that purpose, the genexpression profiles of LIN-9 depelted primary human fibroblasts (BJ ET cells) in comparison to control cells should be analyzed by a cDNA-microarray approach. Therefor an RNAi-based system was established, that efficiently represses the posttranscriptional expression of LIN-9 in BJ-ET cells. Based on the outcome of the cDNA microarray analysis, further studies should provide more informations about the molecular function of LIN-9. It was possible to show, that the loss of LIN-9 leads to a reduced expression of a cluster of G2/M-specific genes, whose products are required for timely entry into mitosis. It was known, that some of these genes are coregulated by the transcriptionfactor B-MYB. Moreover, studies in our lab account for the interaction of LIN-9 and B-MYB on protein level and the binding of both proteins to the promotors of LIN-9 regulated G2/M-genes. The reduced expression of these genes is accompanied by phenotypically changes, such as strongly impaired proliferation and an accumulation of these cells in the G2/M-Phase. Cell cycle kinetics generated by flowcytometry revealed that the progression of LIN-9 or B MYB depleted cells from S-phase to G2/M-phase and into the next G1-Phase is significantly delayed. Depletion of LIN-9 or B-MYB results neither in an arrest in mitosis nor in a significantly changed S-phase length of these cells. This indicates that the slowed progression is most likely due to a defect in the late G2-phase, which results in a delayed entry into mitosis. The homologs of LIN-9 and B-MYB in D. melanogaster and C. elegans act together as subunits of highly conserved RB/E2F-complexes in the regulation of genes. This let to the suggestion, that LIN-9 and B-MYB are also components of a similar complex in humans and thereby mediate the activation of LIN-9 regulated G2/M-genes. Because LIN-9 acts as a tumorsuppressor in the pRB-pathway as well as an positive regulator of the cell cycle, it seems that LIN-9 belongs to an increasing group of proteins, which function as context dependent tumorsuppressors and oncogenes. KW - Zellzyklus KW - Mitose KW - Genregulation KW - Microarray KW - G2/M-Übergang KW - LIN-9 KW - B-MYB KW - E2F KW - Transkription KW - G2/M-transition KW - LIN-9 KW - B-MYB KW - E2F KW - transcription Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-24360 ER - TY - THES A1 - Peter, Andreas T1 - Transkriptionelle Regulation des Homeo-Domänen-Transkriptionsfaktors Islet/Duodenum Homeobox-1 (IDX-1) in insulinproduzierenden Betazellen des endokrinen Pankreas T1 - Transcriptional Regulation of the homeodomain transcription factor Islet/Duodenum Homeobox-1 (IDX-1) in insulin producing beta-cells of the endocrine pancreas N2 - Die Betazellmasse wird durch Apoptose, Proliferation und Neogenese aus Vorläuferzellen an den Bedarf des Organismus angepasst. Fehlregulationen und Verlust der Anpassungsfähigkeit sind Ursachen für Diabetes mellitus Typ-2. IDX-1 ist sowohl ein Hauptentwicklungsfaktor des embryonalen Pankreas als auch an der Regulation von Neogenese und Proliferation der adulten Betazellen beteiligt. Betazellproliferation und Differenzierung werden durch Faktoren wie GLP-1 oder milde Hyperglykämie stimuliert und gehen mit einer Aktivierung von IDX-1 einher. In der Arbeit sollte der Einfluss von GLP-1 und milder Hyperglykämie auf die Expression, besonders die Transkription, des Transkriptionsfaktors IDX-1 in insulinproduzierenden Betazellen des endokrinen Pankreas untersucht werden. Ferner wurde eine mögliche Autoregulation des IDX-1 Promotors durch IDX-1 untersucht. Als Modell für adulte Betazellen wurden klonale Betazellen INS-1 und MIN6 verwendet. Die IDX-1 Expression wurde auf mRNA Ebene im Northern Blot und auf Proteinebene mittels Western Blot untersucht. Der Promotor des IDX-1 Gens wurde Mithilfe von Luziferasereportergenassays und EMSA untersucht. Die Expression von IDX-1 Protein und mRNA wird durch milde Hyperglykämie stimuliert. Dieser Effekt ist auf eine Aktivierung des IDX-1 Promotors zurückzuführen. Die Aktivierung innerhalb des Promotors konnte auf zwei Regionen eingeschränkt werden. Diese befinden sich im IDX Promotor in den -900 bp bis -300 bp und den 230 bp vor Beginn der kodierenden Sequenz des IDX-1 Gens. Im EMSA konnte ein glukoseabhängiger Komplex (-49 bp bis -44 bp) nachgewiesen werden, an den USF-1 und USF-2 binden. USFs sind für glukoseabhängige Genregulation in Leber und Pankreas bekannt. Eine Mutation der Bindungsstelle führte zum Verlust des Bindungskomplexes. In Luziferasereportergenassays beobachtete man eine Verringerung der glukoseinduzierten Aktivierung. Für GLP-1 konnte kein eindeutiger Einfluss auf die Expression von IDX-1 gezeigt werden. Als Anzeichen für eine mögliche Autoregulation des IDX-1 Promotors durch IDX-1 wurde bei Überexpression von IDX-1 in Betazellen eine verringerte Promotoraktivität festgestellt. Der in dieser Arbeit untersuchte Transkriptionsfaktor IDX-1 spielt eine Schlüsselrolle in der Regulation der Betazellmasse des endokrinen Pankreas. Es ist wichtig die molekularen Mechanismen der Regulation der Betazellmasse zu verstehen; Erkenntnisse darüber eröffnen einerseits ein besseres Verständnis der Pathogenese des Diabetes mellitus, andererseits stellen sie hoffnungsvolle neue Therapieansätze da. KW - IDX-1 KW - Diabetes mellitus KW - Transkription KW - Betazelle KW - Hyperglykämie KW - IDX-1 KW - Diabetes mellitus KW - Transcription KW - Beta-cell KW - Hyperglycemia Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-16407 ER -